Skip to main content
Erschienen in:

24.05.2024 | Research Article

Traumatic brain injury heterogeneity affects cell death and autophagy

verfasst von: Brandon Z. McDonald, Aria W. Tarudji, Haipeng Zhang, Sangjin Ryu, Kent M. Eskridge, Forrest M. Kievit

Erschienen in: Experimental Brain Research | Ausgabe 7/2024

Einloggen, um Zugang zu erhalten

Abstract

Traumatic brain injury (TBI) mechanism and severity are heterogenous clinically, resulting in a multitude of physical, cognitive, and behavioral deficits. Impact variability influences the origin, spread, and classification of molecular dysfunction which limits strategies for comprehensive clinical intervention. Indeed, there are currently no clinically approved therapeutics for treating the secondary consequences associated with TBI. Thus, examining pathophysiological changes from heterogeneous impacts is imperative for improving clinical translation and evaluating the efficacy of potential therapeutic strategies. Here we utilized TBI models that varied in both injury mechanism and severity including severe traditional controlled cortical impact (CCI), modified mild CCI (MTBI), and multiple severities of closed-head diffuse TBI (DTBI), and assessed pathophysiological changes. Severe CCI induced cortical lesions and necrosis, while both MTBI and DTBI lacked lesions or significant necrotic damage. Autophagy was activated in the ipsilateral cortex following CCI, but acutely impaired in the ipsilateral hippocampus. Additionally, autophagy was activated in the cortex following DTBI, and autophagic impairment was observed in either the cortex or hippocampus following impact from each DTBI severity. Thus, we provide evidence that autophagy is a therapeutic target for both mild and severe TBI. However, dramatic increases in necrosis following CCI may negatively impact the clinical translatability of therapeutics designed to treat acute dysfunction in TBI. Overall, these results provide evidence that injury sequalae affiliated with TBI heterogeneity is linked through autophagy activation and/or impaired autophagic flux. Thus, therapeutic strategies designed to intervene in autophagy may alleviate pathophysiological consequences, in addition to the cognitive and behavioral deficits observed in TBI.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(3):213–232CrossRefPubMed Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(3):213–232CrossRefPubMed
Zurück zum Zitat Control C. f. D. and prevention (2003) Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Centers for Disease Control and Prevention, Atlanta Control C. f. D. and prevention (2003) Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Centers for Disease Control and Prevention, Atlanta
Zurück zum Zitat Galluzzi L, Pedro B-S, Manuel J, Blomgren K, Kroemer G (2016) Autophagy in acute brain injury. Nat Rev Neurosci 17(8):467–484CrossRefPubMed Galluzzi L, Pedro B-S, Manuel J, Blomgren K, Kroemer G (2016) Autophagy in acute brain injury. Nat Rev Neurosci 17(8):467–484CrossRefPubMed
Zurück zum Zitat Guo D, Zeng L, Brody DL, Wong M (2013) Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS ONE 8(5):e64078CrossRefPubMedPubMedCentral Guo D, Zeng L, Brody DL, Wong M (2013) Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS ONE 8(5):e64078CrossRefPubMedPubMedCentral
Zurück zum Zitat Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28(1):3–13CrossRefPubMed Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28(1):3–13CrossRefPubMed
Zurück zum Zitat Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43CrossRefPubMed Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43CrossRefPubMed
Zurück zum Zitat Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A (2021) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 17(1):1–382CrossRefPubMedPubMedCentral Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A (2021) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 17(1):1–382CrossRefPubMedPubMedCentral
Zurück zum Zitat Kochanek PM, Dixon CE, Mondello S, Wang KKK, Lafrenaye A, Bramlett HM, Dietrich WD, Hayes RL, Shear DA, Gilsdorf JS, Catania M, Poloyac SM, Empey PE, Jackson TC, Povlishock JT (2018) Multi-center pre-clinical consortia to enhance translation of therapies and biomarkers for traumatic brain injury: operation brain trauma therapy and beyond. Front Neurol 9:640. https://doi.org/10.3389/fneur.2018.00640CrossRefPubMedPubMedCentral Kochanek PM, Dixon CE, Mondello S, Wang KKK, Lafrenaye A, Bramlett HM, Dietrich WD, Hayes RL, Shear DA, Gilsdorf JS, Catania M, Poloyac SM, Empey PE, Jackson TC, Povlishock JT (2018) Multi-center pre-clinical consortia to enhance translation of therapies and biomarkers for traumatic brain injury: operation brain trauma therapy and beyond. Front Neurol 9:640. https://​doi.​org/​10.​3389/​fneur.​2018.​00640CrossRefPubMedPubMedCentral
Zurück zum Zitat Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RS (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28(3):540–550. https://doi.org/10.1038/sj.jcbfm.9600551CrossRefPubMed Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RS (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28(3):540–550. https://​doi.​org/​10.​1038/​sj.​jcbfm.​9600551CrossRefPubMed
Zurück zum Zitat Lin C, Chen T, Yang L, Shih C (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 5(3):e1147–e1147CrossRefPubMedPubMedCentral Lin C, Chen T, Yang L, Shih C (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 5(3):e1147–e1147CrossRefPubMedPubMedCentral
Zurück zum Zitat Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ (2013) Autosis is a Na+, K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc Natl Acad Sci 110(51):20364–20371CrossRefPubMedPubMedCentral Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ (2013) Autosis is a Na+, K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc Natl Acad Sci 110(51):20364–20371CrossRefPubMedPubMedCentral
Zurück zum Zitat Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7(8):728–741CrossRefPubMed Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7(8):728–741CrossRefPubMed
Zurück zum Zitat McDonald BZ, Gee CC, Kievit FM (2021) The nanotheranostic researcher’s guide for use of animal models of traumatic brain injury. J Nanotheranostics 2(4):224–268CrossRefPubMedPubMedCentral McDonald BZ, Gee CC, Kievit FM (2021) The nanotheranostic researcher’s guide for use of animal models of traumatic brain injury. J Nanotheranostics 2(4):224–268CrossRefPubMedPubMedCentral
Zurück zum Zitat Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034. https://doi.org/10.1016/j.neuron.2017.01.022CrossRefPubMed Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034. https://​doi.​org/​10.​1016/​j.​neuron.​2017.​01.​022CrossRefPubMed
Zurück zum Zitat Nikolaeva I, Crowell B, Valenziano J, Meaney D, D’Arcangelo G (2016) Beneficial effects of early mTORC1 inhibition after traumatic brain injury. J Neurotrauma 33(2):183–193CrossRefPubMedPubMedCentral Nikolaeva I, Crowell B, Valenziano J, Meaney D, D’Arcangelo G (2016) Beneficial effects of early mTORC1 inhibition after traumatic brain injury. J Neurotrauma 33(2):183–193CrossRefPubMedPubMedCentral
Zurück zum Zitat Smith DH, Chen X-H, Xu B-N, McIntosh TK, Gennarelli TA, Meaney DE (1997) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56(7):822–834CrossRefPubMed Smith DH, Chen X-H, Xu B-N, McIntosh TK, Gennarelli TA, Meaney DE (1997) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56(7):822–834CrossRefPubMed
Zurück zum Zitat Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18(4):307–316CrossRefPubMed Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18(4):307–316CrossRefPubMed
Zurück zum Zitat Su E, Bell M (2016) Diffuse axonal injury. Transl Res Trauma Brain Inj 57:41 Su E, Bell M (2016) Diffuse axonal injury. Transl Res Trauma Brain Inj 57:41
Zurück zum Zitat Tarudji AW, Miller HA, Curtis ET, Porter CL, Madsen GL, Kievit FM (2023) Sex-based differences of antioxidant enzyme nanoparticle effects following traumatic brain injury. J Control Release 355:149–159CrossRefPubMedPubMedCentral Tarudji AW, Miller HA, Curtis ET, Porter CL, Madsen GL, Kievit FM (2023) Sex-based differences of antioxidant enzyme nanoparticle effects following traumatic brain injury. J Control Release 355:149–159CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS (1998) Simultaneous degradation of αII-and βII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273(35):22490–22497CrossRefPubMed Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS (1998) Simultaneous degradation of αII-and βII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273(35):22490–22497CrossRefPubMed
Zurück zum Zitat Wang Y-Q, Wang L, Zhang M-Y, Wang T, Bao H-J, Liu W-L, Dai D-K, Zhang L, Chang P, Dong W-W (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37(9):1849–1858CrossRefPubMed Wang Y-Q, Wang L, Zhang M-Y, Wang T, Bao H-J, Liu W-L, Dai D-K, Zhang L, Chang P, Dong W-W (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37(9):1849–1858CrossRefPubMed
Zurück zum Zitat Wang C-Q, Ye Y, Chen F, Han W-C, Sun J-M, Lu X, Guo R, Cao K, Zheng M-J, Liao L-C (2017) Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy. Neuroscience 343:30–38CrossRefPubMed Wang C-Q, Ye Y, Chen F, Han W-C, Sun J-M, Lu X, Guo R, Cao K, Zheng M-J, Liao L-C (2017) Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy. Neuroscience 343:30–38CrossRefPubMed
Zurück zum Zitat Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. BJA Br J Anaesth 99(1):4–9CrossRefPubMed Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. BJA Br J Anaesth 99(1):4–9CrossRefPubMed
Zurück zum Zitat Xu Y, Tian Y, Tian Y, Li X, Zhao P (2016) Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 139(5):795–805CrossRefPubMed Xu Y, Tian Y, Tian Y, Li X, Zhao P (2016) Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 139(5):795–805CrossRefPubMed
Zurück zum Zitat Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14:1289–1298CrossRefPubMed Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14:1289–1298CrossRefPubMed
Zurück zum Zitat Zhang D-M, Zhang T, Wang M-M, Wang X-X, Qin Y-Y, Wu J, Han R, Sheng R, Wang Y, Chen Z (2019) TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 137:13–23CrossRefPubMed Zhang D-M, Zhang T, Wang M-M, Wang X-X, Qin Y-Y, Wu J, Han R, Sheng R, Wang Y, Chen Z (2019) TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 137:13–23CrossRefPubMed
Metadaten
Titel
Traumatic brain injury heterogeneity affects cell death and autophagy
verfasst von
Brandon Z. McDonald
Aria W. Tarudji
Haipeng Zhang
Sangjin Ryu
Kent M. Eskridge
Forrest M. Kievit
Publikationsdatum
24.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 7/2024
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-024-06856-1

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Erneut Hinweise für Neuroprotektion durch Gürtelroseimpfung

Ergebnisse eines kürzlich publizierten „natürlichen Experiments“ in Wales legten nahe, dass eine Herpes-Zoster-Impfung das Demenzrisiko senkt. Jetzt hat das Studienteam ähnliche Daten aus Australien publiziert, die in die gleiche Richtung zeigen. Offene Fragen bleiben allerdings so oder so.

Podcast

Leben statt zu Überleben: Post-Intensive-Care-Syndrom

Immer mehr Menschen überleben kritische Erkrankungen. Aber Beatmung, Sedierung und die Eindrücke der Intensivstation hinterlassen Spuren. Das Post-Intensive-Care-Syndrom kann die Folge sein. Es ist nicht nur eine Herausforderung für Kliniken, sondern auch Hausarztpraxen. Mit Allgemeinmediziner Prof. Dr. med. Konrad Schmidt sprechen wir in dieser Folge darüber, wie die Überlebenden wieder ins Leben finden können.

Zeitschrift für Allgemeinmedizin, DEGAM

Ehe schützt nicht vor Demenz

  • 25.04.2025
  • Demenz
  • Nachrichten

Eigentlich leben Verheiratete länger und gesünder. Eine aktuelle Untersuchung kommt jedoch zu dem überraschenden Schluss, dass sie eher an Demenz erkranken als nie Verheiratete, Geschiedene oder Verwitwete.

Lohnt sich die Karotis-Revaskularisation?

Die medikamentöse Therapie für Menschen mit Karotisstenosen hat sich in den vergangenen Dekaden verbessert. Braucht es also noch einen invasiven Eingriff zur Revaskularisation der Halsschlagader bei geringem bis moderatem Risiko für einen ipsilateralen Schlaganfall?

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.