Skip to main content
Erschienen in: Inflammation 3/2015

01.06.2015

Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses LPS-Induced Lung Inflammation

verfasst von: Robert J. McKallip, Hao Ban, Olga N. Uchakina

Erschienen in: Inflammation | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.
Literatur
1.
Zurück zum Zitat Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.CrossRefPubMed Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202: 145–156.CrossRefPubMed
2.
Zurück zum Zitat Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, et al. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353: 1685–1693.CrossRefPubMed Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, et al. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353: 1685–1693.CrossRefPubMed
3.
Zurück zum Zitat Rubenfeld, G.D., and M.S. Herridge. 2007. Epidemiology and outcomes of acute lung injury. Chest 131: 554–562.CrossRefPubMed Rubenfeld, G.D., and M.S. Herridge. 2007. Epidemiology and outcomes of acute lung injury. Chest 131: 554–562.CrossRefPubMed
4.
Zurück zum Zitat Shafeeq, H., and I. Lat 2012. Pharmacotherapy for acute respiratory distress syndrome. Pharmacotherapy. 32:943–57. doi:10.1002/j.1875-9114.2012.01115. Shafeeq, H., and I. Lat 2012. Pharmacotherapy for acute respiratory distress syndrome. Pharmacotherapy. 32:943–57. doi:10.1002/j.1875-9114.2012.01115.
5.
Zurück zum Zitat Bao, A., L. Liang, F. Li, M. Zhang, and X. Zhou. 2013. Consequences of acute ozone exposure imposed on the culminated allergic pulmonary inflammation in an established murine model of asthma. Frontiers in Bioscience 18: 838–851.CrossRef Bao, A., L. Liang, F. Li, M. Zhang, and X. Zhou. 2013. Consequences of acute ozone exposure imposed on the culminated allergic pulmonary inflammation in an established murine model of asthma. Frontiers in Bioscience 18: 838–851.CrossRef
6.
Zurück zum Zitat Liang, J., D. Jiang, Y. Jung, T. Xie, J. Ingram, T. Church, et al. 2011. Role of hyaluronan and hyaluronan-binding proteins in human asthma. The Journal of Allergy and Clinical Immunology 128: 403–411. e3.CrossRefPubMedCentralPubMed Liang, J., D. Jiang, Y. Jung, T. Xie, J. Ingram, T. Church, et al. 2011. Role of hyaluronan and hyaluronan-binding proteins in human asthma. The Journal of Allergy and Clinical Immunology 128: 403–411. e3.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Yoon, J.S., H.J. Lee, S.H. Choi, E.J. Chang, S.Y. Lee, and E.J. Lee. 2011. Quercetin inhibits IL-1beta-induced inflammation, hyaluronan production and adipogenesis in orbital fibroblasts from Graves’ orbitopathy. PloS One 6: e26261.CrossRefPubMedCentralPubMed Yoon, J.S., H.J. Lee, S.H. Choi, E.J. Chang, S.Y. Lee, and E.J. Lee. 2011. Quercetin inhibits IL-1beta-induced inflammation, hyaluronan production and adipogenesis in orbital fibroblasts from Graves’ orbitopathy. PloS One 6: e26261.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Campo, G.M., A. Avenoso, S. Campo, A. D’Ascola, G. Nastasi, and A. Calatroni. 2010. Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochemical Pharmacology 80: 480–490.CrossRefPubMed Campo, G.M., A. Avenoso, S. Campo, A. D’Ascola, G. Nastasi, and A. Calatroni. 2010. Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochemical Pharmacology 80: 480–490.CrossRefPubMed
9.
Zurück zum Zitat Ernst, G., S. Lompardia, R. Cordo Russo, V. Gentilini, S. Venturiello, F. Galindez, et al. 2012. Corticosteroid administration reduces the concentration of hyaluronan in bronchoalveolar lavage in a murine model of eosinophilic airway inflammation. Inflammation Research 61: 1309–1317.CrossRefPubMed Ernst, G., S. Lompardia, R. Cordo Russo, V. Gentilini, S. Venturiello, F. Galindez, et al. 2012. Corticosteroid administration reduces the concentration of hyaluronan in bronchoalveolar lavage in a murine model of eosinophilic airway inflammation. Inflammation Research 61: 1309–1317.CrossRefPubMed
10.
Zurück zum Zitat Esser, P.R., U. Wolfle, C. Durr, F.D. von Loewenich, C.M. Schempp, M.A. Freudenberg, et al. 2012. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PloS One 7: e41340.CrossRefPubMedCentralPubMed Esser, P.R., U. Wolfle, C. Durr, F.D. von Loewenich, C.M. Schempp, M.A. Freudenberg, et al. 2012. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PloS One 7: e41340.CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Stern, R., A.A. Asari, and K.N. Sugahara. 2006. Hyaluronan fragments: An information-rich system. European Journal of Cell Biology 85: 699–715.CrossRefPubMed Stern, R., A.A. Asari, and K.N. Sugahara. 2006. Hyaluronan fragments: An information-rich system. European Journal of Cell Biology 85: 699–715.CrossRefPubMed
12.
Zurück zum Zitat Baeva, L.F., D.B. Lyle, M. Rios, J.J. Langone, and M.M. Lightfoote. 2014. Different molecular weight hyaluronic acid effects on human macrophage interleukin 1beta production. Journal of Biomedical Materials Research. Part A 102: 305–314.CrossRefPubMed Baeva, L.F., D.B. Lyle, M. Rios, J.J. Langone, and M.M. Lightfoote. 2014. Different molecular weight hyaluronic acid effects on human macrophage interleukin 1beta production. Journal of Biomedical Materials Research. Part A 102: 305–314.CrossRefPubMed
13.
Zurück zum Zitat Sokolowska, M., L.Y. Chen, M. Eberlein, A. Martinez-Anton, Y. Liu, S. Alsaaty, et al. 2014. Low molecular weight hyaluronan activates cytosolic phospholipase A2alpha and eicosanoid production in monocytes and macrophages. The Journal of Biological Chemistry 289: 4470–4488.CrossRefPubMedCentralPubMed Sokolowska, M., L.Y. Chen, M. Eberlein, A. Martinez-Anton, Y. Liu, S. Alsaaty, et al. 2014. Low molecular weight hyaluronan activates cytosolic phospholipase A2alpha and eicosanoid production in monocytes and macrophages. The Journal of Biological Chemistry 289: 4470–4488.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Bollyky, P.L., J.D. Lord, S.A. Masewicz, S.P. Evanko, J.H. Buckner, T.N. Wight, et al. 2007. Cutting edge: High molecular weight hyaluronan promotes the suppressive effects of CD4+ CD25+ regulatory T cells. Journal of Immunology 179: 744–747.CrossRef Bollyky, P.L., J.D. Lord, S.A. Masewicz, S.P. Evanko, J.H. Buckner, T.N. Wight, et al. 2007. Cutting edge: High molecular weight hyaluronan promotes the suppressive effects of CD4+ CD25+ regulatory T cells. Journal of Immunology 179: 744–747.CrossRef
15.
Zurück zum Zitat Mohamadzadeh, M., H. DeGrendele, H. Arizpe, P. Estess, and M. Siegelman. 1998. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. The Journal of Clinical Investigation 101: 97–108.CrossRefPubMedCentralPubMed Mohamadzadeh, M., H. DeGrendele, H. Arizpe, P. Estess, and M. Siegelman. 1998. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. The Journal of Clinical Investigation 101: 97–108.CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Singleton, P.A., T. Mirzapoiazova, Y. Guo, S. Sammani, N. Mambetsariev, F.E. Lennon, et al. 2010. High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. American Journal of Physiology. Lung Cellular and Molecular Physiology 299: L639–L651.CrossRefPubMedCentralPubMed Singleton, P.A., T. Mirzapoiazova, Y. Guo, S. Sammani, N. Mambetsariev, F.E. Lennon, et al. 2010. High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. American Journal of Physiology. Lung Cellular and Molecular Physiology 299: L639–L651.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Asari, A., T. Kanemitsu, and H. Kurihara. 2010. Oral administration of high molecular weight hyaluronan (900 kDa) controls immune system via Toll-like receptor 4 in the intestinal epithelium. The Journal of Biological Chemistry 285: 24751–24758.CrossRefPubMedCentralPubMed Asari, A., T. Kanemitsu, and H. Kurihara. 2010. Oral administration of high molecular weight hyaluronan (900 kDa) controls immune system via Toll-like receptor 4 in the intestinal epithelium. The Journal of Biological Chemistry 285: 24751–24758.CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Uchakina, O.N., C.M. Castillejo, C.C. Bridges, and R.J. McKallip. 2013. The role of hyaluronic acid in SEB-induced acute lung inflammation. Clinical Immunology 146: 56–69.CrossRefPubMed Uchakina, O.N., C.M. Castillejo, C.C. Bridges, and R.J. McKallip. 2013. The role of hyaluronic acid in SEB-induced acute lung inflammation. Clinical Immunology 146: 56–69.CrossRefPubMed
19.
Zurück zum Zitat Uchakina, O.N., H. Ban, and R.J. McKallip 2013. Targeting hyaluronic acid production for the treatment of leukemia: Treatment with 4-methylumbelliferone leads to induction of MAPK-mediated apoptosis in K562 leukemia. Leukemia Research. 1294–301. doi:10.1016/j.leukres.2013.07.009. Uchakina, O.N., H. Ban, and R.J. McKallip 2013. Targeting hyaluronic acid production for the treatment of leukemia: Treatment with 4-methylumbelliferone leads to induction of MAPK-mediated apoptosis in K562 leukemia. Leukemia Research. 1294–301. doi:10.1016/j.leukres.2013.07.009.
20.
Zurück zum Zitat Sun, J., G.P. Law, C.C. Bridges, and R.J. McKallip. 2012. CD44 as a novel target for treatment of staphylococcal enterotoxin B-induced acute inflammatory lung injury. Clinical Immunology 144: 41–52.CrossRefPubMed Sun, J., G.P. Law, C.C. Bridges, and R.J. McKallip. 2012. CD44 as a novel target for treatment of staphylococcal enterotoxin B-induced acute inflammatory lung injury. Clinical Immunology 144: 41–52.CrossRefPubMed
21.
22.
Zurück zum Zitat Lokeshwar, V.B., L.E. Lopez, D. Munoz, A. Chi, S.P. Shirodkar, S.D. Lokeshwar, et al. 2010. Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Research 70: 2613–2623.CrossRefPubMedCentralPubMed Lokeshwar, V.B., L.E. Lopez, D. Munoz, A. Chi, S.P. Shirodkar, S.D. Lokeshwar, et al. 2010. Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Research 70: 2613–2623.CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat McKallip, R.J., H.F. Hagele, and O.N. Uchakina. 2013. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel) 5: 1814–1826.CrossRef McKallip, R.J., H.F. Hagele, and O.N. Uchakina. 2013. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel) 5: 1814–1826.CrossRef
24.
Zurück zum Zitat Urakawa, H., Y. Nishida, J. Wasa, E. Arai, L. Zhuo, K. Kimata, et al. 2012. Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo. International Journal of Cancer 130: 454–466.CrossRef Urakawa, H., Y. Nishida, J. Wasa, E. Arai, L. Zhuo, K. Kimata, et al. 2012. Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo. International Journal of Cancer 130: 454–466.CrossRef
25.
Zurück zum Zitat Arai, E., Y. Nishida, J. Wasa, H. Urakawa, L. Zhuo, K. Kimata, et al. 2011. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. British Journal of Cancer 105: 1839–1849.CrossRefPubMedCentralPubMed Arai, E., Y. Nishida, J. Wasa, H. Urakawa, L. Zhuo, K. Kimata, et al. 2011. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. British Journal of Cancer 105: 1839–1849.CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Edward, M., J.A. Quinn, S.M. Pasonen-Seppanen, B.A. McCann, and R.H. Tammi. 2010. 4-Methylumbelliferone inhibits tumour cell growth and the activation of stromal hyaluronan synthesis by melanoma cell-derived factors. The British Journal of Dermatology 162: 1224–1232.CrossRefPubMed Edward, M., J.A. Quinn, S.M. Pasonen-Seppanen, B.A. McCann, and R.H. Tammi. 2010. 4-Methylumbelliferone inhibits tumour cell growth and the activation of stromal hyaluronan synthesis by melanoma cell-derived factors. The British Journal of Dermatology 162: 1224–1232.CrossRefPubMed
27.
Zurück zum Zitat Piccioni, F., M. Malvicini, M.G. Garcia, A. Rodriguez, C. Atorrasagasti, N. Kippes, et al. 2012. Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology 22: 400–410.CrossRefPubMed Piccioni, F., M. Malvicini, M.G. Garcia, A. Rodriguez, C. Atorrasagasti, N. Kippes, et al. 2012. Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology 22: 400–410.CrossRefPubMed
28.
Zurück zum Zitat McKallip, R.J., Y. Do, M.T. Fisher, J.L. Robertson, P.S. Nagarkatti, and M. Nagarkatti. 2002. Role of CD44 in activation-induced cell death: CD44-deficient mice exhibit enhanced T cell response to conventional and superantigens. International Immunology 14: 1015–1026.CrossRefPubMed McKallip, R.J., Y. Do, M.T. Fisher, J.L. Robertson, P.S. Nagarkatti, and M. Nagarkatti. 2002. Role of CD44 in activation-induced cell death: CD44-deficient mice exhibit enhanced T cell response to conventional and superantigens. International Immunology 14: 1015–1026.CrossRefPubMed
29.
Zurück zum Zitat Itano, N., T. Sawai, M. Yoshida, P. Lenas, Y. Yamada, M. Imagawa, et al. 1999. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. The Journal of Biological Chemistry 274: 25085–25092.CrossRefPubMed Itano, N., T. Sawai, M. Yoshida, P. Lenas, Y. Yamada, M. Imagawa, et al. 1999. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. The Journal of Biological Chemistry 274: 25085–25092.CrossRefPubMed
30.
Zurück zum Zitat Doi, K., A. Leelahavanichkul, P.S. Yuen, and R.A. Star. 2009. Animal models of sepsis and sepsis-induced kidney injury. The Journal of Clinical Investigation 119: 2868–2878.CrossRefPubMedCentralPubMed Doi, K., A. Leelahavanichkul, P.S. Yuen, and R.A. Star. 2009. Animal models of sepsis and sepsis-induced kidney injury. The Journal of Clinical Investigation 119: 2868–2878.CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14: 523–535.CrossRef Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14: 523–535.CrossRef
32.
Zurück zum Zitat Nakazawa, H., S. Yoshihara, D. Kudo, H. Morohashi, I. Kakizaki, A. Kon, et al. 2006. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemotherapy and Pharmacology 57: 165–170.CrossRefPubMed Nakazawa, H., S. Yoshihara, D. Kudo, H. Morohashi, I. Kakizaki, A. Kon, et al. 2006. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemotherapy and Pharmacology 57: 165–170.CrossRefPubMed
33.
Zurück zum Zitat Campo, G.M., A. Avenoso, S. Campo, A. D’Ascola, P. Traina, C.A. Rugolo, et al. 2010. Differential effect of molecular mass hyaluronan on lipopolysaccharide-induced damage in chondrocytes. Innate Immunity 16: 48–63.CrossRefPubMed Campo, G.M., A. Avenoso, S. Campo, A. D’Ascola, P. Traina, C.A. Rugolo, et al. 2010. Differential effect of molecular mass hyaluronan on lipopolysaccharide-induced damage in chondrocytes. Innate Immunity 16: 48–63.CrossRefPubMed
34.
Zurück zum Zitat Pauloin, T., M. Dutot, F. Joly, J.M. Warnet, and P. Rat. 2009. High molecular weight hyaluronan decreases UVB-induced apoptosis and inflammation in human epithelial corneal cells. Molecular Vision 15: 577–583.PubMedCentralPubMed Pauloin, T., M. Dutot, F. Joly, J.M. Warnet, and P. Rat. 2009. High molecular weight hyaluronan decreases UVB-induced apoptosis and inflammation in human epithelial corneal cells. Molecular Vision 15: 577–583.PubMedCentralPubMed
35.
Zurück zum Zitat Ruffell, B., and P. Johnson. 2008. Hyaluronan induces cell death in activated T cells through CD44. Journal of Immunology 181: 7044–7054.CrossRef Ruffell, B., and P. Johnson. 2008. Hyaluronan induces cell death in activated T cells through CD44. Journal of Immunology 181: 7044–7054.CrossRef
36.
Zurück zum Zitat Kultti, A., S. Pasonen-Seppanen, M. Jauhiainen, K.J. Rilla, R. Karna, E. Pyoria, et al. 2009. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Experimental Cell Research 315: 1914–1923.CrossRefPubMed Kultti, A., S. Pasonen-Seppanen, M. Jauhiainen, K.J. Rilla, R. Karna, E. Pyoria, et al. 2009. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Experimental Cell Research 315: 1914–1923.CrossRefPubMed
37.
Zurück zum Zitat Daines, D.A., J. Sun, O.N. Uchakina, and R.J. McKallip 2013. Development of a novel treatment for leukemia directed at tumor-associated mRNA splicing. Leukemia Research. 1125–31. doi:10.1016/j.leukres.2013.06.017. Daines, D.A., J. Sun, O.N. Uchakina, and R.J. McKallip 2013. Development of a novel treatment for leukemia directed at tumor-associated mRNA splicing. Leukemia Research. 1125–31. doi:10.1016/j.leukres.2013.06.017.
38.
Zurück zum Zitat Yoshida, M., N. Itano, Y. Yamada, and K. Kimata. 2000. In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. The Journal of Biological Chemistry 275: 497–506.CrossRefPubMed Yoshida, M., N. Itano, Y. Yamada, and K. Kimata. 2000. In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. The Journal of Biological Chemistry 275: 497–506.CrossRefPubMed
39.
Zurück zum Zitat Bollyky, P.L., R.P. Wu, B.A. Falk, J.D. Lord, S.A. Long, A. Preisinger, et al. 2011. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proceedings of the National Academy of Sciences of the United States of America 108: 7938–7943.CrossRefPubMedCentralPubMed Bollyky, P.L., R.P. Wu, B.A. Falk, J.D. Lord, S.A. Long, A. Preisinger, et al. 2011. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proceedings of the National Academy of Sciences of the United States of America 108: 7938–7943.CrossRefPubMedCentralPubMed
40.
Zurück zum Zitat Jiang, D., J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine 11: 1173–1179.CrossRefPubMed Jiang, D., J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine 11: 1173–1179.CrossRefPubMed
42.
Zurück zum Zitat Teder, P., R.W. Vandivier, D. Jiang, J. Liang, L. Cohn, E. Pure, et al. 2002. Resolution of lung inflammation by CD44. Science 296: 155–158.CrossRefPubMed Teder, P., R.W. Vandivier, D. Jiang, J. Liang, L. Cohn, E. Pure, et al. 2002. Resolution of lung inflammation by CD44. Science 296: 155–158.CrossRefPubMed
43.
Zurück zum Zitat Bollyky, P.L., B.A. Falk, R.P. Wu, J.H. Buckner, T.N. Wight, and G.T. Nepom. 2009. Intact extracellular matrix and the maintenance of immune tolerance: High molecular weight hyaluronan promotes persistence of induced CD4+ CD25+ regulatory T cells. Journal of Leukocyte Biology 86: 567–572.CrossRefPubMedCentralPubMed Bollyky, P.L., B.A. Falk, R.P. Wu, J.H. Buckner, T.N. Wight, and G.T. Nepom. 2009. Intact extracellular matrix and the maintenance of immune tolerance: High molecular weight hyaluronan promotes persistence of induced CD4+ CD25+ regulatory T cells. Journal of Leukocyte Biology 86: 567–572.CrossRefPubMedCentralPubMed
Metadaten
Titel
Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses LPS-Induced Lung Inflammation
verfasst von
Robert J. McKallip
Hao Ban
Olga N. Uchakina
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0092-y

Weitere Artikel der Ausgabe 3/2015

Inflammation 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.