Zum Inhalt

Treatment of neonatal seizures: from guidelines to precision therapy

  • Open Access
  • 01.12.2025
  • Correspondence
Erschienen in:
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Overview

Neonatal seizures represent one of the most common neurological emergencies in newborns, with significant implications for long-term neurodevelopmental outcomes. Current management strategies, as outlined in Treatment of seizures in the neonate: Guidelines and consensus-based recommendations-Special report from the ILAE Task Force on Neonatal Seizures, advocate for a stepwise approach [1]. These recommendations prioritize the administration of phenobarbital as the first-line therapy for initial seizure control, followed by consideration of alternative anti-seizure medications (ASMs) in refractory cases [1, 2]. However, it is critical to note that even when phenobarbital effectively controls seizures, it does not exclude underlying causes that may require targeted precision therapies. Among these alternatives, therapies considered precision-based include pyridoxine (vitamin B6) for pyridoxine-dependent epilepsy, sodium channel blockers such as carbamazepine or oxcarbazepine for suspected channelopathies and specific interventions for metabolic disorders identified through biochemical screening [3]. Precision therapies are considered transformative as they directly address the underlying pathology, altering the disease course and improving outcomes [4]. Pyridoxine, in particular, exemplifies an early and effective form of precision therapy, demonstrating the profound impact that such treatments can have on the natural history of the disease.

Current guideline-based therapy

Current guidelines emphasize the use of phenobarbital, given its long-standing history, relative safety profile, and efficacy in neonatal seizure suppression [1, 2, 5]. However, the drug’s use is not without limitations, including concerns regarding its impact on neuronal development and cognitive outcomes [69]. In cases where phenobarbital fails to control seizures, second-line agents such as phenytoin, levetiracetam, or midazolam are recommended [1, 2]. Pyridoxine supplementation is also specifically highlighted as a targeted therapy in neonates suspected of having pyridoxine-dependent epilepsy, a rare but treatable cause of refractory neonatal seizures.
While these guidelines provide a structured framework for managing neonatal seizures, they are rooted in a generalized appr. oach. This “one-size-fits-all” strategy, in search for the holy grail- a single medication that works for all seizures- often delays the initiation of individualized treatments that may yield superior outcomes. Precision therapies, by directly addressing the underlying etiology of seizures, have the potential to change the disease's natural course, improving not only seizure control but also long-term neurodevelopmental outcomes. Their transformative impact underscores the necessity of integrating such approaches earlier in the management algorithm to ensure timely, etiology-specific interventions [4].

The need for precision therapy in neonatal seizures

Emerging evidence underscores the heterogeneity of neonatal seizures, which often arise from diverse etiologies such as hypoxic-ischemic encephalopathy (HIE), metabolic disorders, structural abnormalities, genetic channelopathies, and neonatal seizures secondary to stroke. A deeper understanding of these underlying mechanisms is reshaping the paradigm of neonatal seizure management. Precision therapy aims to tailor treatments based on the individual’s specific etiological, genetic, and biochemical profiles.
With genetic etiologies accounting for > 50% of neonatal-onset epilepsies, the current role of early genetic testings’ application in clinical practice, such as whole exome sequencing (WES)/whole genome sequencing (WGS) or more rapid panels of next generation sequencing (NGS), has been clearly stated, even though a diagnosis and, hence, a treatment is often initiated based on clinical and electrographic features [1016].
For instance, in cases of suspected channelopathies—even in the absence of definitive clinical or diagnostic features—the early use of sodium channel blockers (e.g., carbamazepine or oxcarbazepine) could potentially prevent further neurological damage [17, 18]. Studies have shown that carbamazepine and oxcarbazepine are effective in controlling seizures related to sodium channelopathies in up to 70–80% of cases, particularly in conditions like gain-of function SCN1A, SCN2A, SCN8A, early onset epileptic encephalopathies and KCNQ2 loss-of function epilepsies [1720].
This success rate underscores the importance of these drugs in mitigating seizures and preventing long-term neurological sequelae [10]. This highlights the need for a shift from reactive to proactive therapy, where the initial management is informed by diagnostic considerations rather than a trial-and-error approach.

Clinical clues for early etiology-specific therapy

Recognizing specific clinical and diagnostic indicators can enable clinicians to initiate etiology-specific therapy early, rather than relying on a generalized pharmacological approach. Enhancing diagnostic performance requires a detailed consideration of expanded clinical clues for various conditions [21]. Key clinical clues include:
1.
Metabolic Disorders:
  • ◦ Persistent metabolic acidosis or elevated lactate levels, often indicative of mitochondrial dysfunction or other metabolic deficiencies.
  • ◦ Hypoglycemia or hyperammonemia detected in blood tests, suggesting disorders like glycogen storage diseases or urea cycle defects.
  • ◦ Specific triggers such as fasting, illness, or dietary protein load, which may precipitate metabolic crises.
  • ◦ Poor feeding, lethargy, hypotonia, or vomiting within the first days of life, potentially pointing to inborn errors of metabolism.
  • ◦ Characteristic “metabolic smells” such as a sweet, maple-like odor (maple syrup urine disease) or a musty smell (phenylketonuria).
  • ◦ Unusual seizure patterns such as myoclonic jerks or burst suppression on EEG.
  • ◦ Elevated plasma or CSF glycine levels, indicating nonketotic hyperglycinemia.
  • ◦ Low CSF serine levels in serine deficiency after nonketotic hyperglicinemia.
  • ◦ Newborn screening abnormalities including organic acidurias or aminoacidopathies, providing diagnosis to inherited metabolic disorders. Hence, not all centres can rely on specialized metabolic labs to provide rapid results; in these cases, a treatment based on clinical/EEG features and response to treatment should be considered.
  • ◦ Targeted metabolic screening revealing enzyme deficiencies or genetic mutations.
  • ◦ Abnormal neuroimaging findings like white matter abnormalities or basal ganglia lesions, often associated with metabolic encephalopathies.
    1.1
    Early-onset vitamin-dependent DEE
    • ◦ Refractory seizures (focal, multifocal, epileptic spasms, generalized tonic/clonic, tonic-clonic seizures) often non-responding to first-line ASMs.
    • ◦ Family history of neonatal seizures or consanguinity.
    • ◦Improvement with empirical pyridoxine or pyridoxal phosphate (PNPO gene), folinic acid (FOLR1 gene).
    • ◦ Laboratory findings indicating elevated alpha-aminoadipic semialdehyde and pipecolic acid in urine, plasma or cerebro-spinal fluid (CSF).
    • ◦ Genetic testings revealing pathogenic variants in ALDH7A1 or PLBP (pyridoxine-dependent DEE) or PNPO gene (pyridox(am)ine-5’-phospatase-DEE).
     
 
2.
Structural Brain Abnormalities:
  • ◦ Focal seizures with concordant findings on cranial ultrasound or MRI.
  • ◦ Prenatal history of infections, ischemic events, or brain malformations.
  • ◦ Macrocephaly or microcephaly noted at birth.
  • ◦ Hemorrhagic events.
 
3.
Hypoxic-Ischemic Encephalopathy (HIE):
  • ◦ Onset of seizures within the first 24 hours of life.
  • ◦ History of perinatal asphyxia or low Apgar scores.
  • ◦ MRI showing diffusion-restricted lesions consistent with hypoxic injury.
 
4.
Monogenic and Chromosomal Syndromes
  • ◦ Dysmorphic features or congenital anomalies associated with syndromic causes.
  • ◦ MRI showing possible association with brain abnormalities (though, often not already altered in early stages of specific disorders).
  • ◦ Lack of response to first and second-line ASMs, often “drug-resistant seizures”.
  • ◦ These clinical clues, in conjunction with targeted investigations, allow for early differentiation of seizure etiologies and the timely initiation of appropriate therapies, though future efforts must focus on achieving faster genetic testings and results.
 
5.
Neonatal-Onset Genetic Epilepsies:
  • ◦ Tonic, myoclonic, tonic spasms, focal clonic, apnea or subtle automatisms seizures
  • ◦ Refractoriness to first-line ASMs.
  • ◦ Limited response to traditional ASMs, some syndromes (e.g. KCNQ2, SCN2A) may respond to sodium channel blockers.
  • ◦ Interictal EEG: burst suppression or multifocal discharges, diffuse slowing.
  • ◦ Normal development and neurological examination at onset, which rapidly evolves into abnormal neurological exam including hypotonia, poor suck or altered consciousness.
  • ◦ Developmental delay or regression.
  • ◦ Family history of epilepsy or neonatal death.
  • ◦ Normal neuroimaging early on.
  • ◦ Metabolic workup needed to rule out inborn errors of metabolisms: plasma aminoacids, urine organic acids, CSF studies, lactate, ammonia
 

Limitations of the current approach

The reliance on phenobarbital as a first-line agent reflects its historical role rather than its’ superiority in achieving optimal neurodevelopmental outcomes, though it must be said that no newer ASMs have proven, to date, to be overall more effective in treating neonatal seizures. Studies have shown that phenobarbitals’ efficacy in neonatal seizure control is limited, with seizure cessation in only 50–60% of cases [1, 2, 5, 22]. Furthermore, its potential neurotoxic effects raise concerns about its long-term use, particularly in vulnerable neonatal populations [69].
Similarly, the current practice of considering precision therapies such as pyridoxine only in refractory cases delays potentially curative interventions [2325]. This delay may contribute to ongoing neuronal injury, further compounding the risk of adverse neurodevelopmental outcomes.

A shift towards early precision therapy

The future of neonatal seizure management lies in the integration of precision medicine principles from the onset of clinical presentation. This approach requires:
1.
Comprehensive Diagnostic Workup: multidisciplinary readily available approach including neurophysiological monitoring performed by trained and skilled personnel, advanced genetic testing, metabolic screening, and neuroimaging should be implemented early to identify specific etiologies and guide treatment [12, 13]. In particular, a multigene approach with WES/WGS or rapid NGS when available, should always be considered and, ideally, readily available in neonatal intensive care units (NICUs) [12, 15, 16]Comprehensive Diagnostic Workup: multidisciplinary readily available approach including neurophysiological monitoring performed by trained and skilled personnel, advanced genetic testing, metabolic screening, and neuroimaging should be implemented early to identify specific etiologies and guide treatment [12, 13]. In particular, a multigene approach with WES/WGS or rapid NGS when available, should always be considered and, ideally, readily available in neonatal intensive care units (NICUs) [1216].
 
2.
Etiology-Driven Therapies: For example, pyridoxine should be administered early in neonates with unexplained seizures, given the potential for complete seizure resolution in pyridoxine-dependent epilepsy. Similarly, the use of sodium channel blockers in suspected channelopathies could significantly alter outcomes [4, 1720]. Etiology-Driven Therapies: For example, pyridoxine should be administered early in neonates with unexplained seizures, given the potential for complete seizure resolution in pyridoxine-dependent epilepsy. Similarly, the use of sodium channel blockers in suspected channelopathies could significantly alter outcomes [4, 1720].
 
3.
Biomarker Development: Identifying reliable biomarkers for specific seizure etiologies would facilitate rapid, targeted interventions [26]. Along with traditional biomarkers, including both genetic, metabolic (e.g. lactate, plasma aminoacids, serum glucose), electrophysiological, imaging and neurobiochemical markers such as S-100B (S100 calcium-binding protein-beta), NfL (neurofilament light chain protein) and NSE (neuron-specific enolase), emerging biomarkers are currently being exstensively studied and include CSF neurotransmitters (such as in pyridoxine-dependent epilepsy), proteomics/metabolomics, microRNAs and transcriptional markers [27, 28]. Biomarker Development: Identifying reliable biomarkers for specific seizure etiologies would facilitate rapid, targeted interventions [26]. Along with traditional biomarkers, including both genetic, metabolic (e.g. lactate, plasma aminoacids, serum glucose), electrophysiological, imaging and neurobiochemical markers such as S-100B (S100 calcium-binding protein-beta), NfL (neurofilament light chain protein) and NSE (neuron-specific enolase), emerging biomarkers are currently being exstensively studied and include CSF neurotransmitters (such as in pyridoxine-dependent epilepsy), proteomics/metabolomics, microRNAs and transcriptional markers [27, 28].
 
4.
Minimizing Neurotoxicity: though current evidences still support the use of Phenobarbital as first-line treatment in neonatal seizures [1, 5, 14, 29], the use of alternative and potentially less neurotoxic treatments based on disease mechanisms should always be considered when available, especially in cases where clinical features suggest or genetic tools enable clinicians to early identify etiology specific phenotypes; in such cases precision therapies including early initiation of sodium-channel blockers in specific genetic channelopathies, early vigabatrin in tuberous sclerosis complex should be considered not only to treat seizures but to reduce the risk of progressing to epilepsy and high seizure burden’s consequences [14]. Minimizing Neurotoxicity: though current evidences still support the use of Phenobarbital as first-line treatment in neonatal seizures [1, 5, 14, 29], the use of alternative and potentially less neurotoxic treatments based on disease mechanisms should always be considered when available, especially in cases where clinical features suggest or genetic tools enable clinicians to early identify etiology specific phenotypes; in such cases precision therapies including early initiation of sodium-channel blockers in specific genetic channelopathies, early vigabatrin in tuberous sclerosis complex should be considered not only to treat seizures but to reduce the risk of progressing to epilepsy and high seizure burden’s consequences [14].
 

Conclusions

The management of neonatal seizures is at a critical juncture, where traditional guideline-based therapies must evolve to incorporate the principles of precision medicine. By focusing on individualized, etiology-specific treatments from the onset of seizures, we can potentially improve both acute seizure control and long-term neurodevelopmental outcomes. This paradigm shift requires a collaborative effort among clinicians, researchers, and policymakers to refine diagnostic algorithms, prioritize early genetic and metabolic testing, and ensure the availability of targeted therapies. In particular, the integration of genetic and molecular advancements with NGS, WES, WGS readily available in a growing number of settings, telemedicine and artificial intelligence application, is completely changing the management of neonatal and infantile epilepsies, fostering precision-driven care. Continued research and innovation are essential to refine these strategies, optimize patient outcomes, and establish new, readily available, easy to access standards of care [1316].
Precision therapy is not merely the future of neonatal seizure management—it is an urgent imperative for improving the lives of affected neonates and their families.

Acknowledgements

We wish to thank AI for contributing in writing the paper and the authors in the reference list who contributed to our review providing information about their patients.

Declarations

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc-nd/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
download
DOWNLOAD
print
DRUCKEN
Titel
Treatment of neonatal seizures: from guidelines to precision therapy
Verfasst von
R. Falsaperla
M. A. N. Saporito
B. Scalia
Publikationsdatum
01.12.2025
Verlag
Springer International Publishing
Erschienen in
Molecular and Cellular Pediatrics / Ausgabe 1/2025
Elektronische ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-025-00195-z
1.
Zurück zum Zitat Pressler RM, Abend NS, Auvin S, Boylan G, Brigo F, Cilio MR, De Vries LS, Elia M, Espeche A, Hahn CD, Inder T, Jette N, Kakooza-Mwesige A, Mader S, Mizrahi EM, Moshé SL, Nagarajan L, Noyman I, Nunes ML, Samia P, Shany E, Shellhaas RA, Subota A, Triki CC, Tsuchida T, Vinayan KP, Wilmshurst JM, Yozawitz EG, Hartmann H (2023) Treatment of seizures in the neonate: Guidelines and consensus-based recommendations-Special report from the ILAE task force on neonatal seizures. Epilepsia 64(10):2550–2570. https://​doi.​org/​10.​1111/​epi.​17745. (Epub 2023 Sep 1 PMID: 37655702)CrossRefPubMed
2.
Zurück zum Zitat Abiramalatha T, Thanigainathan S, Ramaswamy VV, Pressler R, Brigo F, Hartmann H. Anti-seizure medications for neonates with seizures. Cochrane Database Syst Rev. 2023 Oct 24;10(10):CD014967. https://​doi.​org/​10.​1002/​14651858.​CD014967.​pub2. PMID: 37873971; PMCID: PMC10594593
3.
Zurück zum Zitat Cornet MC, Sands TT, Cilio MR (2018) Neonatal epilepsies: clinical management. Semin Fetal Neonatal Med 23(3):204–212. https://​doi.​org/​10.​1016/​j.​siny.​2018.​01.​004. (Epub 2018 Jan 31 PMID: 29426806)CrossRefPubMed
4.
Zurück zum Zitat Carapancea E, Cilio MR (2023) A novel approach to seizures in neonates. Eur J Paediatr Neurol 46:89–97. https://​doi.​org/​10.​1016/​j.​ejpn.​2023.​07.​006. (Epub 2023 Jul 27 PMID: 37544258)CrossRefPubMed
5.
Zurück zum Zitat Long D, Sutton C, Hale J. Efficacy of Levetiracetam vs Phenobarbital as First Line Therapy for the Treatment of Neonatal Seizures. J Pediatr Pharmacol Ther. 2024 Oct;29(5):482–486. https://​doi.​org/​10.​5863/​1551-6776-29.​5.​482. Epub 2024 Oct 14. PMID: 39411420; PMCID: PMC11472408
6.
Zurück zum Zitat Kim JS, Kondratyev A, Tomita Y, Gale K (2007) Neurodevelopmental impact of antiepileptic drugs and seizures in the immature brain. Epilepsia 48:19–26CrossRefPubMed
7.
Zurück zum Zitat Kang SK, Kadam (2015) Neonatal seizures: impact on neurodevelopmental outcomes. Front Pediatr 3:101CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Quinlan S, Khan T, McFall D, Campos-Rodriguez C, Forcelli PA (2024) Early life phenobarbital exposure dysregulates the hippocampal transcriptome. Front Pharmacol 28(15):1340691. https://​doi.​org/​10.​3389/​fphar.​2024.​1340691.​PMID:​38606173;PMCID:​PMC11007044CrossRef
9.
Zurück zum Zitat Maitre NL, Smolinsky C, Slaughter JC, Stark AR. Adverse neurodevelopmental outcomes after exposure to phenobarbital and levetiracetam for the treatment of neonatal seizures. J Perinatol. 2013 Nov;33(11):841–6. https://​doi.​org/​10.​1038/​jp.​2013.​116. Epub 2013 Sep 19. PMID: 24051577; PMCID: PMC4000307
10.
Zurück zum Zitat Cornet MC, Cilio MR (2019) Genetics of neonatal-onset epilepsies. Handb Clin Neurol 162:415–433. https://​doi.​org/​10.​1016/​B978-0-444-64029-1.​00020-5. (PMID: 31324323)CrossRefPubMed
11.
Zurück zum Zitat Ozcan M, Kanmaz S, Simsek E, Toprak DE, Olculu CB, Ince T, Yılmaz O, Atas Y, Sen G, Aykut A, Durmaz A, Onay H, Yılmaz S, Tekgul H. Neonatal/infantile-onset genetic epilepsies: The utility of genetic testing for molecular etiology-specific diagnosis concerning therapeutic implications. Epileptic Disord. 2025 Mar 12. https://​doi.​org/​10.​1002/​epd2.​70012. Epub ahead of print. PMID: 40072314
12.
Zurück zum Zitat Bayat A, Bayat M, Rubboli G, Møller RS (2021) Epilepsy syndromes in the first year of life and usefulness of genetic testing for precision therapy. Genes (Basel) 12(7):1051. https://​doi.​org/​10.​3390/​genes12071051.​PMID:​34356067;PMCID:​PMC8307222CrossRefPubMed
13.
Zurück zum Zitat Ziegler A, Koval-Burt C, Kay DM, Suchy SF, Begtrup A, Langley KG, Hernan R, Amendola LM, Boyd BM, Bradley J, Brandt T, Cohen LL, Coffey AJ, Devaney JM, Dygulska B, Friedman B, Fuleihan RL, Gyimah A, Hahn S, Hofherr S, Hruska KS, Hu Z, Jeanne M, Jin G, Johnson DA, Kavus H, Leibel RL, Lobritto SJ, McGee S, Milner JD, McWalter K, Monaghan KG, Orange JS, Pimentel Soler N, Quevedo Y, Ratner S, Retterer K, Shah A, Shapiro N, Sicko RJ, Silver ES, Strom S, Torene RI, Williams O, Ustach VD, Wynn J, Taft RJ, Kruszka P, Caggana M, Chung WK (2025) Expanded newborn screening using genome sequencing for early actionable conditions. JAMA 333(3):232–240. https://​doi.​org/​10.​1001/​jama.​2024.​19662. (PMID:39446378;PMCID:PMC11503470)CrossRefPubMed
14.
Zurück zum Zitat Carapancea E, Sands TT, Cilio MR. Update on neonatal and infantile onset epilepsies. Curr Opin Pediatr. 2025 Feb 11. https://​doi.​org/​10.​1097/​MOP.​0000000000001448​. Epub ahead of print. PMID: 39931929
15.
Zurück zum Zitat Zhang R, Cui X, Zhang Y, Ma H, Gao J, Zhang Y, Shu J, Cai C, Liu Y (2024) Whole-exome sequencing as the first-tier test for patients in neonatal intensive care unit: a Chinese single-center study. BMC Pediatr 24(1):351. https://​doi.​org/​10.​1186/​s12887-024-04820-0. (PMID:38778310;PMCID:PMC11110365)CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Numis AL, da Gente G, Sherr EH, Glass HC. Whole-exome sequencing with targeted analysis and epilepsy after acute symptomatic neonatal seizures. Pediatr Res. 2022 Mar;91(4):896–902. https://​doi.​org/​10.​1038/​s41390-021-01509-3. Epub 2021 Apr 12. PMID: 33846556; PMCID: PMC9064802
17.
Zurück zum Zitat Pegoraro V, Viellevoye R, Malfilatre G, Dilena R, Proietti J, Mauro I, Zardini C, Dzietko M, Lacan L, Desnous B, Cordelli DM, Campi F, Da Silva MR, Fumagalli M, Nguyen The Tich S, Felderhoff-Müser U, Ventura G, Sartori S, Benders M, Pittini C, Cavicchiolo ME, Milh M, Cantalupo G, van Maanen A, Tataranno ML, Cilio MR. Effectiveness of sodium channel blockers in treating neonatal seizures due to arterial ischemic stroke. Epilepsia. 2024 Nov 23. https://​doi.​org/​10.​1111/​epi.​18194. Epub ahead of print. PMID: 39579039
18.
Zurück zum Zitat Vilan A, Grangeia A, Ribeiro JM, Cilio MR, de Vries LS (2024) Distinctive amplitude-integrated EEG Ictal pattern and targeted therapy with carbamazepine in KCNQ2 and KCNQ3 neonatal epilepsy: a case series. Neuropediatrics 55(1):32–41. https://​doi.​org/​10.​1055/​a-2190-9521. (Epub 2023 Oct 12 PMID: 37827512)CrossRefPubMed
19.
Zurück zum Zitat Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, Vintan MA, Symonds J, Andrew J, Arzimanoglou A, Delima S, Gallois J, Hanrahan D, Lesca G, MacLeod S, Marjanovic D, McTague A, Nuñez-Enamorado N, Perez-Palma E, Scott Perry M, Pysden K, Russ-Hall SJ, Scheffer IE, Sully K, Syrbe S, Vaher U, Velayutham M, Vogt J, Weiss S, Wirrell E, Zuberi SM, Lal D, Møller RS, Mantegazza M, Cestèle S (2022) The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain 145(11):3816–3831. https://​doi.​org/​10.​1093/​brain/​awac210. (PMID:35696452;PMCID:PMC9679167)CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Berg AT, Thompson CH, Myers LS, Anderson E, Evans L, Kaiser AJE, Paltell K, Nili AN, DeKeyser JL, Abramova TV, Nesbitt G, Egan SM, Vanoye CG, George AL Jr. Expanded clinical phenotype spectrum correlates with variant function in SCN2A-related disorders. Brain. 2024 Aug 1;147(8):2761-2774. https://​doi.​org/​10.​1093/​brain/​awae125. Erratum in: Brain. 2025 Feb 3;148(2):e12. https://​doi.​org/​10.​1093/​brain/​awae285. PMID: 38651838; PMCID: PMC11292900
21.
Zurück zum Zitat Ziobro J, Pilon B, Wusthoff CJ, Benedetti GM, Massey SL, Yozawitz E, Numis AL, Pressler R, Shellhaas RA. Neonatal Seizures: New Evidence, Classification, and Guidelines. Epilepsy Curr. 2024 May 22:15357597241253382. https://​doi.​org/​10.​1177/​1535759724125338​2. Epub ahead of print. PMID: 39554267; PMCID: PMC11562284
22.
Zurück zum Zitat Sharpe C et al Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial. Pediatrics. 2020 Jun;145(6):e20193182. https://​doi.​org/​10.​1542/​peds.​2019-3182. Epub 2020 May 8. Erratum in: Pediatrics. 2021 Jan;147(1):e2020036806. https://​doi.​org/​10.​1542/​peds.​2020-036806. PMID: 32385134; PMCID: PMC7263056
23.
Zurück zum Zitat Scalia B, Falsaperla R. Early Pyridoxine Administration to Avoid Late Diagnosis of Pyridoxine-Dependent Epilepsy; Comment on the ILAE Guidelines Proposal on the Treatment of Seizures in the Neonate. Journal of Pediatric Epilepsy. 2024–06 | Journal article. https://​doi.​org/​10.​1055/​s-0043-1778010
24.
Zurück zum Zitat Falsaperla R, Sciacca M, Collotta AD, Tardino LG, Marino S, Marino SD, Privitera GF, Vitaliti G, Ruggieri M (2024) PYRIDOXINE-dependent epilepsy (PDE): an observational study of neonatal cases on the role of pyridoxine in patients treated with standard anti-seizure medications. Seizure 118:156–163. https://​doi.​org/​10.​1016/​j.​seizure.​2024.​04.​012. (Epub 2024 May 11 PMID: 38735085)CrossRefPubMed
25.
Zurück zum Zitat Fang C, Yang L, Xiao F, Yan K, Zhou W (2024) Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: a systematic review. Epilepsy Res 202:107363. https://​doi.​org/​10.​1016/​j.​eplepsyres.​2024.​107363. (Epub 2024 Apr 17 PMID: 38636407)CrossRefPubMed
26.
Zurück zum Zitat Zayachkivsky A, Lehmkuhle MJ, Ekstrand JJ, Dudek FE. Background suppression of electrical activity is a potential biomarker of subsequent brain injury in a rat model of neonatal hypoxia-ischemia. J Neurophysiol. 2022 Jul 1;128(1):118–130. https://​doi.​org/​10.​1152/​jn.​00024.​2022. Epub 2022 Jun 8. PMID: 35675445; PMCID: PMC9273272
27.
Zurück zum Zitat Wassink G, Harrison S, Dhillon S, Bennet L, Gunn AJ (2022) Prognostic neurobiomarkers in neonatal encephalopathy. Dev Neurosci 44(4–5):331–343. https://​doi.​org/​10.​1159/​000522617. (Epub 2022 Feb 15 PMID: 35168240)CrossRefPubMed
28.
Zurück zum Zitat Casillas-Espinosa PM, Wong JC, Grabon W, Gonzalez-Ramos A, Mantegazza M, Yilmaz NC, Patel M, Staley K, Sankar R, O'Brien TJ, Akman Ö, Balagura G, Numis AL, Noebels JL, Baulac S, Auvin S, Henshall DC, Galanopoulou AS. WONOEP appraisal: Targeted therapy development for early onset epilepsies. Epilepsia. 2025 Feb;66(2):328–340. https://​doi.​org/​10.​1111/​epi.​18187. Epub 2024 Nov 19. PMID: 39560633; PMCID: PMC11922076
29.
Zurück zum Zitat Rondagh M, De Vries LS, Peeters-Scholte CMPCD, Tromp SC, Steggerda SJ. Efficacy of Levetiracetam as Add-On Therapy in the Treatment of Seizures in Neonates. Neonatology. 2024;121(2):233–243. https://​doi.​org/​10.​1159/​000535499. Epub 2023 Dec 19. PMID: 38113859; PMCID: PMC10994567

Kompaktes Leitlinien-Wissen Pädiatrie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Pädiatrie

Welche Kinder holen Entwicklungsverzögerungen auf – und welche nicht?

Eine israelische Kohortenstudie belegt, dass sich vorübergehende von anhaltenden Entwicklungsverzögerungen bei Säuglingen mithilfe routinemäßiger Surveillance-Daten zuverlässig unterscheiden lassen. Die THIS-Skala und einfache Entscheidungsregeln können die Früherkennung deutlich verbessern.

Jedes vierte adipöse Kind mit zu hohem Bluthochdruck

Hoher Blutdruck ist bei Kindern und Jugendlichen in Europa offenbar stark verbreitet. Ein internationales Team fordert: Häufiger messen und frühzeitig intervenieren, vor allem bei Adipositas!

Kindlicher Rückenschmerz: Vom Schulranzen bis zur Spondylitis

Rückenschmerzen bei Kindern und Jugendlichen sind kein triviales Beschwerdebild. Neben funktionellen Ursachen müssen auch ernsthafte Pathologien bedacht werden. Eine sorgfältige klinische Abklärung mit Blick auf „Red Flags“ ist daher entscheidend.

Bundesverfassungsgericht: Triage-Regelung nicht mit Grundgesetz vereinbar

Das Bundesverfassungsgericht hat Regelungen zur Triage für nichtig erklärt. Es gab damit Verfassungsbeschwerden von Intensiv- und Notfallmedizinern statt. Der Eingriff in die Berufsfreiheit der Ärztinnen und Ärzte sei verfassungsrechtlich nicht gerechtfertigt, betont das Gericht.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

Bildnachweise
Die Leitlinien für Ärztinnen und Ärzte, Adipösem Jungen wird Blutdruck gemessen/© New Africa / stock.adobe.com (Symbolbild mit Fotomodell), Rückenuntersuchung bei kleinem Mädchen/© Viacheslav Lakobchuk / stock.adobe.com (Symbolbild mit Fotomodellen), Junge Ärztin vor einem Triage-Zelt/© Milos / Stock.adobe.com (Symbolbild mit Fotomodell)