Skip to main content
Erschienen in: Diabetologia 9/2016

07.06.2016 | Article

Treatment of diet-induced lipodystrophic C57BL/6J mice with long-acting PASylated leptin normalises insulin sensitivity and hepatic steatosis by promoting lipid utilisation

verfasst von: Florian Bolze, Andrea Bast, Sabine Mocek, Volker Morath, Detian Yuan, Nadine Rink, Martin Schlapschy, Anika Zimmermann, Mathias Heikenwalder, Arne Skerra, Martin Klingenspor

Erschienen in: Diabetologia | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Recombinant leptin offers a viable treatment for lipodystrophy (LD) syndromes. However, due to its short plasma half-life, leptin replacement therapy requires at least daily subcutaneous (s.c.) injections. Here, we optimised this treatment strategy in LD mice by using a novel leptin version with extended plasma half-life using PASylation technology.

Methods

A long-acting leptin version was prepared by genetic fusion with a 600 residue polypeptide made of Pro, Ala and Ser (PASylation), which enlarges the hydrodynamic volume and, thus, retards renal filtration, allowing less frequent injection. LD was induced in C57BL/6J mice by feeding a diet supplemented with conjugated linoleic acid (CLA). Chronic and acute effects of leptin treatment were assessed by evaluating plasma insulin levels, insulin tolerance, histological liver sections, energy expenditure, energy intake and body composition.

Results

In a cohort of female mice, 4 nmol PAS-leptin (applied via four s.c. injections every 3 days) successfully alleviated the CLA-induced LD phenotype, which was characterised by hyperinsulinaemia, insulin intolerance and hepatosteatosis. The same injection regimen had no measurable effect when unmodified recombinant leptin was administered at an equivalent dose. In a cohort of LD males, a single s.c. injection of PAS-leptin did not affect energy expenditure but inhibited food intake and promoted a shift in fuel selection towards preferential fat oxidation, which mechanistically substantiates the metabolic improvements.

Conclusions/interpretation

The excellent pharmacological properties render PASylated leptin an agent of choice for refining both animal studies and therapeutic strategies in the context of LD syndromes and beyond.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Garg A (2011) Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 96:3313–3325CrossRefPubMed Garg A (2011) Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 96:3313–3325CrossRefPubMed
2.
Zurück zum Zitat Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60:329–339CrossRefPubMed Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60:329–339CrossRefPubMed
3.
Zurück zum Zitat Ahima RS (2006) Adipose tissue as an endocrine organ. Obesity (Silver Spring) 14(Suppl 5):242S–249SCrossRef Ahima RS (2006) Adipose tissue as an endocrine organ. Obesity (Silver Spring) 14(Suppl 5):242S–249SCrossRef
4.
Zurück zum Zitat Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A 94:8878–8883CrossRefPubMedPubMedCentral Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A 94:8878–8883CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Koch C, Augustine RA, Steger J et al (2010) Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci 30:16180–16187CrossRefPubMedPubMedCentral Koch C, Augustine RA, Steger J et al (2010) Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci 30:16180–16187CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Oral EA, Simha V, Ruiz E et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578CrossRefPubMed Oral EA, Simha V, Ruiz E et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578CrossRefPubMed
7.
Zurück zum Zitat Chong AY, Lupsa BC, Cochran EK, Gorden P (2010) Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologia 53:27–35CrossRefPubMed Chong AY, Lupsa BC, Cochran EK, Gorden P (2010) Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologia 53:27–35CrossRefPubMed
8.
Zurück zum Zitat Cumin F, Baum HP, Levens N (1996) Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord 20:1120–1126PubMed Cumin F, Baum HP, Levens N (1996) Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord 20:1120–1126PubMed
9.
Zurück zum Zitat Zhang F, Basinski MB, Beals JM et al (1997) Crystal structure of the obese protein leptin-E100. Nature 387:206–209CrossRefPubMed Zhang F, Basinski MB, Beals JM et al (1997) Crystal structure of the obese protein leptin-E100. Nature 387:206–209CrossRefPubMed
10.
Zurück zum Zitat Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22:868–876CrossRefPubMed Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22:868–876CrossRefPubMed
11.
Zurück zum Zitat Morath V, Bolze F, Schlapschy M et al (2015) PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy. Mol Pharm 12:1431–1442CrossRefPubMed Morath V, Bolze F, Schlapschy M et al (2015) PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy. Mol Pharm 12:1431–1442CrossRefPubMed
12.
Zurück zum Zitat Haraldsson B, Sorensson J (2004) Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol Sci 19:7–10PubMed Haraldsson B, Sorensson J (2004) Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol Sci 19:7–10PubMed
13.
Zurück zum Zitat Schlapschy M, Binder U, Börger C et al (2013) PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel 26:489–501CrossRefPubMedPubMedCentral Schlapschy M, Binder U, Börger C et al (2013) PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel 26:489–501CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Bolze F, Morath V, Bast A et al (2016) Long-acting PASylated leptin ameliorates obesity by promoting satiety and preventing hypometabolism in leptin-deficient Lep(ob/ob) mice. Endocrinology 157:233–244CrossRefPubMed Bolze F, Morath V, Bast A et al (2016) Long-acting PASylated leptin ameliorates obesity by promoting satiety and preventing hypometabolism in leptin-deficient Lep(ob/ob) mice. Endocrinology 157:233–244CrossRefPubMed
15.
Zurück zum Zitat Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543CrossRefPubMed Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543CrossRefPubMed
16.
Zurück zum Zitat Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546CrossRefPubMed Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546CrossRefPubMed
17.
Zurück zum Zitat Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858CrossRefPubMed Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858CrossRefPubMed
18.
Zurück zum Zitat Tsuboyama-Kasaoka N, Takahashi M, Tanemura K et al (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542CrossRefPubMed Tsuboyama-Kasaoka N, Takahashi M, Tanemura K et al (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542CrossRefPubMed
19.
Zurück zum Zitat Nagao K, Inoue N, Ujino Y et al (2008) Effect of leptin infusion on insulin sensitivity and lipid metabolism in diet-induced lipodystrophy model mice. Lipids Health Dis 7:8CrossRefPubMedPubMedCentral Nagao K, Inoue N, Ujino Y et al (2008) Effect of leptin infusion on insulin sensitivity and lipid metabolism in diet-induced lipodystrophy model mice. Lipids Health Dis 7:8CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706CrossRefPubMed Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706CrossRefPubMed
21.
Zurück zum Zitat Tschöp MH, Speakman JR, Arch JR et al (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63CrossRef Tschöp MH, Speakman JR, Arch JR et al (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63CrossRef
22.
Zurück zum Zitat Elia M, Livesey G (1992) Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. World Rev Nutr Diet 70:68–131CrossRefPubMed Elia M, Livesey G (1992) Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. World Rev Nutr Diet 70:68–131CrossRefPubMed
23.
Zurück zum Zitat Mendler CT, Friedrich L, Laitinen I et al (2015) High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation. MAbs 7:96–109CrossRefPubMed Mendler CT, Friedrich L, Laitinen I et al (2015) High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation. MAbs 7:96–109CrossRefPubMed
24.
Zurück zum Zitat Harari D, Kuhn N, Abramovich R et al (2014) Enhanced in vivo efficacy of a type I interferon superagonist with extended plasma half-life in a mouse model of multiple sclerosis. J Biol Chem 289:29014–29029CrossRefPubMedPubMedCentral Harari D, Kuhn N, Abramovich R et al (2014) Enhanced in vivo efficacy of a type I interferon superagonist with extended plasma half-life in a mouse model of multiple sclerosis. J Biol Chem 289:29014–29029CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Naito M, Fujikura J, Ebihara K et al (2011) Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes 60:2265–2273CrossRefPubMedPubMedCentral Naito M, Fujikura J, Ebihara K et al (2011) Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes 60:2265–2273CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Toyoshima Y, Gavrilova O, Yakar S et al (2005) Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology 146:4024–4035CrossRefPubMed Toyoshima Y, Gavrilova O, Yakar S et al (2005) Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology 146:4024–4035CrossRefPubMed
27.
Zurück zum Zitat Perez-Gonzalez R, Alvira-Botero MX, Robayo O et al (2014) Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice. Gene Ther 21:298–308 Perez-Gonzalez R, Alvira-Botero MX, Robayo O et al (2014) Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice. Gene Ther 21:298–308
28.
Zurück zum Zitat Wang MY, Lee Y, Unger RH (1999) Novel form of lipolysis induced by leptin. J Biol Chem 274:17541–17544CrossRefPubMed Wang MY, Lee Y, Unger RH (1999) Novel form of lipolysis induced by leptin. J Biol Chem 274:17541–17544CrossRefPubMed
29.
Zurück zum Zitat Minokoshi Y, Kim YB, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343CrossRefPubMed Minokoshi Y, Kim YB, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343CrossRefPubMed
30.
Zurück zum Zitat Huang W, Dedousis N, Bandi A, Lopaschuk GD, O'Doherty RM (2006) Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo. Endocrinology 147:1480–1487 Huang W, Dedousis N, Bandi A, Lopaschuk GD, O'Doherty RM (2006) Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo. Endocrinology 147:1480–1487
31.
Zurück zum Zitat Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401:73–76CrossRefPubMed Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401:73–76CrossRefPubMed
32.
Zurück zum Zitat Döring H, Schwarzer K, Nuesslein-Hildesheim B, Schmidt I (1998) Leptin selectively increases energy expenditure of food-restricted lean mice. Int J Obes Relat Metab Disord 22:83–88CrossRefPubMed Döring H, Schwarzer K, Nuesslein-Hildesheim B, Schmidt I (1998) Leptin selectively increases energy expenditure of food-restricted lean mice. Int J Obes Relat Metab Disord 22:83–88CrossRefPubMed
33.
Zurück zum Zitat West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:R667–R672PubMed West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:R667–R672PubMed
34.
Zurück zum Zitat West DB, Blohm FY, Truett AA, DeLany JP (2000) Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 130:2471–2477PubMed West DB, Blohm FY, Truett AA, DeLany JP (2000) Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 130:2471–2477PubMed
35.
Zurück zum Zitat Ohnuki K, Haramizu S, Ishihara K, Fushiki T (2001) Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid. Biosci Biotechnol Biochem 65:2200–2204CrossRefPubMed Ohnuki K, Haramizu S, Ishihara K, Fushiki T (2001) Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid. Biosci Biotechnol Biochem 65:2200–2204CrossRefPubMed
36.
Zurück zum Zitat Terpstra AH, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL (2002) The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 132:940–945PubMed Terpstra AH, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL (2002) The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 132:940–945PubMed
37.
Zurück zum Zitat Rozman J, Klingenspor M, Hrabe de Angelis M (2014) A review of standardized metabolic phenotyping of animal models. Mamm Genome 25:497–507CrossRefPubMed Rozman J, Klingenspor M, Hrabe de Angelis M (2014) A review of standardized metabolic phenotyping of animal models. Mamm Genome 25:497–507CrossRefPubMed
38.
Zurück zum Zitat Zeng W, Pirzgalska RM, Pereira MM et al (2015) Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163:84–94CrossRefPubMed Zeng W, Pirzgalska RM, Pereira MM et al (2015) Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163:84–94CrossRefPubMed
Metadaten
Titel
Treatment of diet-induced lipodystrophic C57BL/6J mice with long-acting PASylated leptin normalises insulin sensitivity and hepatic steatosis by promoting lipid utilisation
verfasst von
Florian Bolze
Andrea Bast
Sabine Mocek
Volker Morath
Detian Yuan
Nadine Rink
Martin Schlapschy
Anika Zimmermann
Mathias Heikenwalder
Arne Skerra
Martin Klingenspor
Publikationsdatum
07.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 9/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4004-6

Weitere Artikel der Ausgabe 9/2016

Diabetologia 9/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.