Skip to main content
Erschienen in: Breast Cancer Research and Treatment 3/2020

10.12.2019 | Preclinical study

TrkA overexpression in non-tumorigenic human breast cell lines confers oncogenic and metastatic properties

verfasst von: Kelly Kyker-Snowman, Robert M. Hughes, Christopher L. Yankaskas, Karen Cravero, Swathi Karthikeyan, Berry Button, Ian Waters, David Marc Rosen, Lauren Dennison, Natasha Hunter, Josh Donaldson, Eric S. Christenson, Konstantinos Konstantopoulos, Paula J. Hurley, Sarah Croessmann, Ben Ho Park

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Background/purpose

TrkA overexpression occurs in over 20% of breast cancers, including triple-negative breast cancers (TNBC), and has recently been recognized as a potential driver of carcinogenesis. Recent clinical trials of pan-Trk inhibitors have demonstrated targeted activity against tumors harboring NTRK fusions, a relatively rare alteration across human cancers. Despite this success, current clinical trials have not investigated TrkA overexpression as an additional therapeutic target for pan-Trk inhibitors. Here, we evaluate the cancerous phenotypes of TrkA overexpression relative to NTRK1 fusions in human cells and assess response to pharmacologic Trk inhibition.

Experimental design/methods

To evaluate the clinical utility of TrkA overexpression, a panel of TrkA overexpressing cells were developed via stable transfection of an NTRK1 vector into the non-tumorigenic breast cell lines, MCF10A and hTERT-IMEC. A panel of positive controls was generated via stable transfection with a CD74-NTRK1 fusion vector into MCF10A cells. Cells were assessed via various in vitro and in vivo analyses to determine the transformative potential and targetability of TrkA overexpression.

Results

TrkA overexpressing cells demonstrated transformative phenotypes similar to Trk fusions, indicating increased oncogenic potential. TrkA overexpressing cells demonstrated growth factor-independent proliferation, increased PI3Kinase and MAPKinase pathway activation, anchorage-independent growth, and increased migratory capacity. These phenotypes were abrogated by the addition of the pan-Trk inhibitor, larotrectinib. In vivo analysis demonstrated increased tumorgenicity and metastatic potential of TrkA overexpressing breast cancer cells.

Conclusions

Herein, we demonstrate TrkA overexpressing cells show increased tumorgenicity and are sensitive to pan-Trk inhibitors. These data suggest that TrkA overexpression may be an additional target for pan-Trk inhibitors and provide a targeted therapy for breast cancer patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Garrido-Castro AC, Lin NU, Polyak K (2019) Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9(2):176–198CrossRef Garrido-Castro AC, Lin NU, Polyak K (2019) Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9(2):176–198CrossRef
2.
Zurück zum Zitat Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR et al (2017) Electronic and optical properties of two-dimensional GaN from first principles. Nano Lett 17(12):7345–167CrossRef Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR et al (2017) Electronic and optical properties of two-dimensional GaN from first principles. Nano Lett 17(12):7345–167CrossRef
3.
Zurück zum Zitat Hutchinson L (2014) Breast cancer: TNBC: can we treat the untargetable? Nat Rev Clin Oncol 11(7):379CrossRef Hutchinson L (2014) Breast cancer: TNBC: can we treat the untargetable? Nat Rev Clin Oncol 11(7):379CrossRef
4.
Zurück zum Zitat Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N (2015) Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 172(17):4228–4237CrossRef Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N (2015) Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 172(17):4228–4237CrossRef
5.
Zurück zum Zitat Andre F, Zielinski CC (2006) Gradient doping negative electron affinity GaAs photocathodes. Opt Eng 23(Suppl 6):vi46–vi51CrossRef Andre F, Zielinski CC (2006) Gradient doping negative electron affinity GaAs photocathodes. Opt Eng 23(Suppl 6):vi46–vi51CrossRef
6.
Zurück zum Zitat Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H (2001) Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276(21):17864–17870CrossRef Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H (2001) Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276(21):17864–17870CrossRef
7.
Zurück zum Zitat Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58–66CrossRef Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58–66CrossRef
8.
Zurück zum Zitat Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, Jimeno A, Varella-Garcia M, Aisner DL, Li Y et al (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5(10):1049–1057CrossRef Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, Jimeno A, Varella-Garcia M, Aisner DL, Li Y et al (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5(10):1049–1057CrossRef
9.
Zurück zum Zitat Tian Q, Du P, Li S, Bai Z, Yang Y, Zeng J (2017) Effect of antitumor treatments on triple-negative breast cancer patients: a PRISMA-compliant network meta-analysis of randomized controlled trials. Medicine (Baltimore) 96(45):e8389CrossRef Tian Q, Du P, Li S, Bai Z, Yang Y, Zeng J (2017) Effect of antitumor treatments on triple-negative breast cancer patients: a PRISMA-compliant network meta-analysis of randomized controlled trials. Medicine (Baltimore) 96(45):e8389CrossRef
10.
Zurück zum Zitat Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739CrossRef Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739CrossRef
11.
Zurück zum Zitat Ross JS, Chung J, Elvin JE, Vergilio J-A, Ramkissoon S, Suh J, Severson E, Daniel S, Frampton GM, Fabrizio D, Hartmaier RJ, Albacker LA, Ali SM, Schrock AB, Miller VA, Stephens PJ, Gay LM (2018) Abstract P2–09–15: NTRK fusions in breast cancer: Clinical, pathologic and genomic findings. In: Proceedings of the 2017 San Antonio Breast Cancer Symposium: 2017; San Antonio, TX: AACR. Cancer Res. https://doi.org/10.1158/1538-7445.SABCS17-P2-09-15 CrossRefPubMedPubMedCentral Ross JS, Chung J, Elvin JE, Vergilio J-A, Ramkissoon S, Suh J, Severson E, Daniel S, Frampton GM, Fabrizio D, Hartmaier RJ, Albacker LA, Ali SM, Schrock AB, Miller VA, Stephens PJ, Gay LM (2018) Abstract P2–09–15: NTRK fusions in breast cancer: Clinical, pathologic and genomic findings. In: Proceedings of the 2017 San Antonio Breast Cancer Symposium: 2017; San Antonio, TX: AACR. Cancer Res. https://​doi.​org/​10.​1158/​1538-7445.​SABCS17-P2-09-15 CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1CrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1CrossRef
13.
Zurück zum Zitat Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R, Toillon RA, Oxombre B, Hondermarck H, Le Bourhis X (2009) TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28(18):1960–1970CrossRef Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R, Toillon RA, Oxombre B, Hondermarck H, Le Bourhis X (2009) TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28(18):1960–1970CrossRef
14.
Zurück zum Zitat Sabari JK, Santini F, Bergagnini I, Lai WV, Arbour KC, Drilon A (2017) Changing the therapeutic landscape in non-small cell lung cancers: the evolution of comprehensive molecular profiling improves access to therapy. Curr Oncol Rep 19(4):24CrossRef Sabari JK, Santini F, Bergagnini I, Lai WV, Arbour KC, Drilon A (2017) Changing the therapeutic landscape in non-small cell lung cancers: the evolution of comprehensive molecular profiling improves access to therapy. Curr Oncol Rep 19(4):24CrossRef
15.
Zurück zum Zitat Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies KD, Aisner DL, Pilling AB et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472CrossRef Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies KD, Aisner DL, Pilling AB et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472CrossRef
16.
Zurück zum Zitat Chong CR, Bahcall M, Capelletti M, Kosaka T, Ercan D, Sim T, Sholl LM, Nishino M, Johnson BE, Gray NS et al (2017) Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements in lung cancer. Clin Cancer Res 23(1):204–213CrossRef Chong CR, Bahcall M, Capelletti M, Kosaka T, Ercan D, Sim T, Sholl LM, Nishino M, Johnson BE, Gray NS et al (2017) Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements in lung cancer. Clin Cancer Res 23(1):204–213CrossRef
17.
Zurück zum Zitat Wang GM, Wong HY, Konishi H, Blair BG, Abukhdeir AM, Gustin JP, Rosen DM, Denmeade SR, Rasheed Z, Matsui W et al (2013) Single copies of mutant KRAS and mutant PIK3CA cooperate in immortalized human epithelial cells to induce tumor formation. Cancer Res 73(11):3248–3261CrossRef Wang GM, Wong HY, Konishi H, Blair BG, Abukhdeir AM, Gustin JP, Rosen DM, Denmeade SR, Rasheed Z, Matsui W et al (2013) Single copies of mutant KRAS and mutant PIK3CA cooperate in immortalized human epithelial cells to induce tumor formation. Cancer Res 73(11):3248–3261CrossRef
18.
Zurück zum Zitat Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson R, Furth P, Hunter K, Kucherlapati R et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972CrossRef Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson R, Furth P, Hunter K, Kucherlapati R et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972CrossRef
19.
Zurück zum Zitat Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP (2010) Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS ONE 5(6):e11030CrossRef Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP (2010) Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS ONE 5(6):e11030CrossRef
20.
Zurück zum Zitat Narayan S, Jaiswal AS, Law BK, Kamal MA, Sharma AK, Hromas RA (2016) Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair (Amst) 41:54–62CrossRef Narayan S, Jaiswal AS, Law BK, Kamal MA, Sharma AK, Hromas RA (2016) Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair (Amst) 41:54–62CrossRef
21.
Zurück zum Zitat Hilborn E, Stal O, Jansson A (2017) Estrogen and androgen-converting enzymes 17beta-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17beta-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 8(18):30552–30562CrossRef Hilborn E, Stal O, Jansson A (2017) Estrogen and androgen-converting enzymes 17beta-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17beta-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 8(18):30552–30562CrossRef
22.
Zurück zum Zitat Croessmann S, Wong HY, Zabransky DJ, Chu D, Rosen DM, Cidado J, Cochran RL, Dalton WB, Erlanger B, Cravero K et al (2017) PIK3CA mutations and TP53 alterations cooperate to increase cancerous phenotypes and tumor heterogeneity. Breast Cancer Res Treat 162(3):451–464CrossRef Croessmann S, Wong HY, Zabransky DJ, Chu D, Rosen DM, Cidado J, Cochran RL, Dalton WB, Erlanger B, Cravero K et al (2017) PIK3CA mutations and TP53 alterations cooperate to increase cancerous phenotypes and tumor heterogeneity. Breast Cancer Res Treat 162(3):451–464CrossRef
23.
Zurück zum Zitat Shin SI, Freedman VH, Risser R, Pollack R (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 72(11):4435–4439CrossRef Shin SI, Freedman VH, Risser R, Pollack R (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 72(11):4435–4439CrossRef
24.
Zurück zum Zitat Zabransky DJ, Yankaskas CL, Cochran RL, Wong HY, Croessmann S, Chu D, Kavuri SM, Red Brewer M, Rosen DM, Dalton WB et al (2015) HER2 missense mutations have distinct effects on oncogenic signaling and migration. Proc Natl Acad Sci USA 112(45):E6205–6214CrossRef Zabransky DJ, Yankaskas CL, Cochran RL, Wong HY, Croessmann S, Chu D, Kavuri SM, Red Brewer M, Rosen DM, Dalton WB et al (2015) HER2 missense mutations have distinct effects on oncogenic signaling and migration. Proc Natl Acad Sci USA 112(45):E6205–6214CrossRef
25.
Zurück zum Zitat Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, Nurcombe V, Le Bourhis X, Hondermarck H (2008) Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res 68(2):346–351CrossRef Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, Nurcombe V, Le Bourhis X, Hondermarck H (2008) Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res 68(2):346–351CrossRef
26.
Zurück zum Zitat Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15(12):731–747CrossRef Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15(12):731–747CrossRef
27.
Zurück zum Zitat Wong HY, Wang GM, Croessmann S, Zabransky DJ, Chu D, Garay JP, Cidado J, Cochran RL, Beaver JA, Aggarwal A et al (2015) TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget 6(42):44927–44940CrossRef Wong HY, Wang GM, Croessmann S, Zabransky DJ, Chu D, Garay JP, Cidado J, Cochran RL, Beaver JA, Aggarwal A et al (2015) TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget 6(42):44927–44940CrossRef
28.
Zurück zum Zitat Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, Theodros D, Haffner MC, Lotan T, Huang J et al (2019) Asporin restricts mesenchymal stromal cell differentiation, alters the tumor microenvironment, and drives metastatic progression. Cancer Res 79(14):3636–3650CrossRef Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, Theodros D, Haffner MC, Lotan T, Huang J et al (2019) Asporin restricts mesenchymal stromal cell differentiation, alters the tumor microenvironment, and drives metastatic progression. Cancer Res 79(14):3636–3650CrossRef
Metadaten
Titel
TrkA overexpression in non-tumorigenic human breast cell lines confers oncogenic and metastatic properties
verfasst von
Kelly Kyker-Snowman
Robert M. Hughes
Christopher L. Yankaskas
Karen Cravero
Swathi Karthikeyan
Berry Button
Ian Waters
David Marc Rosen
Lauren Dennison
Natasha Hunter
Josh Donaldson
Eric S. Christenson
Konstantinos Konstantopoulos
Paula J. Hurley
Sarah Croessmann
Ben Ho Park
Publikationsdatum
10.12.2019
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 3/2020
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-019-05506-3

Weitere Artikel der Ausgabe 3/2020

Breast Cancer Research and Treatment 3/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.