Skip to main content
Erschienen in: Die Orthopädie 4/2021

05.03.2021 | Hüft-TEP | Leitthema

Überlegenheit von Navigation und Robotik in der Hüftendoprothetik: Fakt oder Mythos?

verfasst von: Prof. Dr. Markus Weber, Dr. Matthias Meyer, Prof. Dr. Rüdiger von Eisenhart-Rothe, Prof. Dr. Tobias Renkawitz

Erschienen in: Die Orthopädie | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Computerassistierte Operationstechniken stellen in der Hüftendoprothetik eine relativ neue Entwicklung dar, die durch den technischen Fortschritt in den letzten zwei Jahrzehnten beflügelt wurde. Mit Navigation und Robotik lassen sich vorgegebene Zielwerte bei der Pfannenpositionierung und der biomechanischen Rekonstruktion von Beinlänge und Offset im Vergleich zur „Freihandimplantation“ mit höherer Präzision erreichen. Der optimale Zielbereich dieser Parameter ist Gegenstand wissenschaftlicher Diskussion. Operationstechniken mit digitaler Unterstützung benötigen eine entsprechende Lernkurve sowie einen relevanten finanziellen und zeitlichen Mehraufwand, der sich gegenwärtig im DRG-System nicht widerspiegelt. Auch deshalb sind diese Verfahren bislang noch nicht in der klinischen Routine angekommen und es liegen unter evidenzbasierter Betrachtungsweise bislang zwar wenige, aber dennoch bemerkenswerte vergleichende Untersuchungen vor. Ob sich aus den daraus ablesbaren Fortschritten im langfristigen Verlauf auch verlängerte Standzeiten mit höherer Patientenzufriedenheit ablesen lassen, könnten zukünftig systematische Auswertungen von Registerdaten mit evidenzbasierten Methoden zeigen.
Literatur
1.
Zurück zum Zitat Abdel MP, Von Roth P, Jennings MT et al (2016) What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 474:386–391CrossRef Abdel MP, Von Roth P, Jennings MT et al (2016) What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 474:386–391CrossRef
2.
Zurück zum Zitat Bargar WL, Bauer A, Börner M (1998) Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 354:82–91CrossRef Bargar WL, Bauer A, Börner M (1998) Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 354:82–91CrossRef
3.
Zurück zum Zitat Bargar WL, Parise CA, Hankins A et al (2018) Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplasty 33:810–814CrossRef Bargar WL, Parise CA, Hankins A et al (2018) Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplasty 33:810–814CrossRef
4.
Zurück zum Zitat Beringer DC, Patel JJ, Bozic KJ (2007) An overview of economic issues in computer-assisted total joint arthroplasty. Clin Orthop Relat Res 463:26–30CrossRef Beringer DC, Patel JJ, Bozic KJ (2007) An overview of economic issues in computer-assisted total joint arthroplasty. Clin Orthop Relat Res 463:26–30CrossRef
5.
Zurück zum Zitat Bohl DD, Nolte MT, Ong K et al (2019) Computer-assisted navigation is associated with reductions in the rates of dislocation and acetabular component revision following primary total hip arthroplasty. J Bone Joint Surg Am 101:250–256CrossRef Bohl DD, Nolte MT, Ong K et al (2019) Computer-assisted navigation is associated with reductions in the rates of dislocation and acetabular component revision following primary total hip arthroplasty. J Bone Joint Surg Am 101:250–256CrossRef
6.
Zurück zum Zitat Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–133CrossRef Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–133CrossRef
7.
Zurück zum Zitat Dastane M, Dorr LD, Tarwala R et al (2011) Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop Relat Res 469:429–436CrossRef Dastane M, Dorr LD, Tarwala R et al (2011) Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop Relat Res 469:429–436CrossRef
8.
Zurück zum Zitat Digioia AM, Jaramaz B, Blackwell M et al (1998) The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop Relat Res 355:8–22CrossRef Digioia AM, Jaramaz B, Blackwell M et al (1998) The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop Relat Res 355:8–22CrossRef
9.
Zurück zum Zitat Domb BG, El Bitar YF, Sadik AY et al (2014) Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res 472:329–336CrossRef Domb BG, El Bitar YF, Sadik AY et al (2014) Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res 472:329–336CrossRef
10.
Zurück zum Zitat Domb BG, Redmond JM, Louis SS et al (2015) Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty 30:2208–2218CrossRef Domb BG, Redmond JM, Louis SS et al (2015) Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty 30:2208–2218CrossRef
11.
Zurück zum Zitat Dorr LD, Malik A, Wan Z et al (2007) Precision and bias of imageless computer navigation and surgeon estimates for acetabular component position. Clin Orthop Relat Res 465:92–99CrossRef Dorr LD, Malik A, Wan Z et al (2007) Precision and bias of imageless computer navigation and surgeon estimates for acetabular component position. Clin Orthop Relat Res 465:92–99CrossRef
12.
Zurück zum Zitat Han PF, Chen CL, Zhang ZL et al (2019) Robotics-assisted versus conventional manual approaches for total hip arthroplasty: a systematic review and meta-analysis of comparative studies. Int J Med Robot 15:e1990CrossRef Han PF, Chen CL, Zhang ZL et al (2019) Robotics-assisted versus conventional manual approaches for total hip arthroplasty: a systematic review and meta-analysis of comparative studies. Int J Med Robot 15:e1990CrossRef
13.
Zurück zum Zitat Honl M, Dierk O, Gauck C et al (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am 85:1470–1478CrossRef Honl M, Dierk O, Gauck C et al (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am 85:1470–1478CrossRef
14.
Zurück zum Zitat Illgen RLN, Bukowski BR, Abiola R et al (2017) Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int 30:365–372 Illgen RLN, Bukowski BR, Abiola R et al (2017) Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int 30:365–372
15.
Zurück zum Zitat Jaramaz B, Digioia AM 3rd, Blackwell M et al (1998) Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res 354:70–81CrossRef Jaramaz B, Digioia AM 3rd, Blackwell M et al (1998) Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res 354:70–81CrossRef
16.
Zurück zum Zitat Kalteis T, Handel M, Bathis H et al (2006) Imageless navigation for insertion of the acetabular component in total hip arthroplasty: Is it as accurate as CT-based navigation? J Bone Joint Surg Br 88:163–167CrossRef Kalteis T, Handel M, Bathis H et al (2006) Imageless navigation for insertion of the acetabular component in total hip arthroplasty: Is it as accurate as CT-based navigation? J Bone Joint Surg Br 88:163–167CrossRef
17.
Zurück zum Zitat Kayani B, Konan S, Ayuob A et al (2019) The current role of robotics in total hip arthroplasty. EFORT Open Rev 4:618–625CrossRef Kayani B, Konan S, Ayuob A et al (2019) The current role of robotics in total hip arthroplasty. EFORT Open Rev 4:618–625CrossRef
18.
Zurück zum Zitat Keshmiri A, Schröter C, Weber M et al (2015) No difference in clinical outcome, bone density and polyethylene wear 5–7 years after standard navigated vs. conventional cementfree total hip arthroplasty. Arch Orthop Trauma Surg 135:723–730CrossRef Keshmiri A, Schröter C, Weber M et al (2015) No difference in clinical outcome, bone density and polyethylene wear 5–7 years after standard navigated vs. conventional cementfree total hip arthroplasty. Arch Orthop Trauma Surg 135:723–730CrossRef
19.
Zurück zum Zitat Mainard D (2008) Navigated and nonnavigated total hip arthroplasty: results of two consecutive series using a cementless straight hip stem. Orthopedics 31(10 Suppl 1):321–322 Mainard D (2008) Navigated and nonnavigated total hip arthroplasty: results of two consecutive series using a cementless straight hip stem. Orthopedics 31(10 Suppl 1):321–322
20.
Zurück zum Zitat Manzotti A, Cerveri P, De Momi E et al (2011) Does computer-assisted surgery benefit leg length restoration in total hip replacement? Navigation versus conventional freehand. Int Orthop 35:19–24CrossRef Manzotti A, Cerveri P, De Momi E et al (2011) Does computer-assisted surgery benefit leg length restoration in total hip replacement? Navigation versus conventional freehand. Int Orthop 35:19–24CrossRef
21.
Zurück zum Zitat Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75:228–232CrossRef Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75:228–232CrossRef
22.
Zurück zum Zitat Nakamura N, Sugano N, Nishii T et al (2010) A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res 468:1072–1081CrossRef Nakamura N, Sugano N, Nishii T et al (2010) A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res 468:1072–1081CrossRef
23.
Zurück zum Zitat Nawabi DH, Conditt MA, Ranawat AS et al (2013) Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng H 227:302–309CrossRef Nawabi DH, Conditt MA, Ranawat AS et al (2013) Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng H 227:302–309CrossRef
24.
Zurück zum Zitat Nodzo SR, Chang CC, Carroll KM et al (2018) Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position: a CT-based study. Bone Joint J 100-B:1303–1309CrossRef Nodzo SR, Chang CC, Carroll KM et al (2018) Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position: a CT-based study. Bone Joint J 100-B:1303–1309CrossRef
25.
Zurück zum Zitat Perets I, Mu BH, Mont MA et al (2020) Current topics in robotic-assisted total hip arthroplasty: a review. Hip Int 30:118–124CrossRef Perets I, Mu BH, Mont MA et al (2020) Current topics in robotic-assisted total hip arthroplasty: a review. Hip Int 30:118–124CrossRef
26.
Zurück zum Zitat Renkawitz T, Meyer M, Vollner F et al (2020) Intraoperative assessment of pelvic tilt and cup position in total hip arthroplasty: the relevance of navigation and robotics. Orthopade 49:893–898CrossRef Renkawitz T, Meyer M, Vollner F et al (2020) Intraoperative assessment of pelvic tilt and cup position in total hip arthroplasty: the relevance of navigation and robotics. Orthopade 49:893–898CrossRef
27.
Zurück zum Zitat Renkawitz T, Schuster T, Grifka J et al (2010) Leg length and offset measures with a pinless femoral reference array during THA. Clin Orthop Relat Res 468:1862–1868CrossRef Renkawitz T, Schuster T, Grifka J et al (2010) Leg length and offset measures with a pinless femoral reference array during THA. Clin Orthop Relat Res 468:1862–1868CrossRef
28.
Zurück zum Zitat Renkawitz T, Weber M, Springorum HR et al (2015) Impingement-free range of movement, acetabular component cover and early clinical results comparing ‘femur-first’ navigation and ‘conventional’ minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J 97-B:890–898CrossRef Renkawitz T, Weber M, Springorum HR et al (2015) Impingement-free range of movement, acetabular component cover and early clinical results comparing ‘femur-first’ navigation and ‘conventional’ minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J 97-B:890–898CrossRef
29.
Zurück zum Zitat Renkawitz T, Weber T, Dullien S et al (2016) Leg length and offset differences above 5 mm after total hip arthroplasty are associated with altered gait kinematics. Gait Posture 49:196–201CrossRef Renkawitz T, Weber T, Dullien S et al (2016) Leg length and offset differences above 5 mm after total hip arthroplasty are associated with altered gait kinematics. Gait Posture 49:196–201CrossRef
30.
Zurück zum Zitat Renkawitz T, Wörner M, Sendtner E et al (2011) Principles and new concepts in computer-navigated total hip arthroplasty. Orthopade 40:1095–1102CrossRef Renkawitz T, Wörner M, Sendtner E et al (2011) Principles and new concepts in computer-navigated total hip arthroplasty. Orthopade 40:1095–1102CrossRef
31.
Zurück zum Zitat Schulz AP, Seide K, Queitsch C et al (2007) Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot 3:301–306CrossRef Schulz AP, Seide K, Queitsch C et al (2007) Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot 3:301–306CrossRef
32.
Zurück zum Zitat Shapira J, Diulus SC, Rosinsky PJ et al (2020) Robotics and navigation as learning tools for fellows training in hip arthroplasty. J Am Acad Orthop Surg 29(4):176–181CrossRef Shapira J, Diulus SC, Rosinsky PJ et al (2020) Robotics and navigation as learning tools for fellows training in hip arthroplasty. J Am Acad Orthop Surg 29(4):176–181CrossRef
33.
Zurück zum Zitat Siebel T, Käfer W (2005) Clinical outcome following robotic assisted versus conventional total hip arthroplasty: a controlled and prospective study of seventy-one patients. Z Orthop Ihre Grenzgeb 143:391–398CrossRef Siebel T, Käfer W (2005) Clinical outcome following robotic assisted versus conventional total hip arthroplasty: a controlled and prospective study of seventy-one patients. Z Orthop Ihre Grenzgeb 143:391–398CrossRef
34.
Zurück zum Zitat Wan Z, Malik A, Jaramaz B et al (2009) Imaging and navigation measurement of acetabular component position in THA. Clin Orthop Relat Res 467:32–42CrossRef Wan Z, Malik A, Jaramaz B et al (2009) Imaging and navigation measurement of acetabular component position in THA. Clin Orthop Relat Res 467:32–42CrossRef
35.
Zurück zum Zitat Weber M, Benditz A, Woerner M et al (2017) Trainee surgeons affect operative time but not outcome in minimally invasive total hip arthroplasty. Sci Rep 7:6152CrossRef Weber M, Benditz A, Woerner M et al (2017) Trainee surgeons affect operative time but not outcome in minimally invasive total hip arthroplasty. Sci Rep 7:6152CrossRef
37.
Zurück zum Zitat Weber M, Weber T, Woerner M et al (2015) The impact of standard combined anteversion definitions on gait and clinical outcome within one year after total hip arthroplasty. Int Orthop 39:2323–2333CrossRef Weber M, Weber T, Woerner M et al (2015) The impact of standard combined anteversion definitions on gait and clinical outcome within one year after total hip arthroplasty. Int Orthop 39:2323–2333CrossRef
38.
Zurück zum Zitat Weber M, Woerner M, Craiovan B et al (2016) Current standard rules of combined anteversion prevent prosthetic impingement but ignore osseous contact in total hip arthroplasty. Int Orthop 40:2495–2504CrossRef Weber M, Woerner M, Craiovan B et al (2016) Current standard rules of combined anteversion prevent prosthetic impingement but ignore osseous contact in total hip arthroplasty. Int Orthop 40:2495–2504CrossRef
39.
Zurück zum Zitat Weber M, Woerner M, Springorum R et al (2014) Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA. Clin Orthop Relat Res 472:3150–3158CrossRef Weber M, Woerner M, Springorum R et al (2014) Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA. Clin Orthop Relat Res 472:3150–3158CrossRef
40.
Zurück zum Zitat Weber M, Woerner ML, Sendtner E et al (2016) Even the intraoperative knowledge of femoral stem anteversion cannot prevent impingement in total hip arthroplasty. J Arthroplasty 31:2514–2519CrossRef Weber M, Woerner ML, Sendtner E et al (2016) Even the intraoperative knowledge of femoral stem anteversion cannot prevent impingement in total hip arthroplasty. J Arthroplasty 31:2514–2519CrossRef
41.
Zurück zum Zitat Woerner M, Sendtner E, Springorum R et al (2016) Visual intraoperative estimation of cup and stem position is not reliable in minimally invasive hip arthroplasty. Acta Orthop 87:225–230CrossRef Woerner M, Sendtner E, Springorum R et al (2016) Visual intraoperative estimation of cup and stem position is not reliable in minimally invasive hip arthroplasty. Acta Orthop 87:225–230CrossRef
Metadaten
Titel
Überlegenheit von Navigation und Robotik in der Hüftendoprothetik: Fakt oder Mythos?
verfasst von
Prof. Dr. Markus Weber
Dr. Matthias Meyer
Prof. Dr. Rüdiger von Eisenhart-Rothe
Prof. Dr. Tobias Renkawitz
Publikationsdatum
05.03.2021
Verlag
Springer Medizin
Schlagwörter
Hüft-TEP
Hüft-TEP
Erschienen in
Die Orthopädie / Ausgabe 4/2021
Print ISSN: 2731-7145
Elektronische ISSN: 2731-7153
DOI
https://doi.org/10.1007/s00132-021-04079-8

Weitere Artikel der Ausgabe 4/2021

Die Orthopädie 4/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.