Skip to main content
Erschienen in: Calcified Tissue International 6/2014

01.06.2014 | Original Research

Type III Collagen Regulates Osteoblastogenesis and the Quantity of Trabecular Bone

verfasst von: Susan W. Volk, Shalin R. Shah, Arthur J. Cohen, Yanjian Wang, Becky K. Brisson, Laurie K. Vogel, Kurt D. Hankenson, Sherrill L. Adams

Erschienen in: Calcified Tissue International | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Type III collagen (Col3), a fibril-forming collagen, is a major extracellular matrix component in a variety of internal organs and skin. It is also expressed at high levels during embryonic skeletal development and is expressed by osteoblasts in mature bone. Loss of function mutations in the gene encoding Col3 (Col3a1) are associated with vascular Ehlers–Danlos syndrome (EDS). Although the most significant clinical consequences of this syndrome are associated with catastrophic failure and impaired healing of soft tissues, several studies have documented skeletal abnormalities in vascular EDS patients. However, there are no reports of the role of Col3 deficiency on the murine skeleton. We compared craniofacial and skeletal phenotypes in young (6–8 weeks) and middle-aged (>1 year) control (Col3+/+) and haploinsufficient (Col3+/−) mice, as well as young null (Col3−/−) mice by microcomputed tomography (μCT). Although Col3+/− mice did not have significant craniofacial abnormalities based upon cranial morphometrics, μCT analysis of distal femur trabecular bone demonstrated significant reductions in bone volume (BV), bone volume fraction (BV/TV), connectivity density, structure model index and trabecular thickness in young adult female Col3+/− mice relative to wild-type littermates. The reduction in BV/TV persisted in female mice at 1 year of age. Next, we evaluated the role of Col3 in vitro. Osteogenesis assays revealed that cultures of mesenchymal progenitors collected from Col3−/− embryos display decreased alkaline phosphatase activity and reduced capacity to undergo mineralization. Consistent with this data, a reduction in expression of osteogenic markers (type I collagen, osteocalcin and bone sialoprotein) correlates with reduced bone Col3 expression in Col3+/− mice and with age in vivo. A small but significant reduction in osteoclast numbers was found in Col3+/− compared to Col3+/+ bones. Taken together, these findings indicate that Col3 plays a role in development of trabecular bone through its effects on osteoblast differentiation.
Literatur
1.
Zurück zum Zitat Shen H, Recker RR, Deng HW (2003) Molecular and genetic mechanisms of osteoporosis: implications for treatment. Curr Mol Med 3:737–757PubMedCrossRef Shen H, Recker RR, Deng HW (2003) Molecular and genetic mechanisms of osteoporosis: implications for treatment. Curr Mol Med 3:737–757PubMedCrossRef
2.
Zurück zum Zitat Surgeon General (2004) Bone health and osteoporosis: a Report of the Surgeon General. U.S. Department of Health and Human Services, Rockville, MD Surgeon General (2004) Bone health and osteoporosis: a Report of the Surgeon General. U.S. Department of Health and Human Services, Rockville, MD
3.
Zurück zum Zitat Burge R, Dawson-Hughes B, Solomon DH, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRef Burge R, Dawson-Hughes B, Solomon DH, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRef
4.
Zurück zum Zitat Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 10:40–57PubMedCrossRef Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 10:40–57PubMedCrossRef
5.
Zurück zum Zitat Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT (2012) Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 27:538–551PubMedCrossRef Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT (2012) Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 27:538–551PubMedCrossRef
6.
Zurück zum Zitat Epstein EH Jr (1974) (Alpha1(3))3 human skin collagen. Release by pepsin digestion and preponderance in fetal life. J Biol Chem 249:3225–3331PubMed Epstein EH Jr (1974) (Alpha1(3))3 human skin collagen. Release by pepsin digestion and preponderance in fetal life. J Biol Chem 249:3225–3331PubMed
7.
Zurück zum Zitat Smith LT, Holbrook KA, Byers PH (1982) Structure of the dermal matrix during development and in the adult. J Invest Dermatol 79:93s–104sPubMedCrossRef Smith LT, Holbrook KA, Byers PH (1982) Structure of the dermal matrix during development and in the adult. J Invest Dermatol 79:93s–104sPubMedCrossRef
8.
Zurück zum Zitat Tolstoshev P, Haber R, Trapnell BC, Crystal RG (1981) Procollagen mRNA levels and activity and collagen synthesis during the fetal development of sheep lung, tendon and skin. J Biol Chem 256:9672–9679PubMed Tolstoshev P, Haber R, Trapnell BC, Crystal RG (1981) Procollagen mRNA levels and activity and collagen synthesis during the fetal development of sheep lung, tendon and skin. J Biol Chem 256:9672–9679PubMed
9.
Zurück zum Zitat Birk DE, Mayne R (1997) Localization of collagen types I, III, and V during tendon development. Eur J Cell Biol 72:352–361PubMed Birk DE, Mayne R (1997) Localization of collagen types I, III, and V during tendon development. Eur J Cell Biol 72:352–361PubMed
10.
Zurück zum Zitat Henkel W, Glanville RW (1982) Covalent crosslinking between molecules of type I and type III collagen. Eur J Biochem 122:205–231PubMedCrossRef Henkel W, Glanville RW (1982) Covalent crosslinking between molecules of type I and type III collagen. Eur J Biochem 122:205–231PubMedCrossRef
11.
Zurück zum Zitat Keene DR, Sakai LY, Bachinger HP, Burgeson RE (1987) Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 105:2392–2402CrossRef Keene DR, Sakai LY, Bachinger HP, Burgeson RE (1987) Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 105:2392–2402CrossRef
12.
Zurück zum Zitat Keene DR, Sakai LY, Burgeson RE (1991) Human bone contains type III collagen, type VI collagen and fibrillin. J Histochem Cytochem 38:59–69CrossRef Keene DR, Sakai LY, Burgeson RE (1991) Human bone contains type III collagen, type VI collagen and fibrillin. J Histochem Cytochem 38:59–69CrossRef
13.
Zurück zum Zitat Reddi AH, Gay R, Gay S, Miller EJ (1977) Transition in collagen types during matrix-induced cartilage, bone and bone marrow formation. Proc Natl Acad Sci USA 74:5589–5592PubMedCentralPubMedCrossRef Reddi AH, Gay R, Gay S, Miller EJ (1977) Transition in collagen types during matrix-induced cartilage, bone and bone marrow formation. Proc Natl Acad Sci USA 74:5589–5592PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Silver MH, Foidart JM, Pratt RM (1981) Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation 18:141–149PubMedCrossRef Silver MH, Foidart JM, Pratt RM (1981) Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation 18:141–149PubMedCrossRef
15.
Zurück zum Zitat Maehata Y, Takamizawa S, Ozawa S, Izukuri K, Kato Y, Sato S, Lee MC, Kimura A, Hara RI (2007) Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol 26:371–381PubMedCrossRef Maehata Y, Takamizawa S, Ozawa S, Izukuri K, Kato Y, Sato S, Lee MC, Kimura A, Hara RI (2007) Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol 26:371–381PubMedCrossRef
16.
Zurück zum Zitat Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka R (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22:1943–1956PubMedCrossRef Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka R (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22:1943–1956PubMedCrossRef
17.
Zurück zum Zitat De Coster PJ, Martens LC, De Paepe A (2005) Oral health in prevalent types of Ehlers–Danlos syndromes. J Oral Pathol Med 34:298–307PubMedCrossRef De Coster PJ, Martens LC, De Paepe A (2005) Oral health in prevalent types of Ehlers–Danlos syndromes. J Oral Pathol Med 34:298–307PubMedCrossRef
18.
Zurück zum Zitat Stanitski DF, Nadjarian R, Stanitski CL, Bawle E, Tsipouras P (2000) Orthopaedic manifestations of Ehlers–Danlos syndrome. Clin Orthop Relat Res 376:213–221PubMedCrossRef Stanitski DF, Nadjarian R, Stanitski CL, Bawle E, Tsipouras P (2000) Orthopaedic manifestations of Ehlers–Danlos syndrome. Clin Orthop Relat Res 376:213–221PubMedCrossRef
19.
Zurück zum Zitat Yen JL, Lin SP, Chen MR, Niu DM (2006) Clinical features of Ehlers–Danlos syndrome. J Formos Med Assoc 105:475–480PubMedCrossRef Yen JL, Lin SP, Chen MR, Niu DM (2006) Clinical features of Ehlers–Danlos syndrome. J Formos Med Assoc 105:475–480PubMedCrossRef
20.
Zurück zum Zitat Liu X, Wu H, Burne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856PubMedCentralPubMedCrossRef Liu X, Wu H, Burne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL (2011) Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 194:25–37PubMedCentralPubMedCrossRef Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL (2011) Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 194:25–37PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Richtsmeier JT, Baxter LL, Reeves RH (2000) Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice. Dev Dyn 217:137–145PubMedCrossRef Richtsmeier JT, Baxter LL, Reeves RH (2000) Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice. Dev Dyn 217:137–145PubMedCrossRef
23.
Zurück zum Zitat Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three dimensional self-assembling peptide scaffold. Tissue Eng 12:2215–2227PubMedCrossRef Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three dimensional self-assembling peptide scaffold. Tissue Eng 12:2215–2227PubMedCrossRef
24.
Zurück zum Zitat Legner CJ, Lepper C, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2004) Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation. J Cell Physiol 200:327–333CrossRef Legner CJ, Lepper C, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2004) Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation. J Cell Physiol 200:327–333CrossRef
25.
Zurück zum Zitat Volk SW, Wang Y, Hankenson KD (2012) Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: implications for MSC-based therapies. Cell Transplant 21:2189–2200PubMedCrossRef Volk SW, Wang Y, Hankenson KD (2012) Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: implications for MSC-based therapies. Cell Transplant 21:2189–2200PubMedCrossRef
26.
Zurück zum Zitat Volk SW, Diefenderfer DL, Christopher SA, Haskins ME, Leboy PS (2005) Effects of osteogenic inducers on cultures of canine mesenchymal stem cells. Am J Vet Res 66:1729–1737PubMedCrossRef Volk SW, Diefenderfer DL, Christopher SA, Haskins ME, Leboy PS (2005) Effects of osteogenic inducers on cultures of canine mesenchymal stem cells. Am J Vet Res 66:1729–1737PubMedCrossRef
27.
Zurück zum Zitat Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Galléa S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-[beta]1 on osteoblast differentiation. Bone 29:323–330PubMedCrossRef Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Galléa S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-[beta]1 on osteoblast differentiation. Bone 29:323–330PubMedCrossRef
28.
Zurück zum Zitat Benatti BB, Silverio KG, Casati MZ, Sallum EA, Nociti FH Jr (2008) Influence of aging on biological properties of periodontal ligament cells. Connect Tissue Res 49:401–408PubMedCrossRef Benatti BB, Silverio KG, Casati MZ, Sallum EA, Nociti FH Jr (2008) Influence of aging on biological properties of periodontal ligament cells. Connect Tissue Res 49:401–408PubMedCrossRef
29.
Zurück zum Zitat Furth JJ, Allen RG, Tresini M, Keogh B, Cristofalo VJ (1997) Abundance of alpha 1(I) and alpha 1(III) procollagen and p21 mRNAs in fibroblasts cultured from fetal and postnatal dermis. Mech Ageing Dev 97:131–142PubMedCrossRef Furth JJ, Allen RG, Tresini M, Keogh B, Cristofalo VJ (1997) Abundance of alpha 1(I) and alpha 1(III) procollagen and p21 mRNAs in fibroblasts cultured from fetal and postnatal dermis. Mech Ageing Dev 97:131–142PubMedCrossRef
30.
Zurück zum Zitat Mays PK, Bishop JE, Laurent GJ (1988) Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev 45:203–212PubMedCrossRef Mays PK, Bishop JE, Laurent GJ (1988) Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev 45:203–212PubMedCrossRef
31.
Zurück zum Zitat Takeda K, Gosiewska A, Peterkofsky B (1992) Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J Cell Phys 153:450–459CrossRef Takeda K, Gosiewska A, Peterkofsky B (1992) Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J Cell Phys 153:450–459CrossRef
32.
Zurück zum Zitat Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868PubMedCentralPubMedCrossRef Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Cooper TK, Zhong Q, Krawczyk M, Tae HJ, MÅller GA, Schubert R, Myers LA, Dietz HC, Talan MI, Briest W (2010) The haploinsufficient Col3a1 mouse as a model for vascular Ehlers–Danlos syndrome. Vet Pathol 47:1028–1039PubMedCentralPubMedCrossRef Cooper TK, Zhong Q, Krawczyk M, Tae HJ, MÅller GA, Schubert R, Myers LA, Dietz HC, Talan MI, Briest W (2010) The haploinsufficient Col3a1 mouse as a model for vascular Ehlers–Danlos syndrome. Vet Pathol 47:1028–1039PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Rep Reg 19:134–148CrossRef Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Rep Reg 19:134–148CrossRef
35.
Zurück zum Zitat Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-beta 1 induced apoptosis and epithelial–mesenchymal transition. Mol Biol Cell 23:677–689CrossRef Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-beta 1 induced apoptosis and epithelial–mesenchymal transition. Mol Biol Cell 23:677–689CrossRef
36.
Zurück zum Zitat Hurme T, Kalimo H, Sandberg M, Lehto JM, Vuorio E (1991) Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Lab Invest 64:76–84PubMed Hurme T, Kalimo H, Sandberg M, Lehto JM, Vuorio E (1991) Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Lab Invest 64:76–84PubMed
37.
Zurück zum Zitat Liu SH, Yang RS, Al-Haikh R, Lane JM (1995) Collagen in tendon, ligament and bone healing. Clin Orthop Relat Res 318:265–278PubMed Liu SH, Yang RS, Al-Haikh R, Lane JM (1995) Collagen in tendon, ligament and bone healing. Clin Orthop Relat Res 318:265–278PubMed
38.
Zurück zum Zitat Merkel JR, DiPaolo BR, Hallock GG, Rice DC (1988) Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med 187:493–497PubMedCrossRef Merkel JR, DiPaolo BR, Hallock GG, Rice DC (1988) Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med 187:493–497PubMedCrossRef
39.
Zurück zum Zitat Briest W, Cooper TK, Tae HJ, Krawczyk M, McDonald DM, Talan MI (2011) Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers–Danlos syndrome. J Pharmacol Exp Ther 337:621–627PubMedCentralPubMedCrossRef Briest W, Cooper TK, Tae HJ, Krawczyk M, McDonald DM, Talan MI (2011) Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers–Danlos syndrome. J Pharmacol Exp Ther 337:621–627PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (2011) G protein–coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci USA 108:12925–12930PubMedCentralPubMedCrossRef Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (2011) G protein–coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci USA 108:12925–12930PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Apaja-Sarkkinen M, Autio-Harmainen H, Alavaikko M, Risteli J, Risteli L (1986) Immunohistochemical study of basement membrane proteins and type III procollagen in myelofibrosis. Br J Haematol 63:571–580PubMedCrossRef Apaja-Sarkkinen M, Autio-Harmainen H, Alavaikko M, Risteli J, Risteli L (1986) Immunohistochemical study of basement membrane proteins and type III procollagen in myelofibrosis. Br J Haematol 63:571–580PubMedCrossRef
42.
Zurück zum Zitat Becker J, Schuppan D, Benzian H, Bals T, Hahn EG, Cantaluppi C, Reichart P (1986) Immunohistochemical distribution of collagens type IV, V, and VI and of pro-collagens types I and III in human alveolar bone and dentine. J Histochem Cytochem 34:1417–1429PubMedCrossRef Becker J, Schuppan D, Benzian H, Bals T, Hahn EG, Cantaluppi C, Reichart P (1986) Immunohistochemical distribution of collagens type IV, V, and VI and of pro-collagens types I and III in human alveolar bone and dentine. J Histochem Cytochem 34:1417–1429PubMedCrossRef
43.
Zurück zum Zitat Bentley S, Alabaster O, Foidart JM (1981) Collagen heterogeneity in normal human bone marrow. Br J Haematol 48:287–291PubMedCrossRef Bentley S, Alabaster O, Foidart JM (1981) Collagen heterogeneity in normal human bone marrow. Br J Haematol 48:287–291PubMedCrossRef
44.
Zurück zum Zitat Miller E (1973) A review of biochemical studies on the genetically distinct collagens of the skeletal system. Clin Orthop Relat Res 92:260–280PubMedCrossRef Miller E (1973) A review of biochemical studies on the genetically distinct collagens of the skeletal system. Clin Orthop Relat Res 92:260–280PubMedCrossRef
45.
Zurück zum Zitat Muller P, Raisch K, Matzen K, Gay S (1977) Presence of type III collagen in bone from a patient with osteogenesis imperfecta. Eur J Pediatr 125:29–37PubMedCrossRef Muller P, Raisch K, Matzen K, Gay S (1977) Presence of type III collagen in bone from a patient with osteogenesis imperfecta. Eur J Pediatr 125:29–37PubMedCrossRef
46.
Zurück zum Zitat Carter D, Sloan P, Aaron JE (1991) Immunolocalization of collagen types I and III, tenascin and fibronectin in intramembranous bone. J Histochem Cytochem 39:599–606PubMedCrossRef Carter D, Sloan P, Aaron JE (1991) Immunolocalization of collagen types I and III, tenascin and fibronectin in intramembranous bone. J Histochem Cytochem 39:599–606PubMedCrossRef
47.
Zurück zum Zitat Luther F, Saino H, Carter DH, Aaron JE (2003) Evidence for an extensive collagen type III/VI proximal domain in the rat femur. Bone 32:652–659PubMedCrossRef Luther F, Saino H, Carter DH, Aaron JE (2003) Evidence for an extensive collagen type III/VI proximal domain in the rat femur. Bone 32:652–659PubMedCrossRef
48.
Zurück zum Zitat Stevenson K, Kucich U, Whitbeck C, Levin RM, Howard PS (2006) Functional changes in bladder tissue from type III collagen-deficient mice. Mol Cell Biochem 283:107–114PubMedCrossRef Stevenson K, Kucich U, Whitbeck C, Levin RM, Howard PS (2006) Functional changes in bladder tissue from type III collagen-deficient mice. Mol Cell Biochem 283:107–114PubMedCrossRef
50.
Zurück zum Zitat Balla B, Kósa JP, Kiss J, Borsy A, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Speer G, Orosz L, Lakatos P (2008) Different gene expression patterns in the bone tissue of aging and postmenopausal osteoporotic and non-osteoporotic women. Calcif Tissue Int 82:12–26PubMedCrossRef Balla B, Kósa JP, Kiss J, Borsy A, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Speer G, Orosz L, Lakatos P (2008) Different gene expression patterns in the bone tissue of aging and postmenopausal osteoporotic and non-osteoporotic women. Calcif Tissue Int 82:12–26PubMedCrossRef
51.
Zurück zum Zitat Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ (2010) Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86:470–483PubMedCrossRef Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ (2010) Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86:470–483PubMedCrossRef
52.
53.
Zurück zum Zitat Oganesian A, Au S, Horst JA, Holzhausen LC, Macy AJ, Pace JM, Bornstein P (2006) The NH2-terminal propeptide of type I procollagen acts intracellularly to modulate cell function. J Biol Chem 281:38507–38518PubMedCentralPubMedCrossRef Oganesian A, Au S, Horst JA, Holzhausen LC, Macy AJ, Pace JM, Bornstein P (2006) The NH2-terminal propeptide of type I procollagen acts intracellularly to modulate cell function. J Biol Chem 281:38507–38518PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP2. J Cell Biol 144:1069–1080PubMedCentralPubMedCrossRef Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP2. J Cell Biol 144:1069–1080PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Zoppi N, Gardella R, DePaepe A, Barlati S, Colombi M (2004) Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate α2β1 integrin, and recruit αvβ3 instead of α5β1 integrin. J Biol Chem 279:18157–18168PubMedCrossRef Zoppi N, Gardella R, DePaepe A, Barlati S, Colombi M (2004) Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate α2β1 integrin, and recruit αvβ3 instead of α5β1 integrin. J Biol Chem 279:18157–18168PubMedCrossRef
Metadaten
Titel
Type III Collagen Regulates Osteoblastogenesis and the Quantity of Trabecular Bone
verfasst von
Susan W. Volk
Shalin R. Shah
Arthur J. Cohen
Yanjian Wang
Becky K. Brisson
Laurie K. Vogel
Kurt D. Hankenson
Sherrill L. Adams
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 6/2014
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-014-9843-x

Weitere Artikel der Ausgabe 6/2014

Calcified Tissue International 6/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.