Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2019

Open Access 01.12.2019 | Research

Tumor budding for predicting prognosis of resected rectum cancer after neoadjuvant treatment

verfasst von: Atakan Demir, Ozkan Alan, Ertugrul Oruc

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2019

Abstract

Background

Rectum cancer is a type of colorectal cancer. Its etiology and etiopathogenesis are similar to other colon diseases. We aimed to evaluate the tumor budding for predicting prognosis of resected rectum cancer patients.

Methods

We retrospectively collected the data of 75 operated rectum adenocarcinoma patients who were treated neoadjuvant chemoradiotherapy between 2013 and 2018 in Umraniye Research and Training Hospital and Acıbadem University Medical Oncology Outpatient Clinic. Tumor budding was investigated as a prognostic factor for disease-free survival.

Results

This study included 75 rectum cancer patients and 51 were male (68%). Median age was 56 (range 19 to 77 years). There were 29 (39%) and 46 (61%) patients in tumor budding low-intermediate and high groups respectively. In multivariate analysis, tumor budding was found to be an independent prognostic factor for disease-free survival (p = 0.00).

Conclusions

According to our study, having high tumor budding suggests a high likelihood of relapse. Therefore, we might need additional follow-up protocol in these patients.

Background

Colorectal cancer (CRC) is one of the most common cancers worldwide. It is the third most frequently diagnosed cancer in men and second in women. Several trials have shown the relationship between tumor budding and disease prognosis in colorectal cancer. The aim of our study was to investigate the prognostic value of tumor budding in patients with rectum cancer who underwent radical curative surgery after neoadjuvant chemoradiotherapy.

Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide. It is the third most frequently diagnosed cancer in men and second in women [1]. Although CRC mortality has been rapidly declining since 1990, nowadays, its rate is approximately 1.7 to 1.9% per year [2]. Neoadjuvant chemoradiotherapy is the standard therapeutic approach in rectal cancer [3, 4]. There is no ideal marker for predicting prognosis after chemoradiotherapy. Factors affecting prognosis in colorectal cancers can be summarized as individual (age, sex, family history), clinical, biochemical, pathologic prognostic factors, tumor progression at the time of diagnosis, and adjunctive therapy (surgery, adjuvant and/or neoadjuvant treatment) [5, 6]. We know that about 25% of patients with early-stage colorectal cancer develop distant metastases [7]. The TNM staging system may not be a good candidate for a prognostic parameter in colorectal cancer because some patients in the same pathological stage may present various oncological outcomes such as early recurrence or mortality [8]. Several other novel histopathological parameters are also being explored as potential prognostic biomarkers for colorectal cancer, such as tumor budding (TB), poorly differentiated clusters (PDCs), extramural vascular (vein) invasion (EMVI), perineural invasion (PNI), tumor deposits (TDs), mucin pools (MPs), and extranodal extension of nodal metastasis (ENE), but some of these are yet to be fully investigated in larger phase trials for their association with prognosis of colorectal cancer. For example, ENE has been reported to be associated with a significantly increased risk of recurrence and mortality in a meta-analysis [9, 10].
Tumor budding was defined as the presence of isolated single cells or small cell clusters of less than five cells in the literature. Tumor buddings are disturbed within the stroma at the tumor margin. They tend to lose adhesion and dissociate, and this situation causes the tumor to be aggressive. There is a close relationship between tumor budding and the process of epithelial-mesenchymal transition. In this transitional process, epithelial cells lose intracellular and cell-matrix contacts mediated by E-cadherin, resulting in invasion and ultimately metastatic cancer spread [1113]. Several trials have shown the relationship between tumor budding and disease prognosis in colorectal cancer. Especially, tumor budding might be closely related to poor survival and high risk of recurrence [14, 15].
The aim of our study was to investigate the prognostic value of tumor budding in patients with rectum cancer who underwent radical curative surgery after neoadjuvant chemoradiotherapy.

Method

Patients

We retrospectively collected the data of 80 operated rectum adenocarcinoma patients who were treated with neoadjuvant chemoradiotherapy between 2013 and 2018 in Umraniye Research and Training Hospital and Acıbadem University Medical Oncology Outpatient Clinic. Inclusion criteria were histological diagnosis of non-metastatic rectal adenocarcinoma, treated with neoadjuvant chemoradiotherapy, and having complete medical records. All patients were older than 18 years old. Five patients with a complete response were excluded from the study. A total of 75 patients were evaluated.
All patients received neoadjuvant chemoradiotherapy. Radiotherapy was given for a total of 45 Gy/28 days. Capecitabine 825 mg/m2/day or 5-fluorouracil 200 mg/m2 D1-5 weekly was administered. All of the patients were operated on an average of 8–12 weeks.
We defined the follow-up duration as the time from the start of neoadjuvant chemoradiotherapy treatment until death of any reason/the last visit. Disease-free survival was defined as the time from date of surgery until radiological progression or death/the last visit. The data cutoff date was accepted on September 2018.

Pathological evaluation

Seventy-five patients’ pathology slides from the adenocarcinoma area are kept in department storage and were evaluated for tumor budding in a light microscope. All rectum specimens were sliced transversely at 3–4-mm intervals, and at least eight tumor samples were taken in every specimen. However, patients’ paraffin-embedded tissue blocks were not cut into any section for hematoxylin and eosin and/or other histochemical or immunohistochemical staining.
A three-tier system, which is recommended by the ITBCC (The International Tumor Budding Consensus Conference) 2016 group, was used [16]. The ITBCC group also recommends that, in addition to the Bd category, the absolute bud count should be provided (e.g., Bd 3 (count 17)). We grouped the patients to be low-intermediate and high due to the small number of patients.
The three-tier system is categorized as:
  • 0–4 buds—low budding (Bd 1)
  • 5–9 buds—intermediate budding (Bd 2)
  • 10 or more buds—high budding (Bd 3)
Tumor budding was assessed in one hotspot (in a field measuring 0.785 mm2) at the invasive front. Firstly, we selected the H&E slide with the greatest degree of budding at the invasive front and then scanned ten individual fields at medium power (10× objective) to identify the hotspot area. Ultimately, we counted tumor buds in the selected hotspot area (20× objective) and divided the bud count by the normalization factor to determine the tumor bud count per 0.7 85mm2 as defined by the ITBCC group.
The tumor grading was categorized into well differentiated (> 95% gland formation), moderately differentiated (50–95% gland formation), and poorly differentiated (< 50% gland formation). Patients were grouped into four categories according to the tumor-node-metastasis (TNM) staging, based on the American Joint Cancer Committee (AJCC) cancer staging manual 7th edition.
Tumor regression was assessed by the four-tier AJCC/CAP tumor regression grading system. It is categorized as [17]:
  • No viable cancer cells—0 (complete response)
  • Single cells or small groups of cancer cells—1 (moderate response)
  • Residual cancer outgrown by fibrosis—2 (minimal response)
  • Minimal or no tumor kill, extensive residual cancer—3 (poor response)

Statistical analysis

Disease-free survival (DFS) was calculated using the Kaplan-Meier method from the operated date. Prognostic factors were compared using the log-rank test in univariate analysis. Hazard ratios (HR) with 95% confidence intervals (CI) were also calculated. All p values were two-sided in the tests, and p values of 0.05 were considered statistically significant. Multivariate analysis was carried out using the Cox proportional hazards model to assess the effect of prognostic factors on survival.

Results

Patients demographic and clinical characteristics outcomes

Data from a total of 75 operated rectum cancer patients treated with systemic treatment and available medical records were analyzed retrospectively. Fifty-one of the seventy-five patients were male (68%) and the median age was 56 (range 19–77 years). Pretreatment demographic and clinical characteristics of patients based on tumor budding groups for the entire study cohort were outlined in Table 1. There were 29 (39%) and 46 (61%) patients in tumor budding low-intermediate and high groups respectively. Baseline demographics and disease characteristics were similar between the two groups, with the exception of microsatellite instability. Tumor budding high group had more microsatellite instability patients compared to the low-intermediate group (p = 0.02).
Table 1
Demographic and clinicopathologic findings
 
All patients, n = 75
Tumor budding
p
Low-intermediate, n = 29
High, n = 46
Gender, N (%)
Female
24 (32)
9 (31)
15 (32)
0.8
Male
51 (68)
20 (69)
31 (68)
Tumor localization, N (%)
Proximal
13 (17)
7 (24)
6 (13)
0.4
Middle
32 (43)
11 (38)
21 (46)
Distal
30 (40)
11 (38)
19 (41)
Pathology, N (%)
Adenocarcinoma
70 (94)
26 (90)
44 (96)
0.3
Mucinous adenocarcinoma
5 (6)
3 (10)
2 (4)
Neoadjuvant chemotherapy, N (%)
5-Flouracil
30 (40)
11 (38)
19 (41)
0.5
Capecitabine
45 (60)
18 (62)
27 (69)
Surgery, N (%)
Anterior
4 (5)
2 (6)
2 (4)
0.5
Low anterior
40 (55)
17 (63)
23 (52)
Very low anterior
7 (10)
1 (3)
6 (13)
Miles
23 (30)
9 (28)
14 (29)
Total colectomy
1 (1)
0
1 (2)
Total lymph node excision (median) (min–max)
18 (5–32)
19 (5–27)
17 (5–32)
0.3
Pathology stage, N (%)
1
14 (19)
7 (24)
7 (15)
0.5
2
25 (33)
10 (34)
15 (33)
3
36 (48)
12 (42)
24 (52)
Tumor regression
Moderate response
14 (19)
7 (24)
7 (15)
0.4
Minimal response
23 (30)
10 (34)
13 (28)
Poor response
38 (51)
12 (42)
26 (57)
Grade, N (%)
Well
45 (60)
18 (62)
27 (59)
0.9
İntermediate
10 (13)
3 (10)
7 (15)
Poorly
20 (27)
8 (28)
12 (26)
Microsatellite instability status, N (%)
Low
48 (64)
23 (79)
25 (54)
0.02
High
27 (36)
6 (21)
21 (46)

Survival outcomes

Adjuvant treatment, relapse, mutational status characteristics, and overall clinical outcomes are shown in Table 2. Median follow-up duration was 35 months (range 9–65 months). During the follow-up period, 41(55%) of the 75 patients relapsed. For the whole cohort, median disease-free survival (DFS) was 30 months (95% CI 26.8–33.1) (Fig. 1a). According to the tumor budding low-intermediate and high groups, median DFS was 43 months in the tumor budding low-intermediate group (95% CI 25.7–60.2) and 28 months in the high group (95% CI 25.2–30.7) (p = 0.003) (Fig. 1b).
Table 2
Treatment characteristics and clinical outcomes
Characteristics
All patients, n = 75
Tumor budding
p
Low-intermediate, n = 29
High, n = 46
Adjuvant chemotherapy, N (%)
FUFA
11 (14)
2 (6)
9 (19)
0.2
Capecitabine
8 (10)
5 (17)
3 (6)
Folfox
23 (30)
8 (28)
15 (33)
Xelox
36 (46)
14 (49)
19 (42)
Relapse, N (%)
Yes
41 (55)
8 (28)
33 (72)
0.00
No
34 (45)
21 (72)
13 (28)
Relapse pattern, N (%)
Local
17 (41)
4 (50)
13 (39)
0.9
Visceral
24 (59)
4 (50)
20 (61)
KRAS status, N = 41 (%)
Wild
9 (22)
3 (38)
6 (18)
0.3
Mutant
32 (78)
5 (62)
27 (82)
NRAS status, N = 9 (%)
Wild
8 (89)
2 (67)
6 (100)
0.6
Mutant
1 (11)
1 (33)
0 (0)
BRAF status, N = 9(%)
Wild
8 (89)
2 (67)
6 (100)
0.6
Mutant
1 (11)
1 (33)
0 (0)
Disease-free survival
Median (months)
30
43
28
0.01
1 year (%)
89
93
86
3 years (%)
35
61
24

Univariate and multivariate outcomes

Univariate and multivariate analysis results are summarized in Table 3. Grade (poorly vs well-intermediate), stage groups (0–2 vs 3), lymph nodes (N0 vs N1–2), microsatellite instability (low vs high), and tumor budding (low-intermediate vs high) had a significant statistical association with DFS in univariate analysis. In multivariate analysis, grade and tumor budding status were found to be independent prognostic factors for DFS (p = 0.00).
Table 3
Cox-regression model of disease-free survival (DFS) in rectum cancer
 
n
Median DFS (months)
Univariate analysis
Multivariate analysis
HR
95% CI
p
HR
95% CI
p
Lower
Upper
Lower
Upper
Gender
Female (n = 24)
28
0.69
0.35
1.36
0.29
    
Male (n = 51)
31
Grade
Poorly (n = 20)
22
2.74
1.45
5.19
0.00
3,37
1,75
6.49
0.00
Well-intermediate (n = 55)
32
Stage
Stage 1–2 (n = 39)
38
2.54
1.31
4.90
0.00
    
Stage 3 (n = 36)
28
Lymph nodes
N 0 (n = 39)
42
2.37
1.22
4.59
0.01
    
N 1–2 (n = 36)
28
Kras status, n = 41
Wild (n = 9)
23
1.42
0.71
3.72
0.2
    
Mutant (n = 32)
24
Microsatellite instability status
Low (n = 48)
38
2.44
1.31
4.55
0.00
    
High (n = 27)
26
Tumor budding
Low-intermediate (n = 29)
43
2.57
1.18
5.57
0.01
3.14
1.42
6.94
0.00
High (n = 46)
28

Discussion

Our study is a report on high tumor budding status relationship of survival. We demonstrated that high tumor budding was correlated with poor disease-free survival and found independent prognostic factor by multivariate analysis.
In the recent years, several trials showed that tumor budding associated with different clinical and histological parameters such as tumor site, tumor size, histologic type, grade, nodal involvement, AJCC stage, distant metastasis, and local recurrence. Ohtsuki et al. evaluated 149 patients with colorectal cancer and reported that tumor budding significantly associated with wall penetration, the incidence of lymph node metastasis, and cancer recurrence [18]. Another study reported that high budding associated with an infiltrative growth pattern and lymphovascular invasion. Five-year cancer-specific survival was significantly poorer in high compared with low budding groups [19]. Sevda et al. showed a statistically significant relationship between high-grade tumor budding density and histological grade, lymph node involvement, and vascular invasion in their research [20]. Conservely, in our study, we did not find an association between tumor budding, histological grade, and lymph node involvement. We evaluated only patients with treated neoadjuvant chemoradiotherapy which situation may have affected our assessment of tumor grade and lymph node involvement.
There are several studies in the literature investigating the relationship between tumor budding and disease-free survival. In a study of 138 patients diagnosed with stage 2 colon cancer, Tanaka et al. reported that the cumulative disease-specific survival rates at 5 years for patients with tumor budding low and high were 98 and 74%, respectively [21]. As mentioned above, Wang et al. also showed that the 5-year cancer-specific survival was significantly poorer in high compared with low budding groups [19]. Petrelli et al., in their meta-analysis, showed that tumor budding was a significant histologic marker in the prognosis of stage 2 colorectal cancer and high-grade tumor budding in these patients is related to a 25% increase at the risk of death in 5 years. Researchers suggested that this may be a useful prognostic factor when deciding the adjuvant treatment in these patients groups [22]. Another systematic review and meta-analysis conducted in 2016 have confirmed the impact of tumor budding in colorectal cancer, and it can be a predictive marker of recurrence and cancer-related death at 5 years [23]. Also, Cappellesso et al., in their meta-analysis which included 41 studies involving a total of 10,137 patients, demonstrated the prognostic value of tumor budding in pT1 colorectal cancer patients. Nodal metastasis was 28.5% in tumor budding positive and 7.2% in negative patients. Researchers revealed that tumor budding positivity increased the risk of nodal metastasis by 6.44 (OR value of 6.44 (95% CI 5.26–7.87; p < 0.0001; I2 = 30%; 41 studies) and concluded it was an independent histologic prognostic biomarker in pT1 colorectal cancer [24].
Jager et al. investigated the prognostic value of tumor budding for neoadjuvant treatment response in a cohort of 128 rectum cancer patients. Positive tumor budding was associated with significantly reduced T-level downstaging, tumor regression, and poor 5-year relapse-free survival. Besides, a multivariate analysis confirmed a positive tumor budding after neoadjuvant chemoradiotherapy as a negative predictive histologic biomarker for relapse-free survival [25]. In another study conducted in 2012 in which the same group of patients was included, tumor budding was found to be an independent prognostic factor in terms of disease-free survival [26]. Tumor regression especially pathological complete response following neoadjuvant treatment is related to long-term survival with low rates of local recurrence and distant metastasis [27]. Therefore, a standardized pathological evaluation after chemoradiotherapy in rectal cancer is recommended. Tumor regression grade (TRG) has been defined as a useful method of scoring tumor response [28, 29]. Fokas et al. reported that higher TRG after neoadjuvant chemoradiotherapy predicted a favorable long-term outcome [30]. In our study, the relationship between tumor budding and disease-free survival is similar to the literature. We found a median DFS of 43 months in tumor budding low-intermediate groups and 28 months in high groups. One and three-year disease-free survival rates were higher in the tumor budding low-intermediate group compared to the high group. High tumor budding in multivariate analysis was found as an independent prognostic factor for disease-free survival. On the other hand, we did not find any significant association with tumor response, lymph node involvement, and grade between two groups. Unlike Jager et al., this situation may be related to the different groupings according to tumor budding in our study. In conclusion, further phase 3 trials are needed to validate TRG and tumor budding (or related with together use) as a surrogate marker for survival in rectum cancer patients after neoadjuvant treatment. The current literature which is investigating the prognostic role of tumor budding in patients with rectum cancer who underwent neoadjuvant chemoradiotherapy was outlined in Table 4.
Table 4
Review of current literature investigating tumor budding in a rectum cancer patient who was treated with neoadjuvant chemoradiotherapy
 
Due et al. [26].
Jager et al. [25].
Our study
Design
Retrospective
Retrospective
Retrospective
Follow-up period
2001–2005
2003–2012
2013–2018
Patients (n)
96
128
75
Neoadjuvant protocols
Radiotherapy
3000 cGy in 10 fractions in 2 weeks
45–50 Gy
5–6 weeks
45 Gy
4 weeks
Concurrent chemotherapy
Absent
5-Flouracil, capecitabine, oxaliplatin
5- Flouracil, capecitabine,
Interval to surgery (weeks)
2–3
3–9
8–12
Postoperative treatment (n)
All patients
58 patients
All patients
Median follow-up (months)
70.8
84
35
Tumor budding
0–9 buds: low grade
10 or more buds: high grade
0 buds: none
1 bud: mild
2–4 buds: moderate
5 or more buds: severe
0–4 buds: low budding
5–9 buds: intermediate budding
10 or more buds: high budding
Association with
Disease-free survival
Relapse-free survival, distant and overall recurrence
Disease-free survival
Result
Low vs high
None-mild vs moderate-severe
Low-intermediate vs high
5-year DFS, 87.5% vs 55.6%
5-year RFS, 90% vs %71%
3-year DFS, 61% vs 24%
Tumor budding has also evaluated in other gastrointestinal cancers such as squamous esophageal cancer, gastric adenocarcinoma, and pancreatic cancer patients [3133]. High tumor budding in the three cancers has also shown to be associated with poor prognosis. Additionally, several non-gastrointestinal cancers such as lung cancer, head and neck carcinomas, and breast cancer have shown that tumor budding was a prognostic factor [3436].

Conclusion

We had some limitations in our study. Firstly, the relatively low number of patients may cause selection bias. Secondly, we also had to divide the patients into two groups. Therefore, we could not evaluate the relationship between the low and intermediate budding group clearly. Patients with high tumor budding have shorter disease-free survival than patients with low-intermediate tumor budding. In our patient population, having high tumor budding suggests a high likelihood of relapse. Therefore, we might need additional follow-up protocol in these patients.

Acknowledgements

Not applicable.

Funding

There is no funding or conference presentation information to disclose

Availability of data and materials

Additional datasets from the current study are available from the corresponding author on reasonable request.
All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Informed consent Informed consent was obtained from all participants included in the study.
Ethics/institutional review board approval of research Faculty of Medicine, Acibadem University, Istanbul, Turkey. Number: 2018-19/16 Date: 06.12.2018
Written informed consent was obtained from the patients for publication of this original research. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef
2.
Zurück zum Zitat Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2018;124:2785.CrossRef Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2018;124:2785.CrossRef
3.
Zurück zum Zitat Roh MS, Colangelo LH, O'Connell MJ, Yothers G, Deutsch M, Allegra CJ, et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol. 2009;27:5124.CrossRef Roh MS, Colangelo LH, O'Connell MJ, Yothers G, Deutsch M, Allegra CJ, et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol. 2009;27:5124.CrossRef
4.
Zurück zum Zitat Gérard JP, Conroy T, Bonnetain F, Bouché O, Chapet O, Closon-Dejardin MT, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol. 2006;24:4620.CrossRef Gérard JP, Conroy T, Bonnetain F, Bouché O, Chapet O, Closon-Dejardin MT, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol. 2006;24:4620.CrossRef
5.
Zurück zum Zitat Sandler RS. Epidemiology and risk factors for colorectal cancer. Gastroenteol Clin North Am. 1996;25:717–33.CrossRef Sandler RS. Epidemiology and risk factors for colorectal cancer. Gastroenteol Clin North Am. 1996;25:717–33.CrossRef
6.
Zurück zum Zitat Burt RW. Familial risk and colorectal cancer. Gastroenteol Clin North Am. 1996;25:793–805.CrossRef Burt RW. Familial risk and colorectal cancer. Gastroenteol Clin North Am. 1996;25:793–805.CrossRef
7.
Zurück zum Zitat Glimelius B, Cavalli-Björkman N. Metastatic colorectal cancer: current treatment and future options for improved survival. Medical approach—present status. Scand J Gastroenterol. 2012;47:296–314.CrossRef Glimelius B, Cavalli-Björkman N. Metastatic colorectal cancer: current treatment and future options for improved survival. Medical approach—present status. Scand J Gastroenterol. 2012;47:296–314.CrossRef
8.
Zurück zum Zitat Puppa G, Sonzogni A, Colombari R, Pelosi G. TNM staging system of colorectal carcinoma: a critical appraisal of challenging issues. Arch Pathol Lab Med. 2010;134:837–52.PubMed Puppa G, Sonzogni A, Colombari R, Pelosi G. TNM staging system of colorectal carcinoma: a critical appraisal of challenging issues. Arch Pathol Lab Med. 2010;134:837–52.PubMed
9.
Zurück zum Zitat Athanasakis E, Xenaki S, Venianaki M, Chalkiadakis G, Chrysos E. Newly recognized extratumoral features of colorectal cancer challenge the current tumor-node-metastasis staging system. Ann Gastroenterol. 2018;31(5):525–34.PubMedPubMedCentral Athanasakis E, Xenaki S, Venianaki M, Chalkiadakis G, Chrysos E. Newly recognized extratumoral features of colorectal cancer challenge the current tumor-node-metastasis staging system. Ann Gastroenterol. 2018;31(5):525–34.PubMedPubMedCentral
10.
Zurück zum Zitat Veronese N, Nottegar A, Pea A, et al. Prognostic impact and implications of extracapsular lymph node involvement in colorectal cancer: a systematic review with meta-analysis. Ann Oncol. 2016;27:42–8.CrossRef Veronese N, Nottegar A, Pea A, et al. Prognostic impact and implications of extracapsular lymph node involvement in colorectal cancer: a systematic review with meta-analysis. Ann Oncol. 2016;27:42–8.CrossRef
11.
Zurück zum Zitat Hase K, Shatney C, Johnson D, Trollope M, Vierra M. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum. 1993;36(7):627–35.CrossRef Hase K, Shatney C, Johnson D, Trollope M, Vierra M. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum. 1993;36(7):627–35.CrossRef
12.
Zurück zum Zitat Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40(2):127–32.CrossRef Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40(2):127–32.CrossRef
13.
Zurück zum Zitat Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer. 2012;106(11):1713–7.CrossRef Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer. 2012;106(11):1713–7.CrossRef
14.
Zurück zum Zitat Park KJ, Choi HJ, Roh MS, Kwon HC, Kim C. Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. Dis Colon Rectum. 2005;48(8):1597–602.CrossRef Park KJ, Choi HJ, Roh MS, Kwon HC, Kim C. Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. Dis Colon Rectum. 2005;48(8):1597–602.CrossRef
15.
Zurück zum Zitat Choi HJ, Park KJ, Shin JS, Roh MS, Kwon HC, Lee HS. Tumor budding as a prognostic marker in stage-III rectal carcinoma. Int J Color Dis. 2007;22(8):863–8.CrossRef Choi HJ, Park KJ, Shin JS, Roh MS, Kwon HC, Lee HS. Tumor budding as a prognostic marker in stage-III rectal carcinoma. Int J Color Dis. 2007;22(8):863–8.CrossRef
16.
Zurück zum Zitat Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299.CrossRef Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299.CrossRef
17.
Zurück zum Zitat Jäger T, Neureiter D, Urbas R, et al. Applicability of American Joint Committee on Cancer and College of American Pathologists Regression Grading System in Rectal Cancer. Dis Colon Rectum. 2017;60(8):815–26.CrossRef Jäger T, Neureiter D, Urbas R, et al. Applicability of American Joint Committee on Cancer and College of American Pathologists Regression Grading System in Rectal Cancer. Dis Colon Rectum. 2017;60(8):815–26.CrossRef
18.
Zurück zum Zitat Ohtsuki K, Koyama F, Tamura T, et al. Prognostic value of immunohistochemical analysis of tumor budding in colorectal carcinoma. Anticancer Res. 2008;28:1831–6.PubMed Ohtsuki K, Koyama F, Tamura T, et al. Prognostic value of immunohistochemical analysis of tumor budding in colorectal carcinoma. Anticancer Res. 2008;28:1831–6.PubMed
19.
Zurück zum Zitat Wang LM, Kevans D, Mulcahy H, et al. Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer. Am J Surg Pathol. 2009;33:134–41.CrossRef Wang LM, Kevans D, Mulcahy H, et al. Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer. Am J Surg Pathol. 2009;33:134–41.CrossRef
20.
Zurück zum Zitat Sevda SB, Gülsün IM, Ibrahim MC, et al. Tumor budding in colorectal carcinomas. Turk J Pathol. 2012;28:61–6.CrossRef Sevda SB, Gülsün IM, Ibrahim MC, et al. Tumor budding in colorectal carcinomas. Turk J Pathol. 2012;28:61–6.CrossRef
21.
Zurück zum Zitat Tanaka M, Hashiguchi Y, Ueno H, Hase K, Mochizuki H. Tumor budding at the invasive margin can predict patients at high risk of recurrence after curative surgery for stage II, T3 colon cancer. Dis Colon Rectum. 2003;46:1054–9.CrossRef Tanaka M, Hashiguchi Y, Ueno H, Hase K, Mochizuki H. Tumor budding at the invasive margin can predict patients at high risk of recurrence after curative surgery for stage II, T3 colon cancer. Dis Colon Rectum. 2003;46:1054–9.CrossRef
22.
Zurück zum Zitat Petrelli F, Pezzica E, Cabiddu M, et al. Tumour budding and survival in stage II colorectal cancer: a systematic review and pooled analysis. J Gastrointest Cancer. 2015;46(3):212–8.CrossRef Petrelli F, Pezzica E, Cabiddu M, et al. Tumour budding and survival in stage II colorectal cancer: a systematic review and pooled analysis. J Gastrointest Cancer. 2015;46(3):212–8.CrossRef
23.
Zurück zum Zitat Rogers AC, Winter DC, Heeney A, et al. Systematic review and meta-analysis of the impact of tumor budding in colorectal cancer. Br J Cancer. 2016;115:831–40.CrossRef Rogers AC, Winter DC, Heeney A, et al. Systematic review and meta-analysis of the impact of tumor budding in colorectal cancer. Br J Cancer. 2016;115:831–40.CrossRef
24.
Zurück zum Zitat Cappellesso R, Luchini C, Veronese N, et al. Tumor budding as a risk factor for nodal metastasis in pT1 colorectal cancers: a meta-analysis. Hum Pathol. 2017;65:62–70 Epub 2017 Apr 22.CrossRef Cappellesso R, Luchini C, Veronese N, et al. Tumor budding as a risk factor for nodal metastasis in pT1 colorectal cancers: a meta-analysis. Hum Pathol. 2017;65:62–70 Epub 2017 Apr 22.CrossRef
25.
Zurück zum Zitat Jäger T, Neureiter D, Fallaha M, et al. The potential predictive value of tumor budding for neoadjuvant chemoradiotherapy response in locally advanced rectal cancer. Strahlenther Onkol. 2018;194(11):991–1006.CrossRef Jäger T, Neureiter D, Fallaha M, et al. The potential predictive value of tumor budding for neoadjuvant chemoradiotherapy response in locally advanced rectal cancer. Strahlenther Onkol. 2018;194(11):991–1006.CrossRef
26.
Zurück zum Zitat Du C, Xue W, Li J, Cai Y, Gu J. Morphology and prognostic value of tumor budding in rectal cancer after neoadjuvant radiotherapy. Hum Pathol. 2012;43:1061–7.CrossRef Du C, Xue W, Li J, Cai Y, Gu J. Morphology and prognostic value of tumor budding in rectal cancer after neoadjuvant radiotherapy. Hum Pathol. 2012;43:1061–7.CrossRef
27.
28.
Zurück zum Zitat Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Color Dis. 1997;121:19–23.CrossRef Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Color Dis. 1997;121:19–23.CrossRef
30.
Zurück zum Zitat Fokas E, Ströbel P, Fietkau R, et al. Tumor regression grading after preoperative chemoradiotherapy as a prognostic factor and individual-level surrogate for disease-free survival in rectal cancer. J Natl Cancer Inst. 2017;109(12):djx095.CrossRef Fokas E, Ströbel P, Fietkau R, et al. Tumor regression grading after preoperative chemoradiotherapy as a prognostic factor and individual-level surrogate for disease-free survival in rectal cancer. J Natl Cancer Inst. 2017;109(12):djx095.CrossRef
32.
Zurück zum Zitat Miyata H, Yoshioka A, Yamasaki M, Nushijima Y, Takiguchi S, Fujiwara Y, Nishida T, Mano M, Mori M, Doki Y. Tumor budding in tumor invasive front predicts prognosis and survival of patients with esophageal squamous cell carcinomas receiving neoadjuvant chemotherapy. Cancer. 2009;115:3324–34 [PMID: 19452547 DOI: 10.1002/cncr.24390].CrossRef Miyata H, Yoshioka A, Yamasaki M, Nushijima Y, Takiguchi S, Fujiwara Y, Nishida T, Mano M, Mori M, Doki Y. Tumor budding in tumor invasive front predicts prognosis and survival of patients with esophageal squamous cell carcinomas receiving neoadjuvant chemotherapy. Cancer. 2009;115:3324–34 [PMID: 19452547 DOI: 10.1002/cncr.24390].CrossRef
36.
Metadaten
Titel
Tumor budding for predicting prognosis of resected rectum cancer after neoadjuvant treatment
verfasst von
Atakan Demir
Ozkan Alan
Ertugrul Oruc
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2019
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-019-1588-6

Weitere Artikel der Ausgabe 1/2019

World Journal of Surgical Oncology 1/2019 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.