Skip to main content
Erschienen in: Diabetes Therapy 6/2019

Open Access 24.09.2019 | Brief Report

Type 2 Diabetes Mellitus and Menopausal Hormone Therapy: An Update

verfasst von: Stavroula A. Paschou, Nikolaos Papanas

Erschienen in: Diabetes Therapy | Ausgabe 6/2019

Abstract

During menopausal transition, various phenotypical and metabolic changes occur, affecting body weight, adipose tissue distribution and energy expenditure as well as insulin secretion and sensitivity. Taken together, these can predispose women to the development of type 2 diabetes mellitus (T2DM). Many women in midlife experience climacteric symptoms, including hot flashes and night sweats. Menopausal hormone therapy (MHT) is then indicated. MHT has a favourable effect on glucose homeostasis in both women without and with T2DM. T2DM was considered in the past as a cardiovascular disease (CVD) equivalent, which would suggest that women with T2DM should not receive MHT. This notion may still deter many clinicians from prescribing MHT to these patients. However, nowadays there is strong evidence to support an individualised approach after careful evaluation of CVD risk. In older women with T2DM (> 60 years old or > 10 years in menopause), MHT should not be initiated, because it may destabilise mature atherosclerotic plaques, resulting in thrombotic episodes. In obese women with T2DM or in women with moderate CVD risk, transdermal 17β-oestradiol could be used. This route of delivery presents beneficial effects regarding triglyceride concentrations and coagulation factors. In peri- or recently post-menopausal diabetic women with low risk for CVD, oral oestrogens can be used, since they exhibit stronger beneficial effects on glucose and lipid profiles. In any case, a progestogen with neutral effects on glucose metabolism should be used, such as natural progesterone, dydrogesterone or transdermal norethisterone. The goal is to maximise benefits and minimise adverse effects.
Hinweise

Enhanced Digital Features

To view enhanced digital features for this article go to https://​doi.​org/​10.​6084/​m9.​figshare.​9851339.

Introduction

Menopause is the permanent cessation of menses due to oocyte depletion [1, 2]. It is characterised by a substantial decrease in endogenous oestrogen production and represents the end of female reproductive life. Women after menopause exhibit not only hormonal but also various phenotypical and biochemical changes, which can predispose them to the development of type 2 diabetes mellitus (T2DM) [1, 2]. The transition from pre- to post-reproductive life is associated with weight gain, especially with central obesity and an increase in waist circumference [1, 2]. Beyond central fat accumulation, menopause is associated with sarcopenia and decreased muscle mass, which further contribute to the change in body composition [13]. Whether these phenomena are not only the result of chronological aging, but also affected by ovarian aging has been a matter of scientific discussion [15]. A percentage of post-menopausal women present with climacteric symptoms and have an indication to receive menopausal hormone therapy (MHT) [69]. In the past, T2DM was considered an equivalent of cardiovascular disease (CVD), which would suggest that women with the disease should not receive MHT [8]. This notion may still deter many clinicians from prescribing MHT to these patients. However, nowadays there is evidence to support an individualized approach after careful evaluation of their CVD risk [2, 7].
The aim of this review is to analyse the risk of T2DM development after menopause and the potential use of MHT for the management of climacteric symptoms in these women. This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

T2DM Development after Menopause

The prevalence of T2DM is increasing in western countries, indeed reaching epidemic proportions. This is broadly associated with aging and obesity, with diagnosed cases representing 5–10% of the general adult population [8, 10]. Initial findings of major studies suggested that impaired glucose metabolism after menopause was not related to decreased oestrogen concentration, but was merely the result of chronological aging [11, 12]. However, later analysis of data from the Study of Women’s Health Across the Nation (SWAN) concluded that the lower the oestradiol concentrations, the higher risk for T2DM development [13]. Other studies have confirmed that T2DM risk is indeed associated with a decline in ovarian function. The EPIC (European Prospective Investigation into Cancer)-InterAct study showed that premature ovarian insufficiency (before 40 years) was associated with a 32% higher risk for T2DM, after following up women prospectively for 11 years [14]. Another Chinese observational study including 16,299 women provided evidence that early menopause (before 45 years) was associated with a 20% higher risk for T2DM [15]. Similarly, studies with women after ovariectomy (surgical menopause), including data from the National Health and Nutrition Examination Survey (NHANES) I Epidemiologic Follow-up Study, reported increased risk (up to 57%) for the development of T2DM [16, 17].
A recent systematic review and meta-analysis [18] included 13 studies with 191,762 women in total, 21,664 of whom developed T2DM. Women with early menopause (40–45 years of age) or premature ovarian insufficiency (< 40 years of age) present increased risk for T2DM [odds ratio (OR): 1.12, 95% confidence interval (CI) 1.01–1.20,p = 0.02; p = 0.001 and OR: 1.53, 95% CI 1.03–2.27, p = 0.035; p = 0.001, respectively] [18]. Later analysis of 124,379 post-menopausal women from the Women’s Health Initiative (WHI) study showed that women with short reproductive lifetimes (< 30 years between the age of menarche and the age of the final period) had a 37% greater risk for the development of T2DM compared with those 36–40 years between the age of menarche and the age of the final period. Interestingly, this result was reached after adjustment for chronological age [19].
Indeed, menopause is accompanied by various consequences that could explain the increased T2DM risk [1, 2, 8]. One of the most prevalent changes is weight gain, associated with an increase in total body fat mass, especially with central abdominal fat accumulation and an increase in waist circumference [24, 20]. With the use of dual-energy x-ray absorptiometry (DXA), computed tomography (CT) or other accurate body composition assessment techniques, it has been shown that the main parameter affected during menopause is the intra-abdominal fat [2124]. When peri-menopausal women were studied for 4 years, it was found that only those entering menopause exhibited increased visceral fat [25]. Additionally, menopausal women exhibited a significant reduction in energy expenditure from fat oxidation without important changes in energy intake [25]. Indeed, energy expenditure seems to be the earliest event, resulting probably from the decrease of the activation capacity of oestrogen receptor-α (ERα) [26, 27]. Such a relative loss of activation of the ERα can also affect the hypothalamic neuron activity as well as the ability of the sympathetic nervous system to regulate fat distribution through thermogenic activation in adipose tissue [2830]. Menopause is also associated with sarcopenia and decreased muscle mass [22].
These changes in abdominal obesity and muscle mass may lead to physical and psychological morbidity [1, 2, 4]. A vicious cycle of subsequent excessive energy intake, sedentary lifestyle and stress may then start and further deteriorate the phenotypical and biochemical alterations of menopausal women [2, 4].
Abdominal fat deposition and decreased muscle mass due to sarcopenia after menopause lead to systemic low-grade inflammation [8]. Visceral adiposity augments the production of cytokines, contributing to the development of insulin resistance in the peripheral tissues [8]. Furthermore, menopause is a state of relative androgen excess. The post-menopausal ovary continues to secrete androgens, with higher bioavailability, because of the decrease in sex hormone-binding globulin (SHBG). These hormonal changes further increase insulin resistance [31]. There is also scarce evidence of the possible direct effect of menopause on insulin resistance, independently of body composition [3134]. While relevant differences were not detected with the use of euglycaemic and hyperinsulinaemic clamps, the gold standard technique, insulin resistance was found to be increased in post-menopausal women with the use of intravenous glucose tolerance test (IVGTT) [3234]. The insulin action may be affected by related changes in insulin metabolism, such as liver clearance [32, 33]. Moreover, experimental studies with female rodents and mice have provided evidence that both decreased oestradiol levels and decreased oestradiol action through the ERα could cause insulin resistance in skeletal muscle, liver and adipose tissue [3543]. Pancreatic β cells need to compensate insulin resistance to maintain normal glucose levels. There is scarce data regarding the effect of menopause on insulin secretion, deriving mainly from animal studies [33]. Ovariectomy of rodents has been consistently shown to deteriorate β pancreatic cell function, while the decreased oestradiol action via ERα and ERβ seems to affect the survival of β cells and insulin secretion [4447]. Of course, the genetic predisposition of β pancreatic cell dysfunction represents a crucial parameter for the ultimate development of T2DM [33, 44, 47].

MHT in Women with T2DM

Some women after menopause present hot flushes or night sweats, known also as climacteric or vasomotor symptoms [1, 2]. MHT is indicated in such women, after evaluation of other comorbidities [1, 2, 6, 7]. Recently, such symptoms have been associated with increased risk of incident T2DM. A total of 150,007 women from the WHI study were prospectively examined for the potential association of T2DM with climacteric symptoms [48]. Interestingly, any vasomotor symptom was associated with an 18% increase in the risk of T2DM [hazard ratio (HR): 1.18, 95% CI 1.14–1.22] and this was independent of obesity. The more severe the symptoms and the longer their duration, the higher the risk for T2DM development is [48].
In the past, T2DM was broadly considered CVD equivalent, or at least as an important CVD risk factor for women [49], and this may still deter many clinicians from prescribing MHT to such women. However, there is strong evidence for beneficial effects of MHT in glucose homeostasis in women with or without T2DM. In women without T2DM, a meta-analysis of 107 trials provided evidence that MHT can reduce abdominal fat, HOMA-IR by 13% and incident T2DM by 30% [50]. In women with T2DM, MHT exerts beneficial effects on fasting glucose and HOMA-IR. The reduction in insulin resistance, as represented by HOMA-IR, was 36%, even greater than in women without T2DM. This meta-analysis included very important studies and large randomised controlled trials (RCTs), such as the Post-menopausal Estrogen/Progestin Interventions (PEPI) study [51], the Heart and Estrogen/Progestin Replacement Study (HERS) [52] and the WHI Study [53]. On top of improved glucose homeostasis, MHT appears to improve other important CVD risk factors, such as blood pressure, LDL cholesterol, triglycerides, lipoprotein(a), adhesion and coagulation molecules [50, 54].
The favourable effects of MHT on glucose metabolism appear to extend beyond the correction of metabolic changes caused during menopausal transition. MHT decreases abdominal fat deposition [1] through the increase of lipid oxidation and enhancement of energy expenditure [1, 38]. However, reduced central obesity is not necessarily the main mechanism. Indeed, in HERS [52] and WHI trials [53] as well as NHS [55] and E3N [56] observational studies, the reduction in incident T2DM incidence was independent of the reduction in body weight and waist circumference. There is evidence that oestrogens may act directly on ERs in liver, muscle or adipose tissue, improving insulin sensitivity and contributing to improved glucose control and homeostasis [57, 58]. Furthermore, oestrogens may augment insulin secretion via a direct action on ERs in pancreatic β-cells, shown in experimental studies with rodents [44, 45].
Conjugated oestrogens (CEs) combined with medroxyprogesterone acetate (MPA) represent the type of MHT mostly investigated in large studies. CEs are available only in tablets, while 17β-oestradiol is available in both tablets and transdermal regimens. Oral oestrogens harbour stronger beneficial effects on insulin sensitivity, suppression of hepatic glucose production and cholesterol levels because of the first-pass metabolism in the liver [1, 2, 50, 59]. However, they increase hepatic synthesis of triglycerides, coagulation factors and other inflammatory markers [60].
Progestogens have been traditionally shown to decrease the beneficial effects of oestrogens on glucose metabolism. This phenomenon is dose-dependent and related to the development of insulin resistance [61, 62]. However, it appears that there are differences among various regimens. Indeed, MPA is known to have glucocorticoid activity, while levonorgestrel is a testosterone-derived product, both increasing insulin resistance. Conversely, natural progesterone, norethisterone acetate (NETA) and dydrogesterone are more neutral regarding glucose metabolism [6366].
Given the beneficial effects of MHT on glycaemic control, an individualised approach in treating climacteric symptoms in post-menopausal women with T2DM should be considered, after careful evaluation of their CVD risk [1, 2, 7, 67] (Table 1). Women should be stratified according to their CVD risk. In older women with T2DM (> 60 years or > 10 years in menopause), MHT should not be initiated, as such a therapy may destabilise mature atherosclerotic plaques, resulting in thrombotic episodes. In obese women with T2DM or those with moderate CVD risk, transdermal 17β-oestradiol could be used. Some experts recommend the use of the coronary artery calcium score to identify women with established but latent CVD [1, 2, 7, 67]. This route of delivery presents more beneficial effects regarding triglyceride concentrations and coagulation factors. In peri- or recently post-menopausal diabetic women with low risk for CVD, oral oestrogens can be used as they have the stronger beneficial effects on glucose and lipid metabolism profiles. In any case, a progestogen with neutral effects on glucose metabolism should be used, such as natural progesterone, dydrogesterone or transdermal norethisterone [1, 2, 7, 67].
Table 1
MHT: suggestions for use in women with T2DM
Women with T2DM
MHT use
> 60 years old
or
> 10 years in menopause
or
High CVD risk
NO
Obese women
or
Moderate CVD risk
YES
 Prefer transdermal 17β-oestradiol
 Prefer neutral progestogen
Peri- or recently postmenopausal
and
Low CVD risk
YES
 Prefer oral oestrogens
 Prefer neutral progestogen
MHT menopausal hormone therapy, T2DM type 2 diabetes mellitus, CVD cardiovascular disease

Conclusions

Menopause is characterised by a substantial decrease in endogenous oestrogen concentrations and is associated with adverse metabolic profile and an increase in T2DM risk [1, 2]. MHT has a favourable effect on glucose homeostasis in both in women with and without T2DM. Although in the past women with T2DM would be excluded from MHT, nowadays there is strong evidence to support an individualised approach after careful evaluation of their CVD risk [1, 2, 7, 67].

Acknowledgements

Funding

No funding or sponsorship was received for publication of this article.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Disclosures

Stavroula A. Paschou has no conflict of interest. Nikolaos Papanas has been an advisory board member of TrigoCare International, Abbott, AstraZeneca, Elpen, MSD, Novartis, Novo Nordisk, Sanofi-Aventis and Takeda; has participated in sponsored studies by Eli Lilly, MSD, Novo Nordisk, Novartis and Sanofi-Aventis; received honoraria as a speaker for AstraZeneca, Boehringer Ingelheim, Eli Lilly, Elpen, Galenica, MSD, Mylan, Novartis, Novo Nordisk, Pfizer, Sanofi-Aventis, Takeda and Vianex; and attended conferences sponsored by TrigoCare International, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novartis, Novo Nordisk, Pfizer and Sanofi-Aventis.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Open Access

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Mauvais-Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms, and clinical implications. Endocr Rev. 2017;38:173–88.PubMedPubMedCentral Mauvais-Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms, and clinical implications. Endocr Rev. 2017;38:173–88.PubMedPubMedCentral
3.
Zurück zum Zitat Szmuilowicz ED, Stuenkel CA, Seely EW. Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol. 2009;5:553–8.PubMed Szmuilowicz ED, Stuenkel CA, Seely EW. Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol. 2009;5:553–8.PubMed
4.
Zurück zum Zitat Paschou SA, Marina LV, Spartalis E, et al. Therapeutic strategies for type 2 diabetes mellitus in women after menopause. Maturitas. 2019;126:69–72.PubMed Paschou SA, Marina LV, Spartalis E, et al. Therapeutic strategies for type 2 diabetes mellitus in women after menopause. Maturitas. 2019;126:69–72.PubMed
5.
Zurück zum Zitat Paschou SA, Anagnostis P, Goulis DG, Lambrinoudaki I. Diet and lifestyle for post-reproductive health: focus on diabetes. Case Rep Women’s Health. 2018;18:e00056. Paschou SA, Anagnostis P, Goulis DG, Lambrinoudaki I. Diet and lifestyle for post-reproductive health: focus on diabetes. Case Rep Women’s Health. 2018;18:e00056.
7.
Zurück zum Zitat Slopien R, Wender-Ozegowska E, Rogowicz-Frontczak A, et al. Menopause and diabetes: EMAS clinical guide. Maturitas. 2018;117:6–10.PubMed Slopien R, Wender-Ozegowska E, Rogowicz-Frontczak A, et al. Menopause and diabetes: EMAS clinical guide. Maturitas. 2018;117:6–10.PubMed
8.
Zurück zum Zitat American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2019;42(Suppl 1). American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2019;42(Suppl 1).
9.
Zurück zum Zitat Lambrinoudaki I, Brincat M, Erel CT, et al. EMAS position statement: managing obese postmenopausal women. Maturitas. 2010;66:323–6.PubMed Lambrinoudaki I, Brincat M, Erel CT, et al. EMAS position statement: managing obese postmenopausal women. Maturitas. 2010;66:323–6.PubMed
10.
Zurück zum Zitat Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA. 2015;314:1021–9.PubMed Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA. 2015;314:1021–9.PubMed
11.
Zurück zum Zitat Matthews KA, Crawford SL, Chae CU, et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J Am Coll Cardiol. 2009;54:2366–73.PubMedPubMedCentral Matthews KA, Crawford SL, Chae CU, et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J Am Coll Cardiol. 2009;54:2366–73.PubMedPubMedCentral
12.
Zurück zum Zitat Matthews KA, Gibson CJ, El Khoudary SR, Thurston RC. Changes in cardiovascular risk factors by hysterectomy status with and without oophorectomy: study of Women’s Health Across the Nation. J Am Coll Cardiol. 2013;62:191–200.PubMedPubMedCentral Matthews KA, Gibson CJ, El Khoudary SR, Thurston RC. Changes in cardiovascular risk factors by hysterectomy status with and without oophorectomy: study of Women’s Health Across the Nation. J Am Coll Cardiol. 2013;62:191–200.PubMedPubMedCentral
13.
Zurück zum Zitat Park SK, Harlow SD, Zheng H, Karvonen-Gutierrez C, Thurston RC, Ruppert K, et al. Association between changes in oestradiol and follicle-stimulating hormone levels during the menopausal transition and risk of diabetes. Diabet Med. 2017;34:531–8.PubMedPubMedCentral Park SK, Harlow SD, Zheng H, Karvonen-Gutierrez C, Thurston RC, Ruppert K, et al. Association between changes in oestradiol and follicle-stimulating hormone levels during the menopausal transition and risk of diabetes. Diabet Med. 2017;34:531–8.PubMedPubMedCentral
14.
Zurück zum Zitat Brand JS, van der Schouw YT, Onland-Moret NC, et al. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care. 2013;36:1012–9.PubMedPubMedCentral Brand JS, van der Schouw YT, Onland-Moret NC, et al. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care. 2013;36:1012–9.PubMedPubMedCentral
15.
Zurück zum Zitat Shen L, Song L, Li H, et al. Association between earlier age at natural menopause and risk of diabetes in middle-aged and older Chinese women: the Dongfeng–Tongji cohort study. Diabetes Metab. 2017;43:345–50.PubMed Shen L, Song L, Li H, et al. Association between earlier age at natural menopause and risk of diabetes in middle-aged and older Chinese women: the Dongfeng–Tongji cohort study. Diabetes Metab. 2017;43:345–50.PubMed
16.
Zurück zum Zitat Malacara JM, Huerta R, Rivera B, Esparza S, Fajardo ME. Menopause in normal and uncomplicated NIDDM women: physical and emotional symptoms and hormone profile. Maturitas. 1997;28:35–45.PubMed Malacara JM, Huerta R, Rivera B, Esparza S, Fajardo ME. Menopause in normal and uncomplicated NIDDM women: physical and emotional symptoms and hormone profile. Maturitas. 1997;28:35–45.PubMed
17.
Zurück zum Zitat Appiah D, Winters SJ, Hornung CA. Bilateral oophorectomy and the risk of incident diabetes in postmenopausal women. Diabetes Care. 2014;37:725–33.PubMed Appiah D, Winters SJ, Hornung CA. Bilateral oophorectomy and the risk of incident diabetes in postmenopausal women. Diabetes Care. 2014;37:725–33.PubMed
18.
Zurück zum Zitat Anagnostis P, Christou K, Artzouchaltzi AM, et al. Early menopause and premature ovarian insufficiency are associated with increased risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Endocrinol. 2019;180:41–50.PubMed Anagnostis P, Christou K, Artzouchaltzi AM, et al. Early menopause and premature ovarian insufficiency are associated with increased risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Endocrinol. 2019;180:41–50.PubMed
19.
Zurück zum Zitat LeBlanc ES, Kapphahn K, Hedlin H, et al. Reproductive history and risk of type 2 diabetes mellitus in postmenopausal women: findings from the Women’s health initiative. Menopause. 2017;24:64–72.PubMedPubMedCentral LeBlanc ES, Kapphahn K, Hedlin H, et al. Reproductive history and risk of type 2 diabetes mellitus in postmenopausal women: findings from the Women’s health initiative. Menopause. 2017;24:64–72.PubMedPubMedCentral
20.
Zurück zum Zitat Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab. 2003;88:2404–11.PubMed Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab. 2003;88:2404–11.PubMed
21.
Zurück zum Zitat Ley CJ, Lees B, Stevenson JC. Sex- and menopause-associated changes in body-fat distribution. Am J Clin Nutr. 1992;55:950–4.PubMed Ley CJ, Lees B, Stevenson JC. Sex- and menopause-associated changes in body-fat distribution. Am J Clin Nutr. 1992;55:950–4.PubMed
22.
Zurück zum Zitat Svendsen OL, Hassager C, Christiansen C. Age- and menopause associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism. 1995;44:369–70.PubMed Svendsen OL, Hassager C, Christiansen C. Age- and menopause associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism. 1995;44:369–70.PubMed
23.
Zurück zum Zitat Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes Relat Metab Disord. 2000;24:226–31.PubMed Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes Relat Metab Disord. 2000;24:226–31.PubMed
24.
Zurück zum Zitat Lee CG, Carr MC, Murdoch SJ, et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab. 2009;94:1104–10.PubMedPubMedCentral Lee CG, Carr MC, Murdoch SJ, et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab. 2009;94:1104–10.PubMedPubMedCentral
25.
Zurück zum Zitat Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes. 2008;32:949–58. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes. 2008;32:949–58.
26.
Zurück zum Zitat Rogers NH, Perfield JW 2nd, Strissel KJ, Obin MS, Greenberg AS. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology. 2009;150:2161–8.PubMedPubMedCentral Rogers NH, Perfield JW 2nd, Strissel KJ, Obin MS, Greenberg AS. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology. 2009;150:2161–8.PubMedPubMedCentral
27.
Zurück zum Zitat Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA. 2000;97:12729–34.PubMed Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA. 2000;97:12729–34.PubMed
28.
Zurück zum Zitat Xu Y, Nedungadi TP, Zhu L, et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 2011;14:453–65.PubMedPubMedCentral Xu Y, Nedungadi TP, Zhu L, et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 2011;14:453–65.PubMedPubMedCentral
29.
Zurück zum Zitat Martinez de Morentin PB, González-García I, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20:41–53.PubMedPubMedCentral Martinez de Morentin PB, González-García I, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20:41–53.PubMedPubMedCentral
30.
Zurück zum Zitat Saito K, He Y, Yang Y, et al. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice. Sci Rep. 2016;6:23459.PubMedPubMedCentral Saito K, He Y, Yang Y, et al. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice. Sci Rep. 2016;6:23459.PubMedPubMedCentral
31.
Zurück zum Zitat Paschou SA, Anagnostis P, Goulis DG, Lambrinoudaki I. Androgen excess and post-reproductive health. Maturitas. 2018;115:115–6.PubMed Paschou SA, Anagnostis P, Goulis DG, Lambrinoudaki I. Androgen excess and post-reproductive health. Maturitas. 2018;115:115–6.PubMed
32.
Zurück zum Zitat Lindheim SR, Buchanan TA, Duffy DM, et al. Comparison of estimates of insulin sensitivity in pre- and postmenopausal women using the insulin tolerance test and the frequently sampled intravenous glucose tolerance test. J Soc Gynecol Investig. 1994;1:150–4.PubMed Lindheim SR, Buchanan TA, Duffy DM, et al. Comparison of estimates of insulin sensitivity in pre- and postmenopausal women using the insulin tolerance test and the frequently sampled intravenous glucose tolerance test. J Soc Gynecol Investig. 1994;1:150–4.PubMed
33.
Zurück zum Zitat Walton C, Godsland IF, Proudler AJ, Wynn V, Stevenson JC. The effects of the menopause on insulin sensitivity, secretion and elimination in non-obese, healthy women. Eur J Clin Invest. 1993;23:466–73.PubMed Walton C, Godsland IF, Proudler AJ, Wynn V, Stevenson JC. The effects of the menopause on insulin sensitivity, secretion and elimination in non-obese, healthy women. Eur J Clin Invest. 1993;23:466–73.PubMed
34.
Zurück zum Zitat Toth MJ, Sites CK, Eltabbakh GH, Poehlman ET. Effect of menopausal status on insulin-stimulated glucose disposal: comparison of middle-aged premenopausal and early postmenopausal women. Diabetes Care. 2000;23:801–6.PubMed Toth MJ, Sites CK, Eltabbakh GH, Poehlman ET. Effect of menopausal status on insulin-stimulated glucose disposal: comparison of middle-aged premenopausal and early postmenopausal women. Diabetes Care. 2000;23:801–6.PubMed
35.
Zurück zum Zitat Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P. Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology. 2009;150:2109–17.PubMed Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P. Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology. 2009;150:2109–17.PubMed
36.
Zurück zum Zitat Alonso A, Gonzalez-Pardo H, Garrido P, et al. Acute effects of 17 beta-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats. Age (Dordr). 2010;32:421–34. Alonso A, Gonzalez-Pardo H, Garrido P, et al. Acute effects of 17 beta-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats. Age (Dordr). 2010;32:421–34.
37.
Zurück zum Zitat Zhu L, Brown WC, Cai Q, et al. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes. 2013;62:424–34.PubMedPubMedCentral Zhu L, Brown WC, Cai Q, et al. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes. 2013;62:424–34.PubMedPubMedCentral
38.
Zurück zum Zitat Kim JH, Meyers MS, Khuder SS, et al. Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. Mol Metab. 2014;3:177–90.PubMedPubMedCentral Kim JH, Meyers MS, Khuder SS, et al. Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. Mol Metab. 2014;3:177–90.PubMedPubMedCentral
39.
Zurück zum Zitat Ribas V, Nguyen MT, Henstridge DC, et al. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ER{alpha} deficient mice. Am J Physiol Endocrinol Metab. 2010;298:E304–19.PubMed Ribas V, Nguyen MT, Henstridge DC, et al. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ER{alpha} deficient mice. Am J Physiol Endocrinol Metab. 2010;298:E304–19.PubMed
40.
Zurück zum Zitat Bryzgalova G, Gao H, Ahren B, et al. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia. 2006;49:588–97.PubMed Bryzgalova G, Gao H, Ahren B, et al. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia. 2006;49:588–97.PubMed
41.
Zurück zum Zitat Ribas V, Drew BG, Zhou Z, et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med. 2016;8:334ra334. Ribas V, Drew BG, Zhou Z, et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med. 2016;8:334ra334.
42.
Zurück zum Zitat Ribas V, Drew BG, Le JA, et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc Natl Acad Sci USA. 2011;108:16457–62.PubMed Ribas V, Drew BG, Le JA, et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc Natl Acad Sci USA. 2011;108:16457–62.PubMed
43.
Zurück zum Zitat Davis KE, Neinast M, Sun K, et al. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab. 2013;2:227–42.PubMedPubMedCentral Davis KE, Neinast M, Sun K, et al. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab. 2013;2:227–42.PubMedPubMedCentral
44.
Zurück zum Zitat Tiano JP, Mauvais-Jarvis F. Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes. Nat Rev Endocrinol. 2012;8:342–51.PubMed Tiano JP, Mauvais-Jarvis F. Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes. Nat Rev Endocrinol. 2012;8:342–51.PubMed
45.
Zurück zum Zitat Mauvais-Jarvis F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol Metab. 2016;27:844–55.PubMedPubMedCentral Mauvais-Jarvis F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol Metab. 2016;27:844–55.PubMedPubMedCentral
46.
Zurück zum Zitat Kahn SE, Andrikopoulos S, Verchere CB, Wang F, Hull RL, Vidal J. Oophorectomy promotes islet amyloid formation in a transgenic mouse model of Type II diabetes. Diabetologia. 2000;43:1309–12.PubMed Kahn SE, Andrikopoulos S, Verchere CB, Wang F, Hull RL, Vidal J. Oophorectomy promotes islet amyloid formation in a transgenic mouse model of Type II diabetes. Diabetologia. 2000;43:1309–12.PubMed
47.
Zurück zum Zitat Le May C, Chu K, Hu M, et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA. 2006;103:9232–7.PubMed Le May C, Chu K, Hu M, et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA. 2006;103:9232–7.PubMed
48.
Zurück zum Zitat Gray KE, Katon JG, LeBlanc ES, et al. Vasomotor symptom characteristics: are they risk factors for incident diabetes? Menopause. 2018;25:520–30.PubMedPubMedCentral Gray KE, Katon JG, LeBlanc ES, et al. Vasomotor symptom characteristics: are they risk factors for incident diabetes? Menopause. 2018;25:520–30.PubMedPubMedCentral
49.
Zurück zum Zitat Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation. 2011;123:1243–62.PubMedPubMedCentral Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation. 2011;123:1243–62.PubMedPubMedCentral
50.
Zurück zum Zitat Salpeter SR, Walsh JM, Ormiston TM, Greyber E, Buckley NS, Salpeter EE. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab. 2006;8:538–54.PubMed Salpeter SR, Walsh JM, Ormiston TM, Greyber E, Buckley NS, Salpeter EE. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab. 2006;8:538–54.PubMed
51.
Zurück zum Zitat Espeland MA, Hogan PE, Fineberg SE, et al. Effect of postmenopausal hormone therapy on glucose and insulin concentrations. Diabetes Care. 1998;21:1589–95.PubMed Espeland MA, Hogan PE, Fineberg SE, et al. Effect of postmenopausal hormone therapy on glucose and insulin concentrations. Diabetes Care. 1998;21:1589–95.PubMed
52.
Zurück zum Zitat Kanaya AM, Herrington D, Vittinghoff E, et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/progestin Replacement Study. A randomized, double-blind, placebo controlled trial. Ann Intern Med. 2003;138:1–9.PubMed Kanaya AM, Herrington D, Vittinghoff E, et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/progestin Replacement Study. A randomized, double-blind, placebo controlled trial. Ann Intern Med. 2003;138:1–9.PubMed
53.
Zurück zum Zitat Margolis KL, Bonds DE, Rodabough RJ, et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s health initiative hormone trial. Diabetologia. 2004;47:1175–87.PubMed Margolis KL, Bonds DE, Rodabough RJ, et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s health initiative hormone trial. Diabetologia. 2004;47:1175–87.PubMed
54.
Zurück zum Zitat Anagnostis P, Galanis P, Chatzistergiou V, et al. The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: a systematic review and meta-analysis. Maturitas. 2017;99:27–36.PubMed Anagnostis P, Galanis P, Chatzistergiou V, et al. The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: a systematic review and meta-analysis. Maturitas. 2017;99:27–36.PubMed
55.
Zurück zum Zitat Manson JE, Rimm EB, Colditz GA, et al. A prospective study of postmenopausal estrogen therapy and subsequent incidence of non-insulin-dependent diabetes mellitus. Ann Epidemiol. 1992;2:665–73.PubMed Manson JE, Rimm EB, Colditz GA, et al. A prospective study of postmenopausal estrogen therapy and subsequent incidence of non-insulin-dependent diabetes mellitus. Ann Epidemiol. 1992;2:665–73.PubMed
56.
Zurück zum Zitat de Lauzon-Guillain B, Fournier A, Fabre A, et al. Menopausal hormone therapy and new-onset diabetes in the French Etude Epidemiologique de Femmes de la Mutuelle Generale de l’Education Nationale (E3N) cohort. Diabetologia. 2009;52:2092–100.PubMedPubMedCentral de Lauzon-Guillain B, Fournier A, Fabre A, et al. Menopausal hormone therapy and new-onset diabetes in the French Etude Epidemiologique de Femmes de la Mutuelle Generale de l’Education Nationale (E3N) cohort. Diabetologia. 2009;52:2092–100.PubMedPubMedCentral
57.
Zurück zum Zitat Duncan AC, Lyall H, Roberts RN, et al. The effect of estradiol and a combined estradiol/progestagen preparation on insulin sensitivity in healthy postmenopausal women. J Clin Endocrinol Metab. 1999;84:2402–7.PubMed Duncan AC, Lyall H, Roberts RN, et al. The effect of estradiol and a combined estradiol/progestagen preparation on insulin sensitivity in healthy postmenopausal women. J Clin Endocrinol Metab. 1999;84:2402–7.PubMed
58.
Zurück zum Zitat Mattiasson I, Rendell M, Tornquist C, Jeppsson S, Hulthen UL. Effects of estrogen replacement therapy on abdominal fat compartments as related to glucose and lipid metabolism in early postmenopausal women. Horm Metab Res. 2002;34:583–8.PubMed Mattiasson I, Rendell M, Tornquist C, Jeppsson S, Hulthen UL. Effects of estrogen replacement therapy on abdominal fat compartments as related to glucose and lipid metabolism in early postmenopausal women. Horm Metab Res. 2002;34:583–8.PubMed
59.
Zurück zum Zitat Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med. 1991;325:1196–204.PubMed Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med. 1991;325:1196–204.PubMed
60.
Zurück zum Zitat Elkik F, Gompel A, Mercier-Bodard C, et al. Effects of percutaneous estradiol and conjugated estrogens on the level of plasma proteins and triglycerides in postmenopausal women. Am J Obstet Gynecol. 1982;143:888–92.PubMed Elkik F, Gompel A, Mercier-Bodard C, et al. Effects of percutaneous estradiol and conjugated estrogens on the level of plasma proteins and triglycerides in postmenopausal women. Am J Obstet Gynecol. 1982;143:888–92.PubMed
61.
Zurück zum Zitat Cefalu WT, Wagner JD, Bell-Farrow AD, et al. The effects of hormonal replacement therapy on insulin sensitivity in surgically postmenopausal cynomolgus monkeys (Macaca fascicularis). Am J Obstet Gynecol. 1994;171:440–5.PubMed Cefalu WT, Wagner JD, Bell-Farrow AD, et al. The effects of hormonal replacement therapy on insulin sensitivity in surgically postmenopausal cynomolgus monkeys (Macaca fascicularis). Am J Obstet Gynecol. 1994;171:440–5.PubMed
62.
Zurück zum Zitat Godsland IF, Gangar K, Walton C, et al. Insulin resistance, secretion, and elimination in postmenopausal women receiving oral or transdermal hormone replacement therapy. Metabolism. 1993;42:846–53.PubMed Godsland IF, Gangar K, Walton C, et al. Insulin resistance, secretion, and elimination in postmenopausal women receiving oral or transdermal hormone replacement therapy. Metabolism. 1993;42:846–53.PubMed
63.
Zurück zum Zitat Kimmerle R, Heinemann L, Heise T, et al. Influence of continuous combined estradiol-norethisterone acetate preparations on insulin sensitivity in postmenopausal nondiabetic women. Menopause. 1999;6:36–42.PubMed Kimmerle R, Heinemann L, Heise T, et al. Influence of continuous combined estradiol-norethisterone acetate preparations on insulin sensitivity in postmenopausal nondiabetic women. Menopause. 1999;6:36–42.PubMed
64.
Zurück zum Zitat Spencer CP, Godsland IF, Cooper AJ, Ross D, Whitehead MI, Stevenson JC. Effects of oral and transdermal 17beta-estradiol with cyclical oral norethindrone acetate on insulin sensitivity, secretion, and elimination in postmenopausal women. Metabolism. 2000;49:742–7.PubMed Spencer CP, Godsland IF, Cooper AJ, Ross D, Whitehead MI, Stevenson JC. Effects of oral and transdermal 17beta-estradiol with cyclical oral norethindrone acetate on insulin sensitivity, secretion, and elimination in postmenopausal women. Metabolism. 2000;49:742–7.PubMed
65.
Zurück zum Zitat De Cleyn K, Buytaert P, Coppens M. Carbohydrate metabolism during hormonal substitution therapy. Maturitas. 1989;11:235–42.PubMed De Cleyn K, Buytaert P, Coppens M. Carbohydrate metabolism during hormonal substitution therapy. Maturitas. 1989;11:235–42.PubMed
66.
Zurück zum Zitat Crook D, Godsland IF, Hull J, Stevenson JC. Hormone replacement therapy with dydrogesterone and 17 beta-oestradiol: effects on serum lipoproteins and glucose tolerance during 24 month follow up. Br J Obstet Gynaecol. 1997;104:298–304.PubMed Crook D, Godsland IF, Hull J, Stevenson JC. Hormone replacement therapy with dydrogesterone and 17 beta-oestradiol: effects on serum lipoproteins and glucose tolerance during 24 month follow up. Br J Obstet Gynaecol. 1997;104:298–304.PubMed
67.
Zurück zum Zitat Stuenkel CA, Davis SR, Gompel A, et al. Treatment of symptoms of the menopause: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:3975–4011.PubMed Stuenkel CA, Davis SR, Gompel A, et al. Treatment of symptoms of the menopause: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:3975–4011.PubMed
Metadaten
Titel
Type 2 Diabetes Mellitus and Menopausal Hormone Therapy: An Update
verfasst von
Stavroula A. Paschou
Nikolaos Papanas
Publikationsdatum
24.09.2019
Verlag
Springer Healthcare
Erschienen in
Diabetes Therapy / Ausgabe 6/2019
Print ISSN: 1869-6953
Elektronische ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-019-00695-y

Weitere Artikel der Ausgabe 6/2019

Diabetes Therapy 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.