Skip to main content
Erschienen in: Sports Medicine 6/2018

22.02.2018 | Review Article

Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation

verfasst von: Hamish McGorm, Llion A. Roberts, Jeff S. Coombes, Jonathan M. Peake

Erschienen in: Sports Medicine | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Historically, heat has been used in various clinical and sports rehabilitation settings to treat soft tissue injuries. More recently, interest has emerged in using heat to pre-condition muscle against injury. The aim of this narrative review was to collate information on different types of heat therapy, explain the physiological rationale for heat therapy, and to summarise and evaluate the effects of heat therapy before, during and after muscle injury, immobilisation and strength training. Studies on skeletal muscle cells demonstrate that heat attenuates cellular damage and protein degradation (following in vitro challenges/insults to the cells). Heat also increases the expression of heat shock proteins (HSPs) and upregulates the expression of genes involved in muscle growth and differentiation. In rats, applying heat before and after muscle injury or immobilisation typically reduces cellular damage and muscle atrophy, and promotes more rapid muscle growth/regeneration. In humans, some research has demonstrated benefits of microwave diathermy (and, to a lesser extent, hot water immersion) before exercise for restricting muscle soreness and restoring muscle function after exercise. By contrast, the benefits of applying heat to muscle after exercise are more variable. Animal studies reveal that applying heat during limb immobilisation attenuates muscle atrophy and oxidative stress. Heating muscle may also enhance the benefits of strength training for improving muscle mass in humans. Further research is needed to identify the most effective forms of heat therapy and to investigate the benefits of heat therapy for restricting muscle wasting in the elderly and those individuals recovering from serious injury or illness.
Literatur
1.
Zurück zum Zitat Hausswirth C, Mujika I. Introduction. In: Hausswirth C, Mujika I (eds). Recovery for performance in sport. Champaign: Human Kinetics; 2013. pp. viii–xiii. Hausswirth C, Mujika I. Introduction. In: Hausswirth C, Mujika I (eds). Recovery for performance in sport. Champaign: Human Kinetics; 2013. pp. viii–xiii.
2.
Zurück zum Zitat Goto K, Oda H, Kondo H, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27. CrossRefPubMed Goto K, Oda H, Kondo H, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27. CrossRefPubMed
3.
Zurück zum Zitat Morimoto Y, Kondo Y, Kataoka H, et al. Heat treatment inhibits skeletal muscle atrophy of glucocorticoid-induced myopathy in rats. Physiol Res. 2015;64(6):897–905. PubMed Morimoto Y, Kondo Y, Kataoka H, et al. Heat treatment inhibits skeletal muscle atrophy of glucocorticoid-induced myopathy in rats. Physiol Res. 2015;64(6):897–905. PubMed
4.
Zurück zum Zitat Touchberry CD, Gupte AA, Bomhoff GL, et al. Acute heat stress prior to downhill running may enhance skeletal muscle remodeling. Cell Stress Chaperones. 2012;17(6):693–705. CrossRefPubMedPubMedCentral Touchberry CD, Gupte AA, Bomhoff GL, et al. Acute heat stress prior to downhill running may enhance skeletal muscle remodeling. Cell Stress Chaperones. 2012;17(6):693–705. CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Takeuchi K, Hatade T, Wakamiya S, et al. Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem. 2014;116(2):327–34. CrossRefPubMed Takeuchi K, Hatade T, Wakamiya S, et al. Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem. 2014;116(2):327–34. CrossRefPubMed
6.
Zurück zum Zitat Selsby JT, Dodd SL. Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R134–9. CrossRefPubMed Selsby JT, Dodd SL. Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R134–9. CrossRefPubMed
8.
Zurück zum Zitat Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol. 2008;102(4):447–55. CrossRefPubMed Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol. 2008;102(4):447–55. CrossRefPubMed
9.
Zurück zum Zitat Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44. CrossRefPubMed Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44. CrossRefPubMed
10.
Zurück zum Zitat Goto K, Oda H, Morioka S, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. Jpn J Aerosp Environ Med. 2007;44(1):13–8. Goto K, Oda H, Morioka S, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. Jpn J Aerosp Environ Med. 2007;44(1):13–8.
11.
Zurück zum Zitat Nosaka K, Muthalib M, Lavender A, et al. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise. Eur J Appl Physiol. 2007;99(2):183–92. CrossRefPubMed Nosaka K, Muthalib M, Lavender A, et al. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise. Eur J Appl Physiol. 2007;99(2):183–92. CrossRefPubMed
13.
Zurück zum Zitat Skurvydas A, Kamandulis S, Stanislovaitis A, et al. Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage. J Athl Train. 2008;43(6):592–9. CrossRefPubMedPubMedCentral Skurvydas A, Kamandulis S, Stanislovaitis A, et al. Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage. J Athl Train. 2008;43(6):592–9. CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30. CrossRefPubMed Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30. CrossRefPubMed
15.
Zurück zum Zitat Symons BT, Clasey JL, Gater DR, et al. Effects of deep heat as a preventative mechanism on delayed onset muscle soreness. J Strength Cond Res. 2004;18(1):155–61. CrossRef Symons BT, Clasey JL, Gater DR, et al. Effects of deep heat as a preventative mechanism on delayed onset muscle soreness. J Strength Cond Res. 2004;18(1):155–61. CrossRef
16.
Zurück zum Zitat Saga N, Katamoto S, Naito H. Effect of heat preconditioning by microwave hyperthermia on human skeletal muscle after eccentric exercise. J Sports Sci Med. 2008;7:176–83. PubMedPubMedCentral Saga N, Katamoto S, Naito H. Effect of heat preconditioning by microwave hyperthermia on human skeletal muscle after eccentric exercise. J Sports Sci Med. 2008;7:176–83. PubMedPubMedCentral
17.
Zurück zum Zitat Nosaka K, Sakamoto K, Newton M, et al. Influence of pre-exercise muscle temperature on responses to eccentric exercise. J Athl Train. 2004;39(2):132–7. PubMedPubMedCentral Nosaka K, Sakamoto K, Newton M, et al. Influence of pre-exercise muscle temperature on responses to eccentric exercise. J Athl Train. 2004;39(2):132–7. PubMedPubMedCentral
18.
Zurück zum Zitat Bailey SJ, Wilkerson DP, Fulford J, et al. Influence of passive lower-body heating on muscle metabolic perturbation and high-intensity exercise tolerance in humans. Eur J Appl Physiol. 2012;112(10):3569–76. CrossRefPubMed Bailey SJ, Wilkerson DP, Fulford J, et al. Influence of passive lower-body heating on muscle metabolic perturbation and high-intensity exercise tolerance in humans. Eur J Appl Physiol. 2012;112(10):3569–76. CrossRefPubMed
19.
Zurück zum Zitat Garramone RR Jr, Winters RM, Das DK, et al. Reduction of skeletal muscle injury through stress conditioning using the heat-shock response. Plast Reconstr Surg. 1994;93(6):1242–7. CrossRefPubMed Garramone RR Jr, Winters RM, Das DK, et al. Reduction of skeletal muscle injury through stress conditioning using the heat-shock response. Plast Reconstr Surg. 1994;93(6):1242–7. CrossRefPubMed
20.
Zurück zum Zitat Naito H, Powers SK, Demirel HA, et al. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol (1985). 2000;88(1):359–363. Naito H, Powers SK, Demirel HA, et al. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol (1985). 2000;88(1):359–363.
21.
Zurück zum Zitat Kojima A, Goto K, Morioka S, et al. Heat stress facilitates the regeneration of injured skeletal muscle in rats. J Orthop Sci. 2007;12(1):74–82. CrossRefPubMed Kojima A, Goto K, Morioka S, et al. Heat stress facilitates the regeneration of injured skeletal muscle in rats. J Orthop Sci. 2007;12(1):74–82. CrossRefPubMed
22.
Zurück zum Zitat Khamwong P, Nosaka K, Pirunsan U, et al. Prophylactic effect of hot pack on symptoms of eccentric exercise-induced muscle damage of the wrist extensors. Eur J Sport Sci. 2012;12(5):443–53. CrossRef Khamwong P, Nosaka K, Pirunsan U, et al. Prophylactic effect of hot pack on symptoms of eccentric exercise-induced muscle damage of the wrist extensors. Eur J Sport Sci. 2012;12(5):443–53. CrossRef
23.
Zurück zum Zitat Khamwong P, Paungmali A, Pirunsan U, et al. Prophylactic effects of sauna on delayed-onset muscle soreness of the wrist extensors. Asian J Sports Med. 2015;6(2):e25549. CrossRefPubMedPubMedCentral Khamwong P, Paungmali A, Pirunsan U, et al. Prophylactic effects of sauna on delayed-onset muscle soreness of the wrist extensors. Asian J Sports Med. 2015;6(2):e25549. CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Vardiman JP, Moodie N, Siedlik JA, et al. Short-wave diathermy pretreatment and inflammatory myokine response after high-intensity eccentric exercise. J Athl Train. 2015;50(6):612–20. CrossRefPubMedPubMedCentral Vardiman JP, Moodie N, Siedlik JA, et al. Short-wave diathermy pretreatment and inflammatory myokine response after high-intensity eccentric exercise. J Athl Train. 2015;50(6):612–20. CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Evans RK, Knight KL, Draper DO, et al. Effects of warm-up before eccentric exercise on indirect markers of muscle damage. Med Sci Sports Exerc. 2002;34(12):1892–9. CrossRefPubMed Evans RK, Knight KL, Draper DO, et al. Effects of warm-up before eccentric exercise on indirect markers of muscle damage. Med Sci Sports Exerc. 2002;34(12):1892–9. CrossRefPubMed
26.
Zurück zum Zitat Castellani JW, Zambraski EJ, Sawka MN, et al. Does high muscle temperature accentuate skeletal muscle injury from eccentric exercise? Physiol Rep. 2016;4(9):e12777. Castellani JW, Zambraski EJ, Sawka MN, et al. Does high muscle temperature accentuate skeletal muscle injury from eccentric exercise? Physiol Rep. 2016;4(9):e12777.
27.
Zurück zum Zitat Shibaguchi T, Sugiura T, Fujitsu T, et al. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci. 2016;66(4):345–57. CrossRefPubMed Shibaguchi T, Sugiura T, Fujitsu T, et al. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci. 2016;66(4):345–57. CrossRefPubMed
28.
Zurück zum Zitat Selsby JT, Rother S, Tsuda S, et al. Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol. 2007;102(4):1702–7. CrossRefPubMed Selsby JT, Rother S, Tsuda S, et al. Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol. 2007;102(4):1702–7. CrossRefPubMed
29.
Zurück zum Zitat Clarke DH. Effects of immersion in hot and cold water upon recovery of muscular strength following fatiguing isometric exercise. Arch Phys Med Rehabil. 1963;44:565–8. PubMed Clarke DH. Effects of immersion in hot and cold water upon recovery of muscular strength following fatiguing isometric exercise. Arch Phys Med Rehabil. 1963;44:565–8. PubMed
30.
Zurück zum Zitat Mayer JM, Mooney V, Matheson LN, et al. Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1310–7. CrossRefPubMed Mayer JM, Mooney V, Matheson LN, et al. Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1310–7. CrossRefPubMed
31.
Zurück zum Zitat Viitasalo JT, Niemela K, Kaappola R, et al. Warm underwater water-jet massage improves recovery from intense physical exercise. Eur J Appl Physiol Occup Physiol. 1995;71(5):431–8. CrossRefPubMed Viitasalo JT, Niemela K, Kaappola R, et al. Warm underwater water-jet massage improves recovery from intense physical exercise. Eur J Appl Physiol Occup Physiol. 1995;71(5):431–8. CrossRefPubMed
32.
Zurück zum Zitat Kuligowski LA, Lephart SM, Giannantonio FP, et al. Effect of whirlpool therapy on the signs and symptoms of delayed onset muscle soreness. J Athl Train. 1998;33(3):222–8. PubMedPubMedCentral Kuligowski LA, Lephart SM, Giannantonio FP, et al. Effect of whirlpool therapy on the signs and symptoms of delayed onset muscle soreness. J Athl Train. 1998;33(3):222–8. PubMedPubMedCentral
33.
Zurück zum Zitat Jayaraman RC, Reid RW, Foley JM, et al. MRI evaluation of topical heat and static stretching as therapeutic modalities for the treatment of eccentric exercise-induced muscle damage. Eur J Appl Physiol. 2004;93(1–2):30–8. CrossRefPubMed Jayaraman RC, Reid RW, Foley JM, et al. MRI evaluation of topical heat and static stretching as therapeutic modalities for the treatment of eccentric exercise-induced muscle damage. Eur J Appl Physiol. 2004;93(1–2):30–8. CrossRefPubMed
34.
Zurück zum Zitat Pournot H, Bieuzen F, Duffield R, et al. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):1287–95. CrossRefPubMed Pournot H, Bieuzen F, Duffield R, et al. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):1287–95. CrossRefPubMed
35.
Zurück zum Zitat Stadnyk AMJ, Rehrer NJ, Handcock PJ, et al. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature (Epub 7 Dec 2017). Stadnyk AMJ, Rehrer NJ, Handcock PJ, et al. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature (Epub 7 Dec 2017).
36.
Zurück zum Zitat Noble EG, Milne KJ, Melling CW. Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab. 2008;33(5):1050–65. CrossRefPubMed Noble EG, Milne KJ, Melling CW. Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab. 2008;33(5):1050–65. CrossRefPubMed
37.
Zurück zum Zitat Morton JP, Kayani AC, McArdle A, et al. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009;39(8):643–62. CrossRefPubMed Morton JP, Kayani AC, McArdle A, et al. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009;39(8):643–62. CrossRefPubMed
38.
Zurück zum Zitat Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteom Clin Appl. 2014;8(11–12):875–95. CrossRef Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteom Clin Appl. 2014;8(11–12):875–95. CrossRef
39.
Zurück zum Zitat Archer AE, Von Schulze AT, Geiger PC. Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160529. CrossRefPubMed Archer AE, Von Schulze AT, Geiger PC. Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160529. CrossRefPubMed
40.
Zurück zum Zitat Thakur SS, Swiderski K, Ryall JG, et al. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160528. CrossRefPubMed Thakur SS, Swiderski K, Ryall JG, et al. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160528. CrossRefPubMed
41.
Zurück zum Zitat Goto K, Okuyama R, Sugiyama H, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. 2003;447(2):247–53. CrossRefPubMed Goto K, Okuyama R, Sugiyama H, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. 2003;447(2):247–53. CrossRefPubMed
42.
Zurück zum Zitat Maglara AA, Vasilaki A, Jackson MJ, et al. Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol. 2003;548(Pt 3):837–46. CrossRefPubMedPubMedCentral Maglara AA, Vasilaki A, Jackson MJ, et al. Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol. 2003;548(Pt 3):837–46. CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Tsuchida W, Iwata M, Akimoto T, et al. Heat stress modulates both anabolic and catabolic signaling pathways preventing dexamethasone-induced muscle atrophy in vitro. J Cell Physiol. 2017;232(3):650–64. CrossRefPubMed Tsuchida W, Iwata M, Akimoto T, et al. Heat stress modulates both anabolic and catabolic signaling pathways preventing dexamethasone-induced muscle atrophy in vitro. J Cell Physiol. 2017;232(3):650–64. CrossRefPubMed
44.
Zurück zum Zitat Ohno Y, Yamada S, Sugiura T, et al. Possible role of NF-kB signals in heat stress-associated increase in protein content of cultured C2C12 cells. Cells Tissues Organs. 2011;194(5):363–70. CrossRefPubMed Ohno Y, Yamada S, Sugiura T, et al. Possible role of NF-kB signals in heat stress-associated increase in protein content of cultured C2C12 cells. Cells Tissues Organs. 2011;194(5):363–70. CrossRefPubMed
45.
Zurück zum Zitat Ogura Y, Naito H, Tsurukawa T, et al. Microwave hyperthermia treatment increases heat shock proteins in human skeletal muscle. Br J Sports Med. 2007;41(7):453–455 (discussion 455). Ogura Y, Naito H, Tsurukawa T, et al. Microwave hyperthermia treatment increases heat shock proteins in human skeletal muscle. Br J Sports Med. 2007;41(7):453–455 (discussion 455).
46.
Zurück zum Zitat Touchberry C, Le T, Richmond S, et al. Diathermy treatment increases heat shock protein expression in female, but not male skeletal muscle. Eur J Appl Physiol. 2008;102(3):319–23. CrossRefPubMed Touchberry C, Le T, Richmond S, et al. Diathermy treatment increases heat shock protein expression in female, but not male skeletal muscle. Eur J Appl Physiol. 2008;102(3):319–23. CrossRefPubMed
47.
Zurück zum Zitat Kuhlenhoelter AM, Kim K, Neff D, et al. Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;311(2):R377–91. CrossRefPubMedPubMedCentral Kuhlenhoelter AM, Kim K, Neff D, et al. Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;311(2):R377–91. CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Morton JP, Maclaren DP, Cable NT, et al. Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men. Acta Physiol (Oxf). 2007;190(4):319–27. CrossRef Morton JP, Maclaren DP, Cable NT, et al. Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men. Acta Physiol (Oxf). 2007;190(4):319–27. CrossRef
49.
Zurück zum Zitat Morton JP, MacLaren DP, Cable NT, et al. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol (1985). 2006;101(1):176–182. Morton JP, MacLaren DP, Cable NT, et al. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol (1985). 2006;101(1):176–182.
50.
Zurück zum Zitat Ohno Y, Yamada S, Sugiura T, et al. A possible role of NF-kappaB and HSP72 in skeletal muscle hypertrophy induced by heat stress in rats. Gen Physiol Biophys. 2010;29(3):234–42. CrossRefPubMed Ohno Y, Yamada S, Sugiura T, et al. A possible role of NF-kappaB and HSP72 in skeletal muscle hypertrophy induced by heat stress in rats. Gen Physiol Biophys. 2010;29(3):234–42. CrossRefPubMed
51.
Zurück zum Zitat Laplante M, Sabatani DM. mTOR signalling at a glance. J Cell Sci. 2009;20(122):3589–94. CrossRef Laplante M, Sabatani DM. mTOR signalling at a glance. J Cell Sci. 2009;20(122):3589–94. CrossRef
52.
Zurück zum Zitat Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9. CrossRefPubMed Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9. CrossRefPubMed
53.
Zurück zum Zitat Léger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576(3):923–33. CrossRefPubMedPubMedCentral Léger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576(3):923–33. CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006;38(11):1950–7. CrossRefPubMed Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006;38(11):1950–7. CrossRefPubMed
55.
Zurück zum Zitat Yoshihara T, Naito H, Kakigi R, et al. Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol. 2012;207(2):416–26. CrossRef Yoshihara T, Naito H, Kakigi R, et al. Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol. 2012;207(2):416–26. CrossRef
56.
Zurück zum Zitat Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61. CrossRefPubMed Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61. CrossRefPubMed
57.
Zurück zum Zitat Kakigi R, Naito H, Ogura Y, et al. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci. 2011;61(2):131–40. CrossRefPubMed Kakigi R, Naito H, Ogura Y, et al. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci. 2011;61(2):131–40. CrossRefPubMed
58.
Zurück zum Zitat Chou SD, Prince T, Gong J, et al. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One. 2012;7(6):e39679. CrossRefPubMedPubMedCentral Chou SD, Prince T, Gong J, et al. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One. 2012;7(6):e39679. CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Luo G, Sun X, Hungness E, et al. Heat shock protects L6 myotubes from catabolic effects of dexamethasone and prevents downregulation of NF-kappaB. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1193–200. CrossRefPubMed Luo G, Sun X, Hungness E, et al. Heat shock protects L6 myotubes from catabolic effects of dexamethasone and prevents downregulation of NF-kappaB. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1193–200. CrossRefPubMed
61.
Zurück zum Zitat Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652–8. CrossRefPubMed Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652–8. CrossRefPubMed
62.
Zurück zum Zitat Uehara K, Goto K, Kobayashi T, et al. Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol. 2004;54(3):263–71. CrossRefPubMed Uehara K, Goto K, Kobayashi T, et al. Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol. 2004;54(3):263–71. CrossRefPubMed
Metadaten
Titel
Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation
verfasst von
Hamish McGorm
Llion A. Roberts
Jeff S. Coombes
Jonathan M. Peake
Publikationsdatum
22.02.2018
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 6/2018
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-0876-6

Weitere Artikel der Ausgabe 6/2018

Sports Medicine 6/2018 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.