Skip to main content
Erschienen in: Diabetologia 1/2012

01.01.2012 | Article

Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions

verfasst von: K. Y. Chu, H. Li, K. Wada, J. D. Johnson

Erschienen in: Diabetologia | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Ubiquitin C-terminal hydrolase L1 (UCHL1) is associated with neurodegenerative diseases and has been suggested to have roles in pancreatic beta cells. Our proteomic analysis revealed that UCHL1 was the most increased protein in MIN6 cells exposed to palmitate. The present study used a genetic loss-of-function model to test the hypothesis that UCHL1 is required for normal beta cell function and fate under lipotoxic conditions.

Methods

Human islets, mouse islets and MIN6 cells were used to analyse UCHL1 protein levels and regulation of UCHL1 by palmitate. The levels of free mono-ubiquitin and poly-ubiquitinated proteins were assessed. Gracile axonal dystrophy (GAD) mutant mice lacking UCHL1 were fed a normal or lipotoxic high-fat diet. Glucose tolerance, insulin tolerance and insulin secretion were assessed in vivo. Beta cell death and proliferation were assessed by TUNEL and proliferating cell nuclear antigen (PCNA) staining. Insulin secretion, calcium signalling, endoplasmic reticulum (ER) stress, apoptosis and SNARE protein levels were assessed in vitro.

Results

UCHL1 protein, which was highly specific to beta cells, was increased by palmitate at basal glucose, but not in the context of hyperglycaemia associated with frank diabetes. Although islet development and function were initially normal in Uchl1 −/− mice, a 4-week high-fat diet caused glucose intolerance and impaired insulin secretion. Uchl1 −/− mice had increased ER stress and beta cell apoptosis. The levels of SNARE proteins were dysregulated in Uchl1 −/− islets. Palmitate-stimulated vesicle-associated membrane protein 2 (VAMP2) ubiquitination was modulated by a chemical UCHL1 inhibitor.

Conclusions/interpretation

Together, these data suggest that UCHL1 has essential functional and anti-apoptotic roles in beta cells under stress conditions associated with lipotoxicity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef
2.
Zurück zum Zitat Karaca M, Magnan C, Kargar C (2009) Functional pancreatic beta-cell mass: involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab 35:77–84PubMedCrossRef Karaca M, Magnan C, Kargar C (2009) Functional pancreatic beta-cell mass: involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab 35:77–84PubMedCrossRef
3.
Zurück zum Zitat Hershko A, Ciechanover A, Varshavsky A (2000) Basic Medical Research Award. The ubiquitin system. Nat Med 6:1073–1081PubMedCrossRef Hershko A, Ciechanover A, Varshavsky A (2000) Basic Medical Research Award. The ubiquitin system. Nat Med 6:1073–1081PubMedCrossRef
4.
Zurück zum Zitat Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148PubMedCrossRef Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148PubMedCrossRef
5.
Zurück zum Zitat Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH (2007) Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930–939PubMedCrossRef Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH (2007) Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930–939PubMedCrossRef
6.
Zurück zum Zitat Kawaguchi M, Minami K, Nagashima K, Seino S (2006) Essential role of ubiquitin–proteasome system in normal regulation of insulin secretion. J Biol Chem 281:13015–13020PubMedCrossRef Kawaguchi M, Minami K, Nagashima K, Seino S (2006) Essential role of ubiquitin–proteasome system in normal regulation of insulin secretion. J Biol Chem 281:13015–13020PubMedCrossRef
7.
Zurück zum Zitat Lopez-Avalos MD, Duvivier-Kali VF, Xu G, Bonner-Weir S, Sharma A, Weir GC (2006) Evidence for a role of the ubiquitin–proteasome pathway in pancreatic islets. Diabetes 55:1223–1231PubMedCrossRef Lopez-Avalos MD, Duvivier-Kali VF, Xu G, Bonner-Weir S, Sharma A, Weir GC (2006) Evidence for a role of the ubiquitin–proteasome pathway in pancreatic islets. Diabetes 55:1223–1231PubMedCrossRef
8.
Zurück zum Zitat Costes S, Vandewalle B, Tourrel-Cuzin C et al (2009) Degradation of cAMP-responsive element-binding protein by the ubiquitin–proteasome pathway contributes to glucotoxicity in beta-cells and human pancreatic islets. Diabetes 58:1105–1115PubMedCrossRef Costes S, Vandewalle B, Tourrel-Cuzin C et al (2009) Degradation of cAMP-responsive element-binding protein by the ubiquitin–proteasome pathway contributes to glucotoxicity in beta-cells and human pancreatic islets. Diabetes 58:1105–1115PubMedCrossRef
9.
Zurück zum Zitat Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673PubMedCrossRef Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673PubMedCrossRef
10.
Zurück zum Zitat Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368PubMedCrossRef Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368PubMedCrossRef
11.
Zurück zum Zitat Nijman SM, Luna-Vargas MP, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786PubMedCrossRef Nijman SM, Luna-Vargas MP, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786PubMedCrossRef
12.
Zurück zum Zitat Osaka H, Wang YL, Takada K et al (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12:1945–1958PubMedCrossRef Osaka H, Wang YL, Takada K et al (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12:1945–1958PubMedCrossRef
13.
Zurück zum Zitat Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209–218PubMedCrossRef Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209–218PubMedCrossRef
14.
Zurück zum Zitat Choi J, Levey AI, Weintraub ST et al (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 279:13256–13264PubMedCrossRef Choi J, Levey AI, Weintraub ST et al (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 279:13256–13264PubMedCrossRef
15.
Zurück zum Zitat Maraganore DM, Lesnick TG, Elbaz A et al (2004) UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol 55:512–521PubMedCrossRef Maraganore DM, Lesnick TG, Elbaz A et al (2004) UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol 55:512–521PubMedCrossRef
16.
Zurück zum Zitat Saigoh K, Wang YL, Suh JG et al (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23:47–51PubMed Saigoh K, Wang YL, Suh JG et al (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23:47–51PubMed
17.
Zurück zum Zitat Goto A, Wang YL, Kabuta T et al (2009) Proteomic and histochemical analysis of proteins involved in the dying-back-type of axonal degeneration in the gracile axonal dystrophy (gad) mouse. Neurochem Int 54:330–338PubMedCrossRef Goto A, Wang YL, Kabuta T et al (2009) Proteomic and histochemical analysis of proteins involved in the dying-back-type of axonal degeneration in the gracile axonal dystrophy (gad) mouse. Neurochem Int 54:330–338PubMedCrossRef
18.
Zurück zum Zitat Castegna A, Thongboonkerd V, Klein J et al (2004) Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl-terminal hydrolase L-1, reveals oxidation of key proteins. J Neurochem 88:1540–1546PubMedCrossRef Castegna A, Thongboonkerd V, Klein J et al (2004) Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl-terminal hydrolase L-1, reveals oxidation of key proteins. J Neurochem 88:1540–1546PubMedCrossRef
19.
Zurück zum Zitat Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5: a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228PubMedCrossRef Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5: a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228PubMedCrossRef
20.
Zurück zum Zitat Dodge R, Loomans C, Sharma A, Bonner-Weir S (2009) Developmental pathways during in vitro progression of human islet neogenesis. Differentiation 77:135–147PubMedCrossRef Dodge R, Loomans C, Sharma A, Bonner-Weir S (2009) Developmental pathways during in vitro progression of human islet neogenesis. Differentiation 77:135–147PubMedCrossRef
21.
Zurück zum Zitat Yokoyama-Hayashi K, Takahashi T, Kakita A, Yamashina S (2002) Expression of PGP9.5 in ductal cells of the rat pancreas during development and regeneration: can it be a marker for pancreatic progenitor cells? Endocr J 49:61–74PubMedCrossRef Yokoyama-Hayashi K, Takahashi T, Kakita A, Yamashina S (2002) Expression of PGP9.5 in ductal cells of the rat pancreas during development and regeneration: can it be a marker for pancreatic progenitor cells? Endocr J 49:61–74PubMedCrossRef
22.
Zurück zum Zitat Simon KC, Chen H, Schwarzschild M, Ascherio A (2007) Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology 69:1688–1695PubMedCrossRef Simon KC, Chen H, Schwarzschild M, Ascherio A (2007) Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology 69:1688–1695PubMedCrossRef
23.
Zurück zum Zitat Driver JA, Smith A, Buring JE, Gaziano JM, Kurth T, Logroscino G (2008) Prospective cohort study of type 2 diabetes and the risk of Parkinson's disease. Diabetes Care 31:2003–2005PubMedCrossRef Driver JA, Smith A, Buring JE, Gaziano JM, Kurth T, Logroscino G (2008) Prospective cohort study of type 2 diabetes and the risk of Parkinson's disease. Diabetes Care 31:2003–2005PubMedCrossRef
24.
Zurück zum Zitat Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:863–870PubMedCrossRef Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:863–870PubMedCrossRef
25.
Zurück zum Zitat Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213–1217PubMedCrossRef Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213–1217PubMedCrossRef
26.
Zurück zum Zitat Marzban L, Park K, Verchere CB (2003) Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol 38:347–351PubMedCrossRef Marzban L, Park K, Verchere CB (2003) Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol 38:347–351PubMedCrossRef
27.
Zurück zum Zitat Jeffrey KD, Alejandro EU, Luciani DS et al (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 105:8452–8457PubMedCrossRef Jeffrey KD, Alejandro EU, Luciani DS et al (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 105:8452–8457PubMedCrossRef
28.
Zurück zum Zitat Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466PubMedCrossRef Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466PubMedCrossRef
29.
Zurück zum Zitat Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61PubMedCrossRef Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61PubMedCrossRef
30.
Zurück zum Zitat Paschen W, Frandsen A (2001) Endoplasmic reticulum dysfunction: a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem 79:719–725PubMedCrossRef Paschen W, Frandsen A (2001) Endoplasmic reticulum dysfunction: a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem 79:719–725PubMedCrossRef
31.
Zurück zum Zitat Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104PubMedCrossRef Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104PubMedCrossRef
32.
Zurück zum Zitat Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRef Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRef
33.
Zurück zum Zitat Chu KY, Lin Y, Hendel A, Kulpa JE, Brownsey RW, Johnson JD (2010) ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells. J Biol Chem 285:32606–32615PubMedCrossRef Chu KY, Lin Y, Hendel A, Kulpa JE, Brownsey RW, Johnson JD (2010) ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells. J Biol Chem 285:32606–32615PubMedCrossRef
34.
Zurück zum Zitat Yamazaki K, Wakasugi N, Tomita T, Kikuchi T, Mukoyama M, Ando K (1988) Gracile axonal dystrophy (GAD), a new neurological mutant in the mouse. Proc Soc Exp Biol Med 187:209–215PubMed Yamazaki K, Wakasugi N, Tomita T, Kikuchi T, Mukoyama M, Ando K (1988) Gracile axonal dystrophy (GAD), a new neurological mutant in the mouse. Proc Soc Exp Biol Med 187:209–215PubMed
35.
Zurück zum Zitat Johnson JD, Misler S (2002) Nicotinic acid–adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc Natl Acad Sci USA 99:14566–14571PubMedCrossRef Johnson JD, Misler S (2002) Nicotinic acid–adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc Natl Acad Sci USA 99:14566–14571PubMedCrossRef
36.
Zurück zum Zitat Johnson JD, Ahmed NT, Luciani DS et al (2003) Increased islet apoptosis in Pdx1+/− mice. J Clin Invest 111:1147–1160PubMed Johnson JD, Ahmed NT, Luciani DS et al (2003) Increased islet apoptosis in Pdx1+/− mice. J Clin Invest 111:1147–1160PubMed
37.
Zurück zum Zitat Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583PubMedCrossRef Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583PubMedCrossRef
38.
Zurück zum Zitat Finley D, Sadis S, Monia BP et al (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 14:5501–5509PubMed Finley D, Sadis S, Monia BP et al (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 14:5501–5509PubMed
39.
Zurück zum Zitat Wang GS, Rosenberg L, Scott FW (2005) Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Lab Invest 85:675–688PubMedCrossRef Wang GS, Rosenberg L, Scott FW (2005) Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Lab Invest 85:675–688PubMedCrossRef
40.
Zurück zum Zitat Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105:13163–13168PubMedCrossRef Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105:13163–13168PubMedCrossRef
41.
42.
Zurück zum Zitat Chin LS, Vavalle JP, Li L (2002) Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 277:35071–35079PubMedCrossRef Chin LS, Vavalle JP, Li L (2002) Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 277:35071–35079PubMedCrossRef
43.
Zurück zum Zitat Sharma M, Burre J, Sudhof TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13:30–39PubMedCrossRef Sharma M, Burre J, Sudhof TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13:30–39PubMedCrossRef
44.
Zurück zum Zitat Costes S, Huang CJ, Gurlo T et al (2010) Beta-cell dysfunctional Erad/ubiquitin/proteasome system in type 2 diabetes mediated by Iapp-induced Uch-L1 deficiency. Diabetes 60:227–238PubMedCrossRef Costes S, Huang CJ, Gurlo T et al (2010) Beta-cell dysfunctional Erad/ubiquitin/proteasome system in type 2 diabetes mediated by Iapp-induced Uch-L1 deficiency. Diabetes 60:227–238PubMedCrossRef
45.
Zurück zum Zitat Tokumaru Y, Yamashita K, Kim MS et al (2008) The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer 123:753–759PubMedCrossRef Tokumaru Y, Yamashita K, Kim MS et al (2008) The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer 123:753–759PubMedCrossRef
46.
Zurück zum Zitat Yu J, Tao Q, Cheung KF et al (2008) Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology 48:508–518PubMedCrossRef Yu J, Tao Q, Cheung KF et al (2008) Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology 48:508–518PubMedCrossRef
47.
Zurück zum Zitat Tezel E, Hibi K, Nagasaka T, Nakao A (2000) PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res 6:4764–4767PubMed Tezel E, Hibi K, Nagasaka T, Nakao A (2000) PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res 6:4764–4767PubMed
48.
Zurück zum Zitat Hibi K, Liu Q, Beaudry GA et al (1998) Serial analysis of gene expression in non-small cell lung cancer. Cancer Res 58:5690–5694PubMed Hibi K, Liu Q, Beaudry GA et al (1998) Serial analysis of gene expression in non-small cell lung cancer. Cancer Res 58:5690–5694PubMed
49.
Zurück zum Zitat Caballero OL, Resto V, Patturajan M et al (2002) Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene 21:3003–3010PubMedCrossRef Caballero OL, Resto V, Patturajan M et al (2002) Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene 21:3003–3010PubMedCrossRef
50.
Zurück zum Zitat Hartley T, Brumell J, Volchuk A (2009) Emerging roles for the ubiquitin–proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab 296:E1–E10PubMedCrossRef Hartley T, Brumell J, Volchuk A (2009) Emerging roles for the ubiquitin–proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab 296:E1–E10PubMedCrossRef
51.
Zurück zum Zitat Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667PubMedCrossRef Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667PubMedCrossRef
Metadaten
Titel
Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions
verfasst von
K. Y. Chu
H. Li
K. Wada
J. D. Johnson
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 1/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2323-1

Weitere Artikel der Ausgabe 1/2012

Diabetologia 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.