Skip to main content
Erschienen in: Inflammation 1/2017

02.11.2016 | ORIGINAL ARTICLE

Troxerutin Preconditioning and Ischemic Postconditioning Modulate Inflammatory Response after Myocardial Ischemia/Reperfusion Injury in Rat Model

verfasst von: Reza Badalzadeh, Behzad Baradaran, Alireza Alihemmati, Bahman Yousefi, Azam Abbaszadeh

Erschienen in: Inflammation | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Protective effects of ischemic postconditioning in myocardial ischemia/reperfusion (I/R) injury have been ever demonstrated, but the exact mechanisms remain unclear. Because of their multiplex activities, using natural pharmaceuticals seems to be clinically interesting. The aim of present study was to investigate the effects of troxerutin preconditioning and ischemic postconditioning on inflammatory responses after myocardial I/R injury in a rat model. Twenty-four Wistar rats were divided into four groups as the control, troxerutin receiving (TXR), postconditioning receiving (PostC), and combined therapy (TXR + PostC). Rats’ isolated hearts underwent 30-min LAD regional ischemia followed by 45-min reperfusion. Troxerutin was orally administered for a month before I/R. Ischemic PostC was applied by alternative three cycles of 30-s R/I at the onset of reperfusion. The coronary effluent and ischemic left ventricular samples were used to determine the activities of creatine kinase (CK), intercellular adhesion molecule-1 (ICAM-1), interlukin-1beta (IL-1β), tumor-necrosis factor (TNF-α), and also histopathological studies. Pretreatment of rats with troxerutin significantly reduced myocardial inflammatory cytokines TNF-α and IL-1β levels and ICAM-1 activity after I/R insult compared to those of control I/R hearts (P < 0.05). Application of PostC showed similar impacts on those parameters. In fact, anti-inflammatory mechanisms of both treatments were associated with their protective effects against myocardial damages causing from I/R injury. Pretreatment with troxerutin as well as postconditioning can induce cardioprotection through prevention of the cell-cell interaction and release of inflammatory mediators, minimizing I/R pathological changes in myocardial cells. These two treatments may share same mechanisms in their actions since they showed no significant additive effects.
Literatur
1.
Zurück zum Zitat Hoffman, J.W., T.B. Gilbert, R.S. Poston, and E.P. Silldorff. 2004. Myocardial reperfusion injury: etiology, mechanisms, and therapies. The Journal of Extra-Corporeal Technology 36(4): 391–411.PubMed Hoffman, J.W., T.B. Gilbert, R.S. Poston, and E.P. Silldorff. 2004. Myocardial reperfusion injury: etiology, mechanisms, and therapies. The Journal of Extra-Corporeal Technology 36(4): 391–411.PubMed
2.
Zurück zum Zitat Balakumar, P., A. Rohilla, and M. Singh. 2008. Pre-conditioning and postconditioning to limit ischemia–reperfusion-induced myocardial injury: what could be the next footstep? Pharmacological Research 57(6): 403–412.CrossRefPubMed Balakumar, P., A. Rohilla, and M. Singh. 2008. Pre-conditioning and postconditioning to limit ischemia–reperfusion-induced myocardial injury: what could be the next footstep? Pharmacological Research 57(6): 403–412.CrossRefPubMed
3.
Zurück zum Zitat Marzilli, M., and A. Huqi. 2010. Cardioprotective therapy in reperfusion injury: lessons from the European Myocardial Infarction Project-Free Radicals (EMIP-FR). Heart and Metabolism 46(1): 35–37. Marzilli, M., and A. Huqi. 2010. Cardioprotective therapy in reperfusion injury: lessons from the European Myocardial Infarction Project-Free Radicals (EMIP-FR). Heart and Metabolism 46(1): 35–37.
4.
Zurück zum Zitat Perrelli, M.G., P. Pagliaro, and C. Penna. 2011. Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World Journal of Cardiology 3(6): 186–200.CrossRefPubMedPubMedCentral Perrelli, M.G., P. Pagliaro, and C. Penna. 2011. Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World Journal of Cardiology 3(6): 186–200.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Yellon, D.M., and D.J. Hausenloy. 2007. Myocardial reperfusion injury. New England Journal of Medicine 357(1): 1121–1135.CrossRefPubMed Yellon, D.M., and D.J. Hausenloy. 2007. Myocardial reperfusion injury. New England Journal of Medicine 357(1): 1121–1135.CrossRefPubMed
6.
Zurück zum Zitat Badalzadeh, R., B. Mokhtari, and R. Yavari. 2015. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. Journal of Physiological Sciences 65(3): 201–215.CrossRefPubMed Badalzadeh, R., B. Mokhtari, and R. Yavari. 2015. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. Journal of Physiological Sciences 65(3): 201–215.CrossRefPubMed
7.
Zurück zum Zitat Nikolaos, G., C. Frangogiannis, W. Smith, and M.L. Entman. 2002. The inflammatory response in myocardial infarction. Cardiovascular Research 53(1): 31–47.CrossRef Nikolaos, G., C. Frangogiannis, W. Smith, and M.L. Entman. 2002. The inflammatory response in myocardial infarction. Cardiovascular Research 53(1): 31–47.CrossRef
8.
Zurück zum Zitat Ebrahimi, H., R. Badalzadeh, M. Mohammadi, and B. Yousefi. 2014. Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. Journal of Physiology and Biochemistry 64: 393–400. Ebrahimi, H., R. Badalzadeh, M. Mohammadi, and B. Yousefi. 2014. Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. Journal of Physiology and Biochemistry 64: 393–400.
9.
Zurück zum Zitat Jordan, J.E., Z.Q. Zhao, and J.V. Johansen. 1999. The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovascular Research 43(4): 860–878.CrossRefPubMed Jordan, J.E., Z.Q. Zhao, and J.V. Johansen. 1999. The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovascular Research 43(4): 860–878.CrossRefPubMed
10.
Zurück zum Zitat Jiang, W.L., F.H. Fu, B.M. Xu, J.W. Tian, H.B. Zhu, and J. Hou. 2010. Cardioprotection with forsythoside B in rat myocardial ischemia-reperfusion injury: Relation to inflammation response. Phytomedicine 17: 635–639.CrossRefPubMed Jiang, W.L., F.H. Fu, B.M. Xu, J.W. Tian, H.B. Zhu, and J. Hou. 2010. Cardioprotection with forsythoside B in rat myocardial ischemia-reperfusion injury: Relation to inflammation response. Phytomedicine 17: 635–639.CrossRefPubMed
11.
Zurück zum Zitat Ren, J.Y., J.X. Song, M.Y. Lu, and H. Chen. 2011. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regulatory Peptides 169(1): 49–57.CrossRefPubMed Ren, J.Y., J.X. Song, M.Y. Lu, and H. Chen. 2011. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regulatory Peptides 169(1): 49–57.CrossRefPubMed
12.
Zurück zum Zitat Ferdinandy, P., D.J. Hausenloy, G. Heusch, G.F. Baxter, and R. Schulz. 2014. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological Reviews 66(4): 1142–1174.CrossRefPubMed Ferdinandy, P., D.J. Hausenloy, G. Heusch, G.F. Baxter, and R. Schulz. 2014. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological Reviews 66(4): 1142–1174.CrossRefPubMed
13.
Zurück zum Zitat Badalzadeh, R., M. Mohammadi, M. Najafi, N. Ahmadiasl, S. Frajnia, and H. Ebrahimi. 2011. The additive effects of ischemic postconditioning and cyclosporine-A on nitric oxide activity and functions of diabetic myocardium injured by ischemia/reperfusion. Journal of Cardiovascular Pharmacology and Therapeutics 17(2): 181–189.CrossRefPubMed Badalzadeh, R., M. Mohammadi, M. Najafi, N. Ahmadiasl, S. Frajnia, and H. Ebrahimi. 2011. The additive effects of ischemic postconditioning and cyclosporine-A on nitric oxide activity and functions of diabetic myocardium injured by ischemia/reperfusion. Journal of Cardiovascular Pharmacology and Therapeutics 17(2): 181–189.CrossRefPubMed
14.
Zurück zum Zitat Zhao, Z.Q., and J.V. Johansen. 2006. Postconditioning: Reduction of reperfusion-induced injury. Cardiovascular Research 70(2): 200–211.CrossRefPubMed Zhao, Z.Q., and J.V. Johansen. 2006. Postconditioning: Reduction of reperfusion-induced injury. Cardiovascular Research 70(2): 200–211.CrossRefPubMed
15.
Zurück zum Zitat Siegers, C.P., S.S. Ali, and M. Tegtmeier. 2008. Aescin and troxerutin as a successful combination for the treatment of inner ear perfusion disturbances. Phytomedicine 15(3): 160–163.CrossRefPubMed Siegers, C.P., S.S. Ali, and M. Tegtmeier. 2008. Aescin and troxerutin as a successful combination for the treatment of inner ear perfusion disturbances. Phytomedicine 15(3): 160–163.CrossRefPubMed
16.
Zurück zum Zitat Vinothkumara, R., R. Vinoth Kumar, V. Karthikkumar, P. Viswanathan, J. Kabalimoorthy, and N. Nalini. 2014. Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Environmental Toxicology and Pharmacology 37: 174–184.CrossRef Vinothkumara, R., R. Vinoth Kumar, V. Karthikkumar, P. Viswanathan, J. Kabalimoorthy, and N. Nalini. 2014. Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Environmental Toxicology and Pharmacology 37: 174–184.CrossRef
17.
Zurück zum Zitat Liu, C.M., J.Q. Ma, and Y. Lou. 2010. Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage. Food and Chemical Toxicology 48(10): 2809–2817.CrossRefPubMed Liu, C.M., J.Q. Ma, and Y. Lou. 2010. Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage. Food and Chemical Toxicology 48(10): 2809–2817.CrossRefPubMed
18.
Zurück zum Zitat Zhang, Z.F., S.H. Fan, Y.L. Zheng, J. Lu, D.M. Wu, Q. Shan, and B. Hu. 2014. Troxerutin improves hepatic lipid homeostasis by restoring NAD+-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochemical Pharmacology 91(1): 74–86.CrossRefPubMed Zhang, Z.F., S.H. Fan, Y.L. Zheng, J. Lu, D.M. Wu, Q. Shan, and B. Hu. 2014. Troxerutin improves hepatic lipid homeostasis by restoring NAD+-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochemical Pharmacology 91(1): 74–86.CrossRefPubMed
19.
Zurück zum Zitat Lu, J., D. Wu, B. Hu, W. Cheng, Y. Zheng, Z.F. Zhang, Q. Ye, S.H. Fan, Q. Shan, and Y.J. Wang. 2010. Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiology of Learning and Memory 93(2): 157–164.CrossRefPubMed Lu, J., D. Wu, B. Hu, W. Cheng, Y. Zheng, Z.F. Zhang, Q. Ye, S.H. Fan, Q. Shan, and Y.J. Wang. 2010. Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiology of Learning and Memory 93(2): 157–164.CrossRefPubMed
20.
Zurück zum Zitat Lu, J., D.M. Wu, Z.H. Zheng, Y.L. Zheng, B. Hu, and Z.F. Zhang. 2011. Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain 134: 783–797.CrossRefPubMed Lu, J., D.M. Wu, Z.H. Zheng, Y.L. Zheng, B. Hu, and Z.F. Zhang. 2011. Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain 134: 783–797.CrossRefPubMed
21.
Zurück zum Zitat Badalzadeh, R., N. Layeghzadeh, A. Alihemmati, and M. Mohammadi. 2015. Beneficial effect of troxerutin on diabetes-induced vascular damages in rat aorta: histopathological alterations and antioxidation mechanism. International Journal of Endocrinology and Metabolism 13(2): e25969.CrossRefPubMedPubMedCentral Badalzadeh, R., N. Layeghzadeh, A. Alihemmati, and M. Mohammadi. 2015. Beneficial effect of troxerutin on diabetes-induced vascular damages in rat aorta: histopathological alterations and antioxidation mechanism. International Journal of Endocrinology and Metabolism 13(2): e25969.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Mokhtari, B., R. Badalzadeh, A. Alihemmati, and M. Mohammadi. 2015. Phosphorylation of GSK-3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium. European Journal of Pharmacology 765: 316–321.CrossRefPubMed Mokhtari, B., R. Badalzadeh, A. Alihemmati, and M. Mohammadi. 2015. Phosphorylation of GSK-3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium. European Journal of Pharmacology 765: 316–321.CrossRefPubMed
23.
Zurück zum Zitat Badalzadeh, R., B. Yousefi, A. Tajaddini, and N. Ahmadian. 2014. Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial K-ATP channels in a rat model. Perfusion 30(7): 565–571.CrossRefPubMed Badalzadeh, R., B. Yousefi, A. Tajaddini, and N. Ahmadian. 2014. Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial K-ATP channels in a rat model. Perfusion 30(7): 565–571.CrossRefPubMed
24.
Zurück zum Zitat Ghyasi, R., G. Sepehri, M. Mohammadi, R. Badalzadeh, and B. Rashidi. 2011. The effect of mebudipine on cardiac function and activity of the myocardial nitric oxide system in ischaemia–reperfusion injury in rats. Cardiovascular Journal of Africa 22(6): 319–323.CrossRefPubMedPubMedCentral Ghyasi, R., G. Sepehri, M. Mohammadi, R. Badalzadeh, and B. Rashidi. 2011. The effect of mebudipine on cardiac function and activity of the myocardial nitric oxide system in ischaemia–reperfusion injury in rats. Cardiovascular Journal of Africa 22(6): 319–323.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMed Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMed
26.
Zurück zum Zitat Mahmut, A., E.B. Mehmet, A. Hulya, E. Fazli, and K.E. Mustafa. 2003. Protective effects of melatonin against myocardial injury induced by isoproterenol in rats. Journal of Pineal Research 35: 75–79.CrossRef Mahmut, A., E.B. Mehmet, A. Hulya, E. Fazli, and K.E. Mustafa. 2003. Protective effects of melatonin against myocardial injury induced by isoproterenol in rats. Journal of Pineal Research 35: 75–79.CrossRef
27.
Zurück zum Zitat Saini, H.K., Y.-J. Xu, M. Zhang, P.P. Liu, L.A. Kirshenbaum, and N.S. Dhalla. 2005. Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Experimental and Clinical Cardiology 10(4): 213–222.PubMedPubMedCentral Saini, H.K., Y.-J. Xu, M. Zhang, P.P. Liu, L.A. Kirshenbaum, and N.S. Dhalla. 2005. Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Experimental and Clinical Cardiology 10(4): 213–222.PubMedPubMedCentral
28.
Zurück zum Zitat Burne, M.J., A. Elghandour, M. Haq, S.R. Saba, J. Norman, T. Condon, F. Bennett, and H. Rabb. 2001. IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury. Journal of Leukocyte Biology 70(2): 192–198.PubMed Burne, M.J., A. Elghandour, M. Haq, S.R. Saba, J. Norman, T. Condon, F. Bennett, and H. Rabb. 2001. IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury. Journal of Leukocyte Biology 70(2): 192–198.PubMed
29.
Zurück zum Zitat Badalzadeh, R., M. Mohammadi, B. Yousefi, S. Farajnia, M. Najafi, and S. Mohammadi. 2015. Involvement of glycogen synthase kinase-3β and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Advanced Pharmaceutical Bulletin 5(3): 321–327.CrossRefPubMedPubMedCentral Badalzadeh, R., M. Mohammadi, B. Yousefi, S. Farajnia, M. Najafi, and S. Mohammadi. 2015. Involvement of glycogen synthase kinase-3β and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Advanced Pharmaceutical Bulletin 5(3): 321–327.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Badalzadeh, R., R. Yavari, and D. Chalabiani. 2015. Mitochondrial ATP-sensitive K+ channels mediate the antioxidative influence of diosgenin on myocardial reperfusion injury in rat hearts. General Physiology and Biophysics 34(3): 323–329.CrossRefPubMed Badalzadeh, R., R. Yavari, and D. Chalabiani. 2015. Mitochondrial ATP-sensitive K+ channels mediate the antioxidative influence of diosgenin on myocardial reperfusion injury in rat hearts. General Physiology and Biophysics 34(3): 323–329.CrossRefPubMed
31.
Zurück zum Zitat Jun, L., W. Dong-Mei, Z. Yuan-Lin, H. Bin, C. Wei, Z. Zi-Feng, and L. ad Meng-qiu. 2013. Troxerutin counteracts domoic acid- induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein b-mediated inflammatory response and oxidative stress. The Journal of Immunology 190: 3466–3479.CrossRef Jun, L., W. Dong-Mei, Z. Yuan-Lin, H. Bin, C. Wei, Z. Zi-Feng, and L. ad Meng-qiu. 2013. Troxerutin counteracts domoic acid- induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein b-mediated inflammatory response and oxidative stress. The Journal of Immunology 190: 3466–3479.CrossRef
32.
Zurück zum Zitat Zhang, Z.F., Y.Q. Zhang, S.H. Fan, J. Zhuang, Y.L. Zheng, J. Lu, D.M. Wu, Q. Shan, and B. Hu. 2015. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion. Journal of Hazardous Materials 283: 98–109.CrossRefPubMed Zhang, Z.F., Y.Q. Zhang, S.H. Fan, J. Zhuang, Y.L. Zheng, J. Lu, D.M. Wu, Q. Shan, and B. Hu. 2015. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion. Journal of Hazardous Materials 283: 98–109.CrossRefPubMed
Metadaten
Titel
Troxerutin Preconditioning and Ischemic Postconditioning Modulate Inflammatory Response after Myocardial Ischemia/Reperfusion Injury in Rat Model
verfasst von
Reza Badalzadeh
Behzad Baradaran
Alireza Alihemmati
Bahman Yousefi
Azam Abbaszadeh
Publikationsdatum
02.11.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0462-8

Weitere Artikel der Ausgabe 1/2017

Inflammation 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.