Skip to main content
Erschienen in: Journal of Neuro-Oncology 2/2019

09.12.2018 | Laboratory Investigation

Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments

verfasst von: Camilla B. Mitchell, Bronte Black, Faith Sun, Wojciech Chrzanowski, Justin Cooper-White, Benois Maisonneuve, Brett Stringer, Bryan Day, Maté Biro, Geraldine M. O’Neill

Erschienen in: Journal of Neuro-Oncology | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Introduction

The brain is a very soft tissue. Glioblastoma (GBM) brain tumours are highly infiltrative into the surrounding healthy brain tissue and invasion mechanisms that have been defined using rigid substrates therefore may not apply to GBM dissemination. GBMs characteristically lose expression of the high molecular weight tropomyosins, a class of actin-associating proteins and essential regulators of the actin stress fibres and focal adhesions that underpin cell migration on rigid substrates.

Methods

Here, we investigated how loss of the high molecular weight tropomyosins affects GBM on soft matrices that recapitulate the biomechanical architecture of the brain.

Results

We find that Tpm 2.1 is down-regulated in GBM grown on soft substrates. We demonstrate that Tpm 2.1 depletion by siRNA induces cell spreading and elongation in soft 3D hydrogels, irrespective of matrix composition. Tpm 1.7, a second high molecular weight tropomyosin is also down-regulated when cells are cultured on soft brain-like surfaces and we show that effects of this isoform are matrix dependent, with Tpm 1.7 inducing cell rounding in 3D collagen gels. Finally, we show that the absence of Tpm 2.1 from primary patient-derived GBMs correlates with elongated, mesenchymal invasion.

Conclusions

We propose that Tpm 2.1 down-regulation facilitates GBM colonisation of the soft brain environment. This specialisation of the GBM actin cytoskeleton organisation that is highly suited to the soft brain-like environment may provide novel therapeutic targets for arresting GBM invasion.
Literatur
8.
Zurück zum Zitat De Clerck YA, Shimada H, Gonzalez-Gomez I, Raffel C (1994) Tumoral invasion in the central nervous system. J Neurooncol 18(2):111–121CrossRefPubMed De Clerck YA, Shimada H, Gonzalez-Gomez I, Raffel C (1994) Tumoral invasion in the central nervous system. J Neurooncol 18(2):111–121CrossRefPubMed
9.
Zurück zum Zitat Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39(2):235–250 (discussion 250–232)CrossRefPubMed Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39(2):235–250 (discussion 250–232)CrossRefPubMed
12.
Zurück zum Zitat Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254CrossRefPubMed Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254CrossRefPubMed
13.
Zurück zum Zitat Zaman MH, Trapani LM, Sieminski AL, Mackellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103(29):10889–10894CrossRefPubMedPubMedCentral Zaman MH, Trapani LM, Sieminski AL, Mackellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103(29):10889–10894CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Ruiz-Ontanon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparis-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL (2013) Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue. Stem Cell 31(6):1075–1085. https://doi.org/10.1002/stem.1349 CrossRef Ruiz-Ontanon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparis-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL (2013) Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue. Stem Cell 31(6):1075–1085. https://​doi.​org/​10.​1002/​stem.​1349 CrossRef
20.
Zurück zum Zitat Hughes JA, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42(1):25–35CrossRefPubMed Hughes JA, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42(1):25–35CrossRefPubMed
22.
Zurück zum Zitat Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM (2006) Assembly and mechanosensory function of focal adhesions: experiments and models. Eur J Cell Biol 85(3–4):165–173CrossRefPubMed Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM (2006) Assembly and mechanosensory function of focal adhesions: experiments and models. Eur J Cell Biol 85(3–4):165–173CrossRefPubMed
23.
Zurück zum Zitat Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T, Ghassemi S, Roca-Cusachs P, O’Shaughnessy B, Hone J, Sheetz MP (2016) Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat Cell Biol 18(1):33–42. https://doi.org/10.1038/ncb3277 CrossRefPubMed Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T, Ghassemi S, Roca-Cusachs P, O’Shaughnessy B, Hone J, Sheetz MP (2016) Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat Cell Biol 18(1):33–42. https://​doi.​org/​10.​1038/​ncb3277 CrossRefPubMed
26.
Zurück zum Zitat Day BW, Stringer BW, Wilson J, Jeffree RL, Jamieson PR, Ensbey KS, Bruce ZC, Inglis P, Allan S, Winter C, Tollesson G, Campbell S, Lucas P, Findlay W, Kadrian D, Johnson D, Robertson T, Johns TG, Bartlett PF, Osborne GW, Boyd AW (2013) Glioma surgical aspirate: a viable source of tumor tissue for experimental research. Cancers 5(2):357–371. https://doi.org/10.3390/cancers5020357 CrossRefPubMedPubMedCentral Day BW, Stringer BW, Wilson J, Jeffree RL, Jamieson PR, Ensbey KS, Bruce ZC, Inglis P, Allan S, Winter C, Tollesson G, Campbell S, Lucas P, Findlay W, Kadrian D, Johnson D, Robertson T, Johns TG, Bartlett PF, Osborne GW, Boyd AW (2013) Glioma surgical aspirate: a viable source of tumor tissue for experimental research. Cancers 5(2):357–371. https://​doi.​org/​10.​3390/​cancers5020357 CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yager ML, Hughes JA, Lovicu FJ, Gunning PW, Weinberger RP, O’Neill GM (2003) Functional analysis of the actin-binding protein, tropomyosin 1, in neuroblastoma. Br J Cancer 89(5):860–863CrossRefPubMedPubMedCentral Yager ML, Hughes JA, Lovicu FJ, Gunning PW, Weinberger RP, O’Neill GM (2003) Functional analysis of the actin-binding protein, tropomyosin 1, in neuroblastoma. Br J Cancer 89(5):860–863CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Bradbury PM, Turner K, Mitchell C, Griffin KR, Middlemiss S, Lau L, Dagg R, Taran E, Cooper-White J, Fabry B, O’Neill GM (2017) The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function. J Cell Sci 130(7):1263–1273CrossRefPubMed Bradbury PM, Turner K, Mitchell C, Griffin KR, Middlemiss S, Lau L, Dagg R, Taran E, Cooper-White J, Fabry B, O’Neill GM (2017) The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function. J Cell Sci 130(7):1263–1273CrossRefPubMed
31.
Zurück zum Zitat Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510–523CrossRefPubMed Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510–523CrossRefPubMed
32.
Zurück zum Zitat Lees JG, Bach CTT, Bradbury P, Paul A, Gunning PW, O’Neill GM (2011) The actin-associating protein Tm5NM1 blocks mesenchymal motility without transition to amoeboid motility. Oncogene 30(10):1241–1251CrossRefPubMed Lees JG, Bach CTT, Bradbury P, Paul A, Gunning PW, O’Neill GM (2011) The actin-associating protein Tm5NM1 blocks mesenchymal motility without transition to amoeboid motility. Oncogene 30(10):1241–1251CrossRefPubMed
33.
Zurück zum Zitat Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY,, Friedl P, Br€“cker EB (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277CrossRefPubMedPubMedCentral Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY,, Friedl P, Br€“cker EB (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Gordon VD, Valentine MT, Gardel ML, Andor-Ardo D, Dennison S, Bogdanov AA, Weitz DA, Deisboeck TS (2003) Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Exp Cell Res 289(1):58–66CrossRefPubMed Gordon VD, Valentine MT, Gardel ML, Andor-Ardo D, Dennison S, Bogdanov AA, Weitz DA, Deisboeck TS (2003) Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Exp Cell Res 289(1):58–66CrossRefPubMed
35.
Zurück zum Zitat O’Neill GM (2009) The coordination between actin filaments and adhesion in mesenchymal migration. Cell Adhes Migr 3(4):355–357CrossRef O’Neill GM (2009) The coordination between actin filaments and adhesion in mesenchymal migration. Cell Adhes Migr 3(4):355–357CrossRef
36.
Zurück zum Zitat Bargon SD, Gunning PW, O’Neill GM (2005) The Cas family docking protein, HEF1, promotes the formation of neurite-like membrane extensions. Biochim Biophys Acta 1746(2):143–154CrossRefPubMed Bargon SD, Gunning PW, O’Neill GM (2005) The Cas family docking protein, HEF1, promotes the formation of neurite-like membrane extensions. Biochim Biophys Acta 1746(2):143–154CrossRefPubMed
37.
Zurück zum Zitat Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888CrossRefPubMedPubMedCentral Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, Zeng J, Nascimento PR, Sequeira VB, Butler TL, Allanson M, Fath T, Hill TA, McCluskey A, Schevzov G, Palmer SJ, Hardeman EC, Winlaw D, Reeve VE, Dixon I, Weninger W, Cripe TP, Gunning PW (2013) A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res 73(16):5169–5182. https://doi.org/10.1158/0008-5472.can-12-4501 CrossRefPubMed Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, Zeng J, Nascimento PR, Sequeira VB, Butler TL, Allanson M, Fath T, Hill TA, McCluskey A, Schevzov G, Palmer SJ, Hardeman EC, Winlaw D, Reeve VE, Dixon I, Weninger W, Cripe TP, Gunning PW (2013) A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res 73(16):5169–5182. https://​doi.​org/​10.​1158/​0008-5472.​can-12-4501 CrossRefPubMed
39.
Zurück zum Zitat Currier MA, Stehn JR, Swain A, Chen D, Hook J, Eiffe E, Heaton A, Brown D, Nartker BA, Eaves DW, Kloss N, Treutlein H, Zeng J, Alieva IB, Dugina VB, Hardeman EC, Gunning PW, Cripe TP (2017) Identification of cancer-targeted tropomyosin inhibitors and their synergy with microtubule drugs. Mol Cancer Ther 16(8):1555–1565. https://doi.org/10.1158/1535-7163.mct-16-0873 CrossRefPubMed Currier MA, Stehn JR, Swain A, Chen D, Hook J, Eiffe E, Heaton A, Brown D, Nartker BA, Eaves DW, Kloss N, Treutlein H, Zeng J, Alieva IB, Dugina VB, Hardeman EC, Gunning PW, Cripe TP (2017) Identification of cancer-targeted tropomyosin inhibitors and their synergy with microtubule drugs. Mol Cancer Ther 16(8):1555–1565. https://​doi.​org/​10.​1158/​1535-7163.​mct-16-0873 CrossRefPubMed
Metadaten
Titel
Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments
verfasst von
Camilla B. Mitchell
Bronte Black
Faith Sun
Wojciech Chrzanowski
Justin Cooper-White
Benois Maisonneuve
Brett Stringer
Bryan Day
Maté Biro
Geraldine M. O’Neill
Publikationsdatum
09.12.2018
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 2/2019
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-03049-z

Weitere Artikel der Ausgabe 2/2019

Journal of Neuro-Oncology 2/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.