Skip to main content
main-content

01.12.2017 | Short Report | Ausgabe 1/2017 Open Access

Virology Journal 1/2017

Two mutations in the HR2 region of Newcastle disease virus fusion protein with a cleavage motif “RRQRRL” are critical for fusogenic activity

Zeitschrift:
Virology Journal > Ausgabe 1/2017
Autoren:
Yanhong Wang, Youkun Bi, Wanqi Yu, Ning Wei, Wenbin Wang, Qiaolin Wei, Xinglong Wang, Shuxia Zhang, Zengqi Yang, Sa Xiao

Abstract

Background

Newcastle disease virus (NDV) causes severe diseases in avian species. Its fusion protein cleavage site (Fcs) is a major contributor to virulence and membrane fusion. Previous studies showed that a change from phenylalanine (F) to lysine (L) at position 117 of the virulent strain fusion protein, which has the polybasic amino acid Fcs motif “112RRQKR↓F117”, blocked syncytium formation. However, we observed that F proteins of the virulent strain F48E9 and avirulent strain LaSota substituted with an identical cleavage motif, “112RRQRR↓L117”, induced extensive and slight syncytium formation, respectively. Accordingly, we hypothesized that the difference in syncytium formation is caused by other regions of the fusion protein.

Results

The exchanged regions between the fusion proteins of two strains, F48E9 and LaSota, showed that the region from amino acid 118–499 plays an important role in modulation of fusogenic activity in transfected cells. Further dissection of this region indicated that replacement of two amino acids (N479D, R486S) in heptad repeat 2 (HR2) of the avirulent fusion protein by the virulent counterpart resulted in fusion promotion. Moreover, the role of these two amino acids in fusion is dependent on the unique Fcs sequence “RRQRR↓L”.

Conclusions

Our results demonstrated that two amino acids (D479, S486) of the virulent strain F protein with this unique Fcs were critical for promoting fusogenic activity, and residue F or L at position 117 did not affect syncytium formation. These findings provide novel insights into fusogenic triggering by the fusion protein and may be useful for designing antiviral peptides.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Virology Journal 1/2017 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin 

Bildnachweise