Skip to main content
Erschienen in: Herz 5/2018

Open Access 15.06.2018 | Main topic

Treatment options in myocarditis and inflammatory cardiomyopathy

Focus on i. v. immunoglobulins

verfasst von: Prof. Dr. B. Maisch, P. Alter

Erschienen in: Herz | Ausgabe 5/2018

Abstract

For myocarditis and inflammatory cardiomyopathy, an etiologically driven treatment is today the best option beyond heart failure therapy. Prerequisites for this are noninvasive and invasive biomarkers including endomyocardial biopsy and polymerase chain reaction on cardiotropic agents. Imaging by Doppler echocardiography and cardiac magnetic resonance imaging as well as cardiac biomarkers such as C‑reactive protein, N‑terminal pro-B-type natriuretic peptide , and troponins can contribute to the clinical work-up of the syndrome but not toward elucidating the underlying cause or pathogenetic process. This review summarizes the phases and clinical features of myocarditis and gives an up-to-date short overview of the current treatment options starting with heart failure and antiarrhythmic therapy. Although inflammation in myocardial disease can resolve spontaneously, often specific treatment directed against the causative agent is required. For fulminant, acute, and chronic autoreactive myocarditis, immunosuppressive treatment has proven to be beneficial in the TIMIC and ESETCID trials; for viral cardiomyopathy and myocarditis, intravenous immunoglobulin IgG subtype and polyvalent intravenous immunoglobulins IgG, IgA, and IgM can frequently resolve inflammation. However, despite the elimination of inflammation, the eradication of parvovirus B19 and human herpesvirus-6 is still a challenge, for which ivIg treatment can become a future key player.
In 2012 we reviewed the treatment options in (peri)myocarditis and inflammatory cardiomyopathy in a special issue of this journal devoted to heart failure and cardiomyopathies [1]. Now, 5 years later, it is timely and appropriate to take stock of old and new data on this topic.

Evolution of diagnoses

In 2013, experts of the European Society of Cardiology (ESC) working group on myocardial and pericardial diseases published a position statement on “The current state of knowledge on aetiology, diagnosis, management and therapy of myocarditis” [2]. Specifically named causes of myocarditis were either infective or immune-mediated or toxic [2, 3]. Table 1 sums up the long list of possible causative pathogens and compares them with the real-world data of the Marburg Myocarditis Registry (MMR) comprising records of 1098 biopsied patients with suspected inflammatory dilated cardiomyopathy and/or myocarditis [1, 4]. The comments add important clues on how the diagnosis was made in the MMR. Not mentioned but self-evident are a full clinical work-up of the patient including a detailed history, electrocardiogram (ECG) at rest and at exercise, imaging by Doppler echocardiography or cardiac magnetic resonance imaging (MRI), as well as a complete laboratory examination with C‑reactive protein (CRP) as a marker of inflammation and N‑terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity (hs) troponin T or I as cardiac biomarkers of heart failure and necrosis, respectively. Of note, cardiac MRI is an important method for clarifying the presence of inflammation or fibrosis in addition to function and pericardial effusion, but it cannot substitute endomyocardial biopsy for establishing an etiologically based diagnosis [15]. For the diagnosis of viral vs. autoreactive (nonviral) myocarditis and for the diagnosis of eosinophilic or giant cell myocarditis, endomyocardial biopsy remains essential, while the biopsy work-up includes histology, immunohistology, and polymerase chain reaction (PCR) for RNA or DNA viruses [16].
Table 1
Causes of myocarditis and inflammatory cardiomyopathy in the MMRa
 
Infectious agent
% pos. in MMR
Comments
Diagnosis made via:
1. Infectious myocarditis
Bacteria
Chlamydia pneumoniae
0.03
Serodiagnosis
Mycobacterium tuberculosis
0.02
IGRA (Quantiferon) or microscopy from sputum, pericardial fluid, in Africa more frequent
Haemophilus influenzae
0.002
Serodiagnosis
Staphylococci
0.03
Blood culture, in sepsis or endocarditis
Streptococci
0.02
In rheumatic fever, in cooperation with Chandigarh
Spirochete
Syphilis
0.001
Serodiagnosis
Borrelia burgdorferi
0.7
ELISA and Western blot or PCR from EMB
Rickettsia
Coxiella burnetiid
0.005
Serodiagnosis, predominant pericarditis
Fungi
Candida
0.002
In immunocompromised patients, diagnosed by culture
Protozoa
Plasmodium falciparum (malaria)
0.002
Microscopy (thick blood film)
Toxoplasma gondii
0.002
Serodiagnosis
Helminthic infections
0
None in MMR
Viruses (RNA subtype)
Picornaviruses
Coxsackie A + B
0.019
All by PCR, epidemiologic shift in late 1990s, none since 2002
Echo
0.005
PCR
Hepatitis B and C
0.002
Serodiagnosis or PCR
Orthomyxoviruses
Influenza A or B
0.002
Serodiagnosis
H1N1
0.001
Serodiagnosis
Paramyxoviruses
Mumps
0.001
Serodiagnosis
Measles
0.002
Serodiagnosis
Toga‑/Rubivirus
Rubella
0.001
Serodiagnosis
Flavi‑/Arbovirus
Dengue
0.001
Serodiagnosis
Viruses (DNA subtype)
Adenoviruses
A1, 2, 3, 5
0.011
PCR
Erythroviruses
Parvovirus B19 types 1–3
28
PCR
Herpesviruses: human herpes 6 virus
0.03
PCR; sometimes together with PVB 19 virus
Cytomegalovirus
0.02
PCR or ISH
Epstein–Barr virus
0.012
PCR
Varicella zoster
0.001
Serodiagnosis
Retrovirus: HIV
0.005
PCR or by serodiagnosis
Rhabdovirus
0.001
2. Noninfectious myocarditis
Autoreactive myocarditis
53
Exclusion of microbial agents
Systemic autoimmune diseases
Giant cell myocarditis
0.03
Histology
Wegner’s granulomatosis
0.01
Histology
Sarcoid heart disease
0.015
Histology
Rheumatoid arthritis
0.03
Histology and serology
Sjögren syndrome
0.02
Serology
Systemic lupus
0.05
Serodiagnosis
Crohn’s disease
0.02
Serodiagnosis
Dermatomyositis
0.02
Serodiagnosis
Kawasaki syndrome
0.015
Rejection
After heart transplantation
1
In cooperation with Hannover Medical School
After stem cell transplantation
0.002
Hypereosinophilic syndrome (HES)
Löffler’s endomyocarditis
0.01
Biopsy and histology
Churg–Strauss syndrome
0.01
Biopsy and histology
3. Toxicity
Alcohol
Alcoholic cardiomyopathy
0.2
History, negative PCR on microorganisms
Drug toxicity
Aminophylline, amphetamine, anthracycline, chloramphenicol, cocaine, cyclophosphamide, d5-fluorouracil, mesylate, methyl sergide, phenytoin, trastuzumab, zidovudine, ipilimumab and nivolumab antibodies
0.02
Only anthracycline induced CMP in the MMR
Hypersensitivity reaction (drugs)
Azithromycin, benzodiazepine, clozapine, cephalosporin, dobutamine, lithium, diuretics, methyldopa, mexiletine, streptomycin, sulfonamides, NSAIDs, tetracycline, tricyclic antidepressants
0.001
Only one patient with lithium intoxication in MMR
Hypersensitivity reactions (venoms)
Bees, wasps, scorpions, snakes, spider
0
Radiation injury
0.015
History + biopsy + imaging
Metabolic disorder
Diabetic cardiomyopathy
0.02
History + biopsy + imaging in diabetes patients
4. Other DCM patients
16.62
aThe MMR included 1098 patients with the diagnosis of suspected myocarditis or inflammatory cardiomyopathy who were examined during 1990–2010 (modified from [1, 2, 4]). Diagnoses were made in most cases via left or right ventricular EMB with PCR, histology, and immunohistology or conclusive serodiagnosis including cardiac autoantibodies
CMP cardiomyopathy, DCM dilated cardiomyopathy, Echo enteric cytopathic human orphan virus, EMB endomyocardial biopsy, ELISA enzyme-linked immunosorbent assay, IGRA interferon-gamma-release assay, ISH in situ hybridisation, NSAIDs nonsteroidal anti-inflammatory drugs, PCR polymerase chain reaction, pos. positive

Special considerations for complex diagnoses

Whether diabetic cardiomyopathy is a diagnosis of its own is still under discussion. In endomyocardial biopsies of patients with heart failure and diabetes, histology can show microangiopathy, some infiltrating macrophages and leukocytes, and also a positive PCR of viral genomes such as parvovirus B19. Diabetic cardiomyopathy can be part of a syndrome comprising hypertrophy and microangiopathy due to hypertensive heart disease and diabetes and viral persistence [7]. For diagnosis of the underlying etiology, a composite view of the clinical evidence and exclusion of other causes of cardiomyopathy by endomyocardial biopsy can be an important clue. However, behind the curtain of diabetic cardiomyopathy, viral heart disease with or without inflammation can be hidden. But which of the factors is then the major etiological determinant?
This issue also holds true for alcoholic cardiomyopathy [8]. In these patients, alcohol consumption of more than 40 g/day in men and more than 20 g/day in women for more than 5 years is the somewhat arbitrary diagnostic determinant for the label of alcoholic cardiomyopathy. In endomyocardial biopsy, some infiltrating leukocytes may even suggest myocarditis in immunocompetent alcohol-dependent individuals as a likely differential diagnosis.

Clinical syndromes associated with inflammatory cardiomyopathy and myocarditis

Depending on the etiology, genetic predisposition, and comorbidities of the individual patient, at least four clinical syndromes can be identified after coronary artery disease is excluded by angiography (Fig. 1):
1.
Life-threatening heart failure or rhythm disturbance
 
2.
Acute chest wall syndrome with angina pectoris-like symptoms, often after an infection
 
3.
Acute onset of heart failure
 
4.
Chronic heart failure
 
Table 2 connects these clinical syndromes with classic textbook diagnoses such as fulminant, acute, chronic, or persistent chronic myocarditis.
Table 2
Phenotypes of myocarditis and treatment options (modified from [1])
Clinical phenotype
Fulminant myocarditis
Acute myocarditis
Chronic active or persistent myocarditis
Syndrome
Life-threatening heart failure or rhythm disturbance
Acute chest wall syndrome or acute onset of heart failure; pericardial effusion (up to 10%); angina in parvovirus B19 myocarditis
Chronic heart failure, variable EF with LV dilatation,
pericardial effusion (up to 10%); angina in parvovirus B19 myocarditis
Dallas criteria [9]
Infiltrate (active myocarditis or giant cells), necrosis
Active, often focal lymphocytic myocarditis
Borderline myocarditis, focal small infiltrates
World Heart Federation criteria [10, 11]
≥50 infiltrating cells/mm², necrosis, possibly giant cells
≥14 infiltrating cells, mostly lymphocytes, necrosis, necrosis likely
≥14 infiltrating cells, lymphocytes and macrophages, necrosis and apoptosis not obligatory
Immunohistology
Immunoglobulin binding mostly IgM to sarcolemma and fibrils and complement fixation
Immunoglobulin (IgM, IgA and IgG) binding to sarcolemma and fibrils
Immunoglobulin (IgG) binding to sarcolemma and fibrils
PCR of microbial pathogens
Negative in giant cell or autoreactive myocarditis, positive in up to one third of cases
Negative in autoreactive lymphocytic myocarditis, positive in up to one third of cases
Negative in autoreactive lymphocytic myocarditis, positive in up to one third of cases
Course
Variable: from fatal outcome to spontaneous healing
Variable: from deterioration to defective healing
Chronic heart failure
Treatment
1. Immunosuppression in PCR-negative cases,
2. In virus-positive biopsies; ivIg,
3. In all patients: assist device and ICDs, if indicated; heart failure treatment
1. Immunosuppression in PCR-negative cases,
2. In virus-positive biopsies; ivIg,
3. In all patients: assist device and ICDs, if indicated;
heart failure treatment
1. Immunosuppression in PCR-negative cases,
2. In viral myocarditis ivIg or
IFN in controlled trials
3. In all patients: prophylactic ICDs, when EF < 35%;
heart failure treatment
EF ejection fraction, ICDs implantable cardioverter-defibrillators, IFN interferon, ivIg intravenous immunoglobulin, LV left ventricular, PCR polymerase chain reaction

Treatment

Restriction of physical activity

In suspected or histologically validated myocarditis, restriction of physical activity for at least 6 months is part of the international guidelines. This is highly recommended until the inflammation has disappeared—evidenced by cardiac MRI or endomyocardial biopsy—and cardiac function has normalized.

Heart failure therapy for inflammatory cardiomyopathy

Heart failure therapy is part of the treatment of inflammatory cardiomyopathy. It was successfully demonstrated in many heart failure trials on angiotensin-converting enzyme (ACE) inhibition such as the CONSENSUS trial with enalapril, the SOLVD trial with captopril, the ATLAS trial with lisinopril, or the HOPE trial with ramipril. In the CHARM and ELITE II trials, angiotensin receptor blockers demonstrated a similar benefit. Today, beta-blockade is part of the therapeutic armamentarium in the treatment of any form of heart failure as demonstrated in the MERIT-HF trial for metoprolol, the CIBIS trial for bisoprolol, and the COPERNICUS trial for carvedilol. In acute cardiac decompensation, loop diuretics are effective and aldosterone receptor blockers should be given on top of the other heart failure drugs as demonstrated by the RALES trials for spironolactone in heart failure and by the EPHESUS trial for eplerenone in heart failure patients after myocardial infarction. According to the findings of the SHIFT trial, ivabradine can be given to treat sinus tachycardia and to reduce heart rate to below 70 bpm. Cardiac glycosides were tested in the DIG trial, which demonstrated a reduction of all-cause and heart failure-related hospitalization with no change in mortality rate. Their use in patients with tachyarrhythmia reduces heart rate and improves the quality of life.
Antiphlogistic treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen or indomethacin should be reserved for patients with pericardial involvement, since in murine coxsackie B3 myocarditis this treatment was shown to be detrimental [12]. For treatment of peri(myo)carditis, we prefer colchicine instead, not only in recurrent forms but also for the first attack [13].

Antiarrhythmic treatment

Apart from beta-blockers, antiarrhythmic treatments for heart failure and for cardiomyopathy patients have been disappointing. A meta-analysis of all trials with amiodarone demonstrated a reduction in total mortality of 13% [14], but the SCD-HeFT trial, in which patients with a single-chamber implantable cardioverter-defibrillator (ICD) were randomized to amiodarone or to placebo, showed a decrease in mortality for the treatment group only [15]. The discussion of whether rate or rhythm control is more beneficial in the treatment of atrial fibrillation is still ongoing. Sufficient anticoagulation is important under all circumstances.

Device therapy

In patients with dilated cardiomyopathy with or without inflammation, antibradycardia pacing in second- and third-degree atrioventricular block or in bradyarrhythmia is well established. If the ejection fraction (EF) is below 35% and acute myocarditis is diagnosed, cause-specific treatment should be carried out with a LifeVest wearable defibrillator. If inflammation has disappeared and cardiac function remains low (EF < 35%), the implantation of an ICD is warranted according to current guidelines [16].

Immunosuppressive treatment

Idiopathic giant cell myocarditis

If untreated, the natural course of giant cell myocarditis is fatal in almost all cases [17]. The few patients in the MMR were treated with a combination of prednisone and azathioprine (see autoreactive myocarditis). The maintenance doses of prednisone (7.5 mg/day) and azathioprine (50 mg/day) were given as a life-long therapy. All patients received an ICD and have survived 5 years without heart transplantation.

Cardiac sarcoidosis

In cardiac sarcoidosis the infiltration of cells including giant cells is confined to the noncaseous granuloma. In the MMR, cardiac sarcoidosis was six times more frequent than giant cell myocarditis. The treatment algorithm is either corticoid therapy alone or in combination with other immunosuppressive drugs, e. g., azathioprine or cyclosporine [18].

Eosinophilic heart disease

Eosinophilic heart disease (EHD) and the resulting endomyocardial fibrosis are rare diseases. Its common pathogenetic denominator is the overproduction of cytotoxic eosinophils [19].
Our experience with long-term prednisone and azathioprine documents a survival rate of 9 out 10 cases over a mean period of 8.4 years [20].

Treatment in autoreactive, lymphocytic myocarditis

Immunosuppression

No randomized or blinded treatment trials have been published in the past 6 years with respect to immunosuppressive therapy in myocarditis.
Viral infection, according to common belief, may trigger an autoreactive cellular and humoral immune response that leads to myocardial damage with inflammation. Following this pathogenetic hypothesis, immunosuppressive treatment either by prednisone alone or in combination with azathioprine or cyclosporine was examined in five trials, the results of which are summarized in Table 3.
Table 3
Trials on immunosuppressive treatment
Author
Treatment
Endpoint
Patients/controls (n)
Result
Comment
Parillo et al. [21]
P
Function + mortality after 3 months
60/62
Improved 67%
No viral PCR
Mason et al. (MTT) [22]
P + A/CyA
Function, mortality
64/47
No benefit, no harm
Underpowered, no viral PCR
Wojnicz et al. [24]
P +A
EF + function, mortality
41/43
EF improved
No viral PCR
Frustaci et al. (TIMIC) [25]
P +A
EF + mortality after 6 months
43/42
88.3% improved
Treatment in virus-negative pts. only
Maisch et al. (ESETCID) [26]
P +A
EF + function, MACE
54/47
EF + function improved after 2 years
Treatment in virus-negative pts. only
A azathioprine, CyA cyclosporine, EF ejection fraction, MACE major adverse cardiac events, P prednisone, PCR polymerase chain reaction
The first randomized, placebo-controlled trial on prednisone in myocarditis was conducted by Parillo et al. [21], who treated 60 patients with inflammation and 62 without inflammation out of a dilated cardiomyopathy cohort of 122 patients with prednisone: 67% of the patients with inflammation who received prednisone and 28% of inflammation controls experienced an improvement in left ventricular EF of >5% (p = 0.004). The Myocarditis Treatment Trial (MTT) by Mason et al. in 1995 [22] showed neither a benefit nor an increased mortality after a 6-month treatment with cyclosporine A or azathioprine and prednisone when compared with placebo. However, the study was underpowered and did not distinguish viral from nonviral disease, as pointed out in a letter to the editor [23]. In the first 6 months of the immunosuppressive therapy, the MTT showed a trend for the benefit of immunosuppression with respect to transplant-free survival, but it missed statistical significance by one patient. In the later follow-up, the results remained neutral.
Wojnicz et al. randomized 84 patients with dilated heart muscle disease and increased human leukocyte antigen (HLA) expression for a treatment of azathioprine and prednisone or placebo for 3 months. In the treatment group, EF improved and survival remained comparable between the placebo and verum group [24].
In the TIMIC study, Frustaci et al. reported that the EF of 43 patients in the treatment group improved from 26.5% at baseline to 45.6% at 6 months (p < 0.001). Similarly, left ventricular end-diastolic volume, left ventricular diameter, and New York Heart Association class improved significantly [25].
The ESETCID (European Study on the Epidemiology and Treatment of Cardiac Inflammatory Disease) is a double-blind, randomized, placebo-controlled three-armed trial with prednisolone and azathioprine for autoreactive (virus negative) inflammatory dilated cardiomyopathy in patients with an EF below 45% at baseline. Interferon alpha is given in enteroviral myocarditis, and intravenous immunoglobulins (ivIg) are given in cytomegalovirus, adenovirus, and parvovirus B19 myocarditis, vs. a placebo drug. The intermediate analysis of the immunosuppressive treatment arm showed a positive trend for EF and major adverse cardiac events after 6 months of treatment and significant benefit after 1 year of follow-up for both groups [26]. Remarkably, the control group also showed also some spontaneous resolution.

Intravenous immunoglobulins

ivIg have demonstrated benefit in various inflammatory settings, clinically and experimentally. Treatment with ivIg relies on a polypragmatic therapy approach: IvIg interact widely with the immune system. In addition to immunoglobulin G (ivIgG), the IgGAM Pentaglobin®, in even lower concentrations than ivIgG, exerts proinflammatory and anti-inflammatory effects. This has been shown in sepsis and also in viral heart disease both clinically and experimentally. Proinflammatory effects are the activation of immune cells and of the complement system and the opsonization of infective agents [27]. Anti-inflammatory effects comprise the neutralization of bacterial and other toxins, of degradation products, and of an excess of complement factors and cytokines. This can stimulate immune cells to set anti-inflammatory cytokines such as interleukin (IL)-1RA and IL-8 free and inhibit the liberation of proinflammatory cytokines, e. g., IL-6 and IL-1 [1]. Anthony et al. [28] have shown that the anti-inflammatory activity of monomeric IgG is completely dependent on the sialylation of the N-linked glycan of the IgG Fc fragment. The IgM fraction in ivIgGAM can play a distinct role in controlling inflammatory and autoimmune disease. Furthermore, IvIgGAM can reduce oxidative stress [29]. Its effect has been shown in heart failure[3034], in peripartum cardiomyopathy [35], in fulminant [3638], acute [30, 3946], and chronic myocarditis [38], in dilated cardiomyopathy [46], as well as in enteroviral [47] and in parvovirus B19-associated heart disease [48, 49]. IgM-enriched immunoglobulins appear to be effective in lower doses [34], which corresponds to our own observation with Pentaglobin®. Table 4 gives an overview of the ivIg studies. Not all studies reported hemodynamic benefit or improvement, however: The IMAC, a randomized controlled trial, demonstrated improvement in both the treatment and placebo arm [42], so that in a recent multi-institutional analysis [50] the benefit in a pediatric population was questioned.
Table 4
Registries and trials with ivIg in inflammatory cardiomyopathy or myocarditis
Authors
Study design
Patients (n)
Histology
/PCR
ivIg dose
Outcome
Drucker et al. [40]
Retrospective
46 children
Partly, no PCR
2 g/kg single dose
Reduced LVEDD
McNamara et al. [41]
Uncontrolled
10 adults
Partly, no PCR
2 g/kg single dose
Improved EF
McNamara et al. [42]
RCT IMAC
62 DCM, only 13 myocarditis
No PCR
2 g/kg single dose
Both groups improved
Kishimoto et al. [30, 46]
Case series
Total 9,
4 myocarditis
No PCR
1–2 g/kg single dose
Improved NYHA and EF
Dennert et al. [49]
Uncontrolled
25
PVB19 positive
2 g/kg single dose
Decreased viral load, improved EF
Maisch et al. [51]
Uncontrolled
90 PVB19
36 ADV
PCR-positive for PVB19 and ADV
20 g per person at day 1 and 3
Improved EF in 90%, eradication of ADV in 90%, of inflammation in 100%; PVB19 eradication in 40%, of inflammation in 70%
Maisch et al. [52]
Controlled
18/17
CMV by PCR
14 days, multiple doses
Improved EF, complete CMV eradication
ADV adenovirus, CMV cytomegalovirus, DCM dilated cardiomyopathy, EF ejection fraction, ivIg intravenous immunoglobulins, LVEDD left ventricular end-diastolic diameter, NYHA New York Heart Association, PCR polymerase chain reaction, PVB19 parvovirus B 19
The MMR data support a positive effect of 20 g i. v. pentaglobin in adenovirus-positive myocarditis for clinical improvement, with eradication of both the inflammation and the virus [51]. In parvovirus B19 myocarditis, our data indicate a clinical improvement; however, only inflammation is successfully eliminated, whereas parvovirus B19 persistence remains a problem in many patients although the viral load is often decreased.

High-dose ivIG in cytomegalovirus myocarditis

In biopsy-proven cytomegalovirus (CMV) myocarditis, one controlled trial of 18 patients reported on the eradication of inflammation and elimination of the virus [52]. The patients had received 2 ml/kg i. v. cytomegalovirus hyperimmunoglobulin (CMVhIg) for 3 days and 1 ml/kg for an additional 2 days, alternately.
In parvovirus B19-associated inflammatory dilated cardiomyopathy, dose-finding studies and randomized trials are still lacking and should be planned in the future.

Antiviral treatment with interferon beta

In the BICC trial, patients with enterovirus-, adenovirus-, and parvovirus B19-positive genomes received either 4 × 106 or 8 × 106 IU interferon beta-1b vs. placebo [53]. In the small enteroviral and adenoviral myocarditis strata, interferon-beta tended to eliminate the viral genome, to decrease inflammation, and to improve hemodynamics, whereas in parvovirus B19 and human herpesvirus 6 myocarditis, the response was disappointing. For all three viruses, viral elimination or viral load reduction was higher in the interferon beta-1b treatment group than in the placebo group, but least effective in the parvovirus B 19 treatment arm.

Practical conclusion

  • In inflammatory dilated cardiomyopathy and myocarditis, apart from heart failure and antiarrhythmic therapies, there is no real alternative to an etiologically driven specific treatment.
  • Diagnosis of the underlying microbial agent is a prerequisite for the initiation of treatment with antiviral agents or ivIg, which is the focus of this review.
  • If no virus but autoreactive myocardial inflammation is identified, immunosuppressive treatment is the treatment of choice.

Acknowledgements

This work was supported by a grant from the Bundesministerium für Wissenschaft und Forschung (BMBF) in the German Competence Net of Heart Failure (KNHI), by the Prof. Dr. Reinfried Pohl Stiftung, by the Verein zur Förderung der Kardiologie (VFDK) Marburg, and the UKGM Foundation.

Compliance with ethical guidelines

Conflict of interest

B. Maisch receives honoraria for lectures from Biotest Co. P. Alter declares that he has no competing interests.
This article does not contain any studies with human participants or animals performed by any of the authors.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Herz

Literatur
1.
Zurück zum Zitat Maisch B, Pankuweit S (2012) Current treatment options in (peri)myocarditis and inflammatory cardiomyopathy. Herz 37:644–656CrossRefPubMed Maisch B, Pankuweit S (2012) Current treatment options in (peri)myocarditis and inflammatory cardiomyopathy. Herz 37:644–656CrossRefPubMed
2.
Zurück zum Zitat Caforio AL, Pankuweit S, Arbustini E et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34(33):2636–2648CrossRefPubMed Caforio AL, Pankuweit S, Arbustini E et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34(33):2636–2648CrossRefPubMed
5.
Zurück zum Zitat Alter P, Figiel JH, Rupp TP, Bachmann GF, Maisch B, Rominger MB (2013) MR, CT, and PET imaging in pericardial disease. Heart Fail Rev 306:18–289 Alter P, Figiel JH, Rupp TP, Bachmann GF, Maisch B, Rominger MB (2013) MR, CT, and PET imaging in pericardial disease. Heart Fail Rev 306:18–289
7.
Zurück zum Zitat Maisch B, Alter P, Pankuweit S (2011) Diabetic cardiomyopathy—fact or fiction? Herz 36:102–115CrossRefPubMed Maisch B, Alter P, Pankuweit S (2011) Diabetic cardiomyopathy—fact or fiction? Herz 36:102–115CrossRefPubMed
9.
Zurück zum Zitat Aretz HT, Billingham M, Olsen E et al (1987) Myocarditis: the Dallas criteria. Hum Pathol 18:619–624CrossRefPubMed Aretz HT, Billingham M, Olsen E et al (1987) Myocarditis: the Dallas criteria. Hum Pathol 18:619–624CrossRefPubMed
10.
Zurück zum Zitat Maisch B, Bültman B, Factor S et al (1999) World Heart Federation consensus conference’s definition of inflammatory cardiomyopathy (myocarditis): report from two expert committees on histology and viral cardiomyopathy. Heartbeat 4:3–4 Maisch B, Bültman B, Factor S et al (1999) World Heart Federation consensus conference’s definition of inflammatory cardiomyopathy (myocarditis): report from two expert committees on histology and viral cardiomyopathy. Heartbeat 4:3–4
11.
Zurück zum Zitat Maisch B, Portig I, Ristic A et al (2000) Definition of inflammatory cardiomyopathy (myocarditis): on the way to consensus. Herz 25:200–209CrossRefPubMed Maisch B, Portig I, Ristic A et al (2000) Definition of inflammatory cardiomyopathy (myocarditis): on the way to consensus. Herz 25:200–209CrossRefPubMed
12.
Zurück zum Zitat Costanzo-Nordin MR, Reap EA, Robinson JA, Scanlon PJ (1985) A nonsteroid anti-inflammatory drug exacerbates Coxsackie B3 murine myocarditis. J Am Coll Cardiol 6:1078–1082CrossRefPubMed Costanzo-Nordin MR, Reap EA, Robinson JA, Scanlon PJ (1985) A nonsteroid anti-inflammatory drug exacerbates Coxsackie B3 murine myocarditis. J Am Coll Cardiol 6:1078–1082CrossRefPubMed
13.
Zurück zum Zitat Maisch B, Ristic AD, Seferovic PM, Tsang TSM (2011) Interventional pericardiology. Pericardiocentesis, pericardioscopy, pericardial biopsy, balloon pericardiotomy and intrapericardial therapy. Springer, Heidelberg Maisch B, Ristic AD, Seferovic PM, Tsang TSM (2011) Interventional pericardiology. Pericardiocentesis, pericardioscopy, pericardial biopsy, balloon pericardiotomy and intrapericardial therapy. Springer, Heidelberg
14.
Zurück zum Zitat Amiodarone Trials Meta-Analysis Investigators (1997) Effect of prophylactic amiodarone on mortality after acute myocardial infarction and in congestive heart failure: meta-analysis of individual data from 6500 patients in randomized trials. Lancet 350:1417–1424CrossRef Amiodarone Trials Meta-Analysis Investigators (1997) Effect of prophylactic amiodarone on mortality after acute myocardial infarction and in congestive heart failure: meta-analysis of individual data from 6500 patients in randomized trials. Lancet 350:1417–1424CrossRef
15.
Zurück zum Zitat Bardy GH, Lee KL, Mark DB et al (2005) Amiodarone or an implantable cardioverterdefibrillator for congestive heart failure. N Engl J Med 352:225–237CrossRefPubMed Bardy GH, Lee KL, Mark DB et al (2005) Amiodarone or an implantable cardioverterdefibrillator for congestive heart failure. N Engl J Med 352:225–237CrossRefPubMed
16.
Zurück zum Zitat Hunt SA, Abraham WT, Chin MH et al (2009) 2009 Fucussed update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults. J Am Coll Cardiol 53:e31–e90 (A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation)CrossRef Hunt SA, Abraham WT, Chin MH et al (2009) 2009 Fucussed update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults. J Am Coll Cardiol 53:e31–e90 (A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation)CrossRef
17.
Zurück zum Zitat Cooper LT, Berry GJ, Shabetai R (1997) Idiopathic giant cell myocarditis—natural history and treatment. N Engl J Med 336:1860–1866CrossRefPubMed Cooper LT, Berry GJ, Shabetai R (1997) Idiopathic giant cell myocarditis—natural history and treatment. N Engl J Med 336:1860–1866CrossRefPubMed
18.
Zurück zum Zitat Bargout R, Kelly RF (2004) Sarcoid heart disease. Clinical course and treatment. Int J Cardiol 97:173–182CrossRefPubMed Bargout R, Kelly RF (2004) Sarcoid heart disease. Clinical course and treatment. Int J Cardiol 97:173–182CrossRefPubMed
19.
Zurück zum Zitat Tai PC, Ackerman SJ, Spry CJ et al (1987) Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1(8534):643–647CrossRefPubMed Tai PC, Ackerman SJ, Spry CJ et al (1987) Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1(8534):643–647CrossRefPubMed
21.
Zurück zum Zitat Parillo JE, Cunnion RE, Epstein SE et al (1989) A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med 321:1061–1068CrossRef Parillo JE, Cunnion RE, Epstein SE et al (1989) A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med 321:1061–1068CrossRef
22.
Zurück zum Zitat Mason JW, O’Connel JB, Hershkowitz A et al (1995) A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med 33:269–275CrossRef Mason JW, O’Connel JB, Hershkowitz A et al (1995) A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med 33:269–275CrossRef
23.
Zurück zum Zitat Maisch B, Camerini F, Schultheiss H‑P (1995) Immunosuppressive therapy for myocarditis (letter). N Engl J Med 333:1713CrossRefPubMed Maisch B, Camerini F, Schultheiss H‑P (1995) Immunosuppressive therapy for myocarditis (letter). N Engl J Med 333:1713CrossRefPubMed
24.
Zurück zum Zitat Wojnicz R, Nowalany-Koziolaska E, Wojciechowska C et al (2001) Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy. Two-year follow-up results. Circulation 104:39–45CrossRefPubMed Wojnicz R, Nowalany-Koziolaska E, Wojciechowska C et al (2001) Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy. Two-year follow-up results. Circulation 104:39–45CrossRefPubMed
25.
Zurück zum Zitat Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002CrossRefPubMed Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002CrossRefPubMed
26.
Zurück zum Zitat Maisch B, Kölsch S, Hufnagel G et al (2011) Resolution of Inflammation determines short- and longterm prognosis in myocarditis in ESETCID. Circulation 124(21 Suppl):A15036 Maisch B, Kölsch S, Hufnagel G et al (2011) Resolution of Inflammation determines short- and longterm prognosis in myocarditis in ESETCID. Circulation 124(21 Suppl):A15036
27.
Zurück zum Zitat Nimmerjahn F, Ravetsch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533CrossRefPubMed Nimmerjahn F, Ravetsch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533CrossRefPubMed
28.
Zurück zum Zitat Anthony RM, Nimmerjahn F, Ashline DJ et al (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant Ig Fc. Science 320:373–376CrossRefPubMedPubMedCentral Anthony RM, Nimmerjahn F, Ashline DJ et al (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant Ig Fc. Science 320:373–376CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Grönwall C, Silverman GJ (2014) Natural IgM: Beneficial autoantibodies for the control of inflammatory and autoimmune disease? J Clin Immunol 34(1):S12–S21CrossRefPubMedPubMedCentral Grönwall C, Silverman GJ (2014) Natural IgM: Beneficial autoantibodies for the control of inflammatory and autoimmune disease? J Clin Immunol 34(1):S12–S21CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kishimoto C, Shioji K, Kinoshita M et al (2003) Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int J Cardiol 91:173–178CrossRefPubMed Kishimoto C, Shioji K, Kinoshita M et al (2003) Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int J Cardiol 91:173–178CrossRefPubMed
31.
Zurück zum Zitat Gullestad L, Aass H, Fjeld JG et al (2001) Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103:220–225CrossRefPubMed Gullestad L, Aass H, Fjeld JG et al (2001) Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103:220–225CrossRefPubMed
32.
Zurück zum Zitat Aukrust P, Yndestad A, Ueland T et al (2006) The role of intravenous immunoglobulin in the treatment of chronic heart failure. Int J Cardiol 112(1):40–45CrossRefPubMed Aukrust P, Yndestad A, Ueland T et al (2006) The role of intravenous immunoglobulin in the treatment of chronic heart failure. Int J Cardiol 112(1):40–45CrossRefPubMed
33.
Zurück zum Zitat Udi N, Yehuda S (2008) Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev 7(6):445–452CrossRefPubMed Udi N, Yehuda S (2008) Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev 7(6):445–452CrossRefPubMed
34.
Zurück zum Zitat Walpen AJ, Laumonier T, Aebi C et al (2004) IgM enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bacterial killing by human serum. Xenotransplantation 11(2):141–148CrossRefPubMed Walpen AJ, Laumonier T, Aebi C et al (2004) IgM enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bacterial killing by human serum. Xenotransplantation 11(2):141–148CrossRefPubMed
35.
Zurück zum Zitat Bozkurt B, Villaneuva FS, Holubkov R et al (1999) Intravenous immune globulin in the therapy of peripartum cardiomyopathy. J Am Coll Cardiol 34:177–180CrossRefPubMed Bozkurt B, Villaneuva FS, Holubkov R et al (1999) Intravenous immune globulin in the therapy of peripartum cardiomyopathy. J Am Coll Cardiol 34:177–180CrossRefPubMed
36.
Zurück zum Zitat Takeda Y, Yasuda S, Miyazaki S et al (1998) High-dose immunoglobulin G therapy for fulminant myocarditis. Jpn Circ J 62:871–872CrossRefPubMed Takeda Y, Yasuda S, Miyazaki S et al (1998) High-dose immunoglobulin G therapy for fulminant myocarditis. Jpn Circ J 62:871–872CrossRefPubMed
37.
Zurück zum Zitat Goland S, Czer LSC, Siegel RJ et al (2008) Intravenous immunoglobulin treatment for acute fulminant inflammatory cardiomyopathy: series of sixpatients and review of literature. Can J Cardiol 24(7):571–574CrossRefPubMedPubMedCentral Goland S, Czer LSC, Siegel RJ et al (2008) Intravenous immunoglobulin treatment for acute fulminant inflammatory cardiomyopathy: series of sixpatients and review of literature. Can J Cardiol 24(7):571–574CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Shioji K, Matsuura Y, Iwase T et al (2002) Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thiredoxin—a case report. Circ J 66:977–980CrossRefPubMed Shioji K, Matsuura Y, Iwase T et al (2002) Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thiredoxin—a case report. Circ J 66:977–980CrossRefPubMed
39.
Zurück zum Zitat Robinson J, Hartling L, Crumley E et al (2005) A systematic review of intravenous gamma globulin for the therapy of acute myocarditis. BMC Cardiovasc Disord 5:12–18CrossRefPubMedPubMedCentral Robinson J, Hartling L, Crumley E et al (2005) A systematic review of intravenous gamma globulin for the therapy of acute myocarditis. BMC Cardiovasc Disord 5:12–18CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Drucker NA, Colan SD, Lewis AB et al (1994) Gamma-globulin treatment of acute myocarditis in the pediatric population. Circulation 89:252–257CrossRefPubMed Drucker NA, Colan SD, Lewis AB et al (1994) Gamma-globulin treatment of acute myocarditis in the pediatric population. Circulation 89:252–257CrossRefPubMed
41.
Zurück zum Zitat McNamara DM, Rosenblum WD, Janosko KM et al (1997) Intravenous immune gobulin in the therapy of myocarditis and acute cardiomyopathy. Circulation 95:2476–2478CrossRefPubMed McNamara DM, Rosenblum WD, Janosko KM et al (1997) Intravenous immune gobulin in the therapy of myocarditis and acute cardiomyopathy. Circulation 95:2476–2478CrossRefPubMed
42.
Zurück zum Zitat Intervention in Myocarditis and Acute Cardiomyopathy (IMAC) Investigators, McNamara DM, Holubkov R, Starling RC et al (2001) Controlled trial of intravenous immune globuline in recent-onset dilated cardiomyopathy. Circulation 103:2254–2259CrossRef Intervention in Myocarditis and Acute Cardiomyopathy (IMAC) Investigators, McNamara DM, Holubkov R, Starling RC et al (2001) Controlled trial of intravenous immune globuline in recent-onset dilated cardiomyopathy. Circulation 103:2254–2259CrossRef
43.
Zurück zum Zitat Tedeschi A, Liraghi L, Giannini S et al (2002) High-dose intravenous immunoglobulin in the treatment of acute myocarditis. A case report and review of the literature. J Intern Med 251:169–173CrossRefPubMed Tedeschi A, Liraghi L, Giannini S et al (2002) High-dose intravenous immunoglobulin in the treatment of acute myocarditis. A case report and review of the literature. J Intern Med 251:169–173CrossRefPubMed
44.
Zurück zum Zitat Tsai YG, Ou TY, Wang CC et al (2001) Intravenous gamma-globulin therapy in myocarditis complicated with complete heart block: report of one case. Acta Paediatr Taiwan 42(5):311–313PubMed Tsai YG, Ou TY, Wang CC et al (2001) Intravenous gamma-globulin therapy in myocarditis complicated with complete heart block: report of one case. Acta Paediatr Taiwan 42(5):311–313PubMed
45.
Zurück zum Zitat Shioji K, Kishimoto C, Sasyama S (2000) Immunoglobulin therapy for acute myocarditis. Respir Circ 48(11):1133–1139 Shioji K, Kishimoto C, Sasyama S (2000) Immunoglobulin therapy for acute myocarditis. Respir Circ 48(11):1133–1139
46.
Zurück zum Zitat Kishimoto C, Fujita M, Kinoshita M et al (1999) Immunglobulin therapy for myocarditis an acute dilated cardiomyopathy. Circulation 100(18):1405–1408 Kishimoto C, Fujita M, Kinoshita M et al (1999) Immunglobulin therapy for myocarditis an acute dilated cardiomyopathy. Circulation 100(18):1405–1408
47.
Zurück zum Zitat Takada H, Kishimoto C, Hiraoka Y (1995) Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model—antiviral and anti-inflammatory effects. Circulation 92(6):1604–1611CrossRefPubMed Takada H, Kishimoto C, Hiraoka Y (1995) Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model—antiviral and anti-inflammatory effects. Circulation 92(6):1604–1611CrossRefPubMed
48.
Zurück zum Zitat Selbing A, Josefsson A, Dahle LO, Lindgren R (1995) Parvovirus B19 infection during pregnancy treated with high-dose intravenous gammaglobulin. Lancet 345:660–661CrossRefPubMed Selbing A, Josefsson A, Dahle LO, Lindgren R (1995) Parvovirus B19 infection during pregnancy treated with high-dose intravenous gammaglobulin. Lancet 345:660–661CrossRefPubMed
49.
Zurück zum Zitat Dennert R, Velthuis S, Schalla S et al (2010) Intravenous immunoglobulin therapy for patients with idiopathic cardiomyoapthy and endomyocardial biopsy-proven high PVB19 viral load. Antivir Ther 15:193–201CrossRefPubMed Dennert R, Velthuis S, Schalla S et al (2010) Intravenous immunoglobulin therapy for patients with idiopathic cardiomyoapthy and endomyocardial biopsy-proven high PVB19 viral load. Antivir Ther 15:193–201CrossRefPubMed
50.
Zurück zum Zitat Klugman D, Berger JT, Sable CA et al (2009) Pediatric patients hospitalized with myocarditis: a multi-institutional analysis. Pediatr Cardiol 31:222–228CrossRef Klugman D, Berger JT, Sable CA et al (2009) Pediatric patients hospitalized with myocarditis: a multi-institutional analysis. Pediatr Cardiol 31:222–228CrossRef
51.
Zurück zum Zitat Maisch B, Haake H, Schlotmann N, Pankuweit S (2007) Abstract 1616: intermediate dose of pentaglobin eradicates effectively inflammation in parvo B19 and adenovirus positive myocarditis. Circulation 116:II_338CrossRef Maisch B, Haake H, Schlotmann N, Pankuweit S (2007) Abstract 1616: intermediate dose of pentaglobin eradicates effectively inflammation in parvo B19 and adenovirus positive myocarditis. Circulation 116:II_338CrossRef
52.
Zurück zum Zitat Maisch B, Pankuweit S, Funck R, Koelsch S (2004) Effective CMV hyperimmunoglobulin treatment in CMV myocarditis—a controled treatment trial. Eur Heart J Suppl 114:P674 Maisch B, Pankuweit S, Funck R, Koelsch S (2004) Effective CMV hyperimmunoglobulin treatment in CMV myocarditis—a controled treatment trial. Eur Heart J Suppl 114:P674
53.
Zurück zum Zitat Schultheiss H‑P, Piper C, Sowade O et al (2016) Betaferon in chronic viral cardiomyopathy(BICC) trial: Effect of interferon-ß treatment in patients with chronic viral cardiomyopathy. Clin Res Cardiol 105(9):763–773CrossRefPubMed Schultheiss H‑P, Piper C, Sowade O et al (2016) Betaferon in chronic viral cardiomyopathy(BICC) trial: Effect of interferon-ß treatment in patients with chronic viral cardiomyopathy. Clin Res Cardiol 105(9):763–773CrossRefPubMed
Metadaten
Titel
Treatment options in myocarditis and inflammatory cardiomyopathy
Focus on i. v. immunoglobulins
verfasst von
Prof. Dr. B. Maisch
P. Alter
Publikationsdatum
15.06.2018
Verlag
Springer Medizin
Erschienen in
Herz / Ausgabe 5/2018
Print ISSN: 0340-9937
Elektronische ISSN: 1615-6692
DOI
https://doi.org/10.1007/s00059-018-4719-x

Weitere Artikel der Ausgabe 5/2018

Herz 5/2018 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.