Skip to main content
Erschienen in: Malaria Journal 1/2012

Open Access 01.12.2012 | Review

Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination

verfasst von: Alicia Arnott, Alyssa E Barry, John C Reeder

Erschienen in: Malaria Journal | Ausgabe 1/2012

Abstract

Traditionally, infection with Plasmodium vivax was thought to be benign and self-limiting, however, recent evidence has demonstrated that infection with P. vivax can also result in severe illness and death. Research into P. vivax has been relatively neglected and much remains unknown regarding the biology, pathogenesis and epidemiology of this parasite. One of the fundamental factors governing transmission and immunity is parasite diversity. An understanding of parasite population genetic structure is necessary to understand the epidemiology, diversity, distribution and dynamics of natural P. vivax populations. In addition, studying the population structure of genes under immune selection also enables investigation of the dynamic interplay between transmission and immunity, which is crucial for vaccine development. A lack of knowledge regarding the transmission and spread of P. vivax has been particularly highlighted in areas where malaria control and elimination programmes have made progress in reducing the burden of Plasmodium falciparum, yet P. vivax remains as a substantial obstacle. With malaria elimination back on the global agenda, mapping of global and local P. vivax population structure is essential prior to establishing goals for elimination and the roll-out of interventions. A detailed knowledge of the spatial distribution, transmission and clinical burden of P. vivax is required to act as a benchmark against which control targets can be set and measured. This paper presents an overview of what is known and what is yet to be fully understood regarding P. vivax population genetics, as well as the importance and application of P. vivax population genetics studies.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AA drafted the paper. AEB and JCR provided input into scope and content and assisted in drafting the paper. All authors read and approved the final manuscript.

Plasmodium vivax: a global health threat

Presently, 2.85 billion people globally are at risk of Plasmodium vivax malaria infection [1]. Worldwide the regional incidence of P. vivax has been increasing despite a decrease in Plasmodium falciparum cases [25]. The most geographically widespread of the six Plasmodium species that infect humans, P. vivax is a major health threat to huge populations throughout Asia, the Middle East and the Pacific [1], where approximately 80 to 90% of the global P. vivax burden is concentrated [6]. A significant number of P. vivax cases also occur throughout Central and South America, and East and South Africa [6]. Despite this, research into P. vivax malaria has been relatively neglected and much detail of the biology, pathogenesis and epidemiology of this parasite remains unknown. Traditionally, infection with P. vivax was thought to be benign and self-limiting and was not considered a research priority in comparison with the enormous burden of morbidity and mortality presented by P. falciparum[7, 8]. Recent evidence is however challenging the long-held notion of the benign nature of P. vivax malaria, demonstrating that infection with P. vivax can also result in severe illness and death [914]. Indeed, the severe manifestations of P. vivax disease are very similar to those caused by P. falciparum and include cerebral malaria, acute respiratory distress, lung injury, renal failure, hepatic dysfunction, shock and death [12, 14].
Lack of knowledge regarding the transmission and spread of P. vivax has been particularly highlighted in areas where malaria control and elimination programmes have made progress in reducing the burden of P. falciparum, yet P. vivax remains as a substantial obstacle [15]. The emergence and spread of drug resistant P. vivax is also of serious concern. Indeed, in the context of achieving malaria elimination targets, reports of primaquine resistance, the only available treatment to prevent relapse, is particularly worrisome [16, 17]. One of the key problems undermining effective malaria control is a lack of understanding of the underlying P. vivax population structure and transmission dynamics. Population genetic studies are needed to define the diversity, distribution and dynamics of P. vivax populations, as parasite populations differ widely between locations, due to factors including prevalence, vector species, host genetics and a variety of environmental influences [1821]. Mapping of global and local P. vivax population structure is essential prior to establishing goals for elimination and the rollout of interventions, and detailed knowledge of the spatial distribution, transmission and clinical burden of P. vivax is required to act as a benchmark against which control targets can be set and measured [1, 19, 22, 23]. The Malaria Eradication Research Agenda (malERA) Consultative Group on Basic Science and Enabling Technologies recently reported that no campaign for malaria control or elimination can proceed without a comprehensive knowledge of disease epidemiology and host-parasite-vector interactions, and how these interactions are affected by intensified intervention measures [24].

Genetic diversity of Plasmodium vivax

Within a malaria endemic area, multiple parasite clones can often co-infect the same host. To understand local population structure and genetic diversity, it is essential to be able to distinguish between distinct clones within the same infection as well as between infections. Not only useful in the context of molecular epidemiology studies, identifying and managing multiple clone infections may have additional public health implications, as increasing, or high levels of multiple clone P. vivax infections may drive increases in parasite virulence and fitness, as parasite clones compete for both resources within the infected host and survival against antimalarial interventions [25]. However, identifying, and distinguishing between clones can be difficult because the genetic diversity of P. vivax populations can vary significantly due to variations in malaria epidemiology in different regions [26, 27]. Isolates obtained from distinct populations can either be genetically very diverse, so that multiple infections are easy to determine using a single molecular marker, or they can have quite low levels of diversity or even be clonal in the case of very low transmission or epidemics, which makes it more difficult to distinguish polyclonal from true monoclonal infections [28].
Genotyping to determine the multiplicity of infection (MOI) can be performed using either one or two markers that are extremely polymorphic, or a larger number of less polymorphic genome-wide markers. Currently, regions of the genome containing polymorphic repeat sequences, such as microsatellites or surface antigen genes, are the markers of choice for doing this. Microsatellite markers are short, tandem, one to six nucleotide repeats, found frequently throughout the genome and are typically, selectively neutral. Prior to the identification of microsatellites, earlier studies genotyped strains on the basis of polymorphic coding regions within parasite antigens such as the circumsporozoite protein (CSP) and the merozoite surface protein 3 alpha (MSP-3α), for which there are fewer alleles than the microsatellite markers [25, 29]. Therefore, the number of clones per infection was most likely underestimated (Table 1).
Table 1
Global detection of multiple clone infections using molecular markers in Plasmodium viva x populations
Study region
Study [reference]
Year samples collected
Number of samples analysed
Marker
Proportion infections with multiple clones (%)
Mean MOI
Asia
      
Thailand
Imwong et al. 2007 [27]
1992-1993
92
Microsatellites
30 - > 60
1.4
 
Imwong et al. 2005 [30]
1995-1998
100
CSP + MSP1
26
1.29
    
MSP3α
19.3
 
    
CSP + MSP3α
35.6
 
Laos
Imwong et al 2007 [27]
2001-2003
81
Microsatellites
30 - > 60
1.5
Vietnam
Van den Eede et al. 2010 [33]
1999-2000
69
Microsatellites
100
3.7
India
Prajapati et al. 2006 [34]
2000-2004
252
GAM-1
13.09
N/S
 
Imwong et al. 2007 [27]
2003-2004
90
Microsatellites
10-40
1.2
 
Kim et al. 2006 [35]
2003-2004
151
CSP, MSP1, MSP3α
10.6
N/S
Sri Lanka
Wickramara-chchi et al. 2010 [36]
1998-2000
201
MSP3α
13.8-20
N/S
 
Karunaweera et al. 2008 [26]
2005
50
Microsatellites
9.1-60
N/S
 
Gunawardena et al. 2010 [37]
2003-2008
140
Microsatellites
55
N/S
    
MSP3α
6
N/S
Pakistan
Khatoon et al. 2010 [38]
50
MSP3β
12
 
    
MSP3α + MSP3β
2
N/S
 
Zakeri et al. 2010 [39]
2008
187
CSP, MSP-1, MSP3α
30
 
China
 
2004
54: Anhui Province
 
5.6
N/S
 
Yang et al. 2006
2005
31: Guizhou Province
MSP3β
0
 
  
2004
14: Guangxi Province
 
0
 
 
Zhong et al. 2011 [41]
2006-2008
140
MSP3α
7.6-14.3
N/S
    
MSP3β
14.3-15
 
Myanmar
Kim et al. 2010 [42]
2000
96
CSP
24.5
N/S
    
CSP
24.1
N/S
 
Moon et al. 2009 [43]
2004
349
 
MSP1
16.4
    
MSP3α
21.6
 
 
Zhong et a.l 2011 [41]
2006-2008
72
MSP3α
10.2
N/S
    
MSP3β
16.4
 
 
Gunawardena et al. 2010 [37]
2007
167
Microsatellites
67.1
N/S
East Timor
Chen et al. 2007 [44]
2001
17
CSP, MSP-1, AMA-1
35
N/S
Middle East
      
Iran
Zakeri et al. 2003 [45]
2000-2001
107
MSP-1
20
N/S
 
Zakeri et al. 2006 [46]
2000-2003
374
CSP
12
N/S
 
Zakeri et al. 2006 [47]
2000-2003
144
MSP3α
3.5
N/S
 
Zakeri et al. 2010 [39]
2008
150
CSP, MSP-1, MSP3α
24.6
N/S
Uzbekistan
Severini et al. 2004 [48]
1999-2002
12 indigenous cases
MSP-1
8
N/S
   
10 imported cases
 
10
 
Afghanistan
   
CSP
6.4
 
 
Zakeri et al. 2010 [49]
2007
202
MSP-1
0
N/S
    
MSP3α
3.5
 
Turkey
Zeyrek et al. 2010 [50]
2007-2008
31
MSP-1
3.2
N/S
Africa
     
N/S
Ethiopia
Gunawardena et al. 2010 [37]
2006-2008
118
Microsatellites
73.70
N/S
South & Central America
     
Mexico
Joy et al. 2008 [20]
1997-2005
234
Microsatellites
15.8
1.01
Peru
Sutton et al. 2009 [51]
2003-2004
186
MSP3α
26.3
2-3a
 
Van den Eede et al. 2010 [28]
2006-2008
159
Microsatellites
11-70
1.1
Brazil
Ferreira et al. 2007 [2]
1999
74
Microsatellites
48 (1999)
N/S
  
2004-2005
  
49 (2004-5)
 
 
Rezende et al. 2009 [52]
2003-2005
44
Tandem repeats
0-66
N/S
 
Rezende et al. 2010 [53]
2003-2005
53
Microsatellites
32-57
N/S
 
Storti- Melo et al. 2009 [54]
2003-2005
155
CSP
0-39.3
N/S
 
Orjuela-Sanchez et al. 2009 [55]
2005-2007
77
Microsatellites
10.1-42.4
N/S
French Guiana
   
MSP-1 (57 samples)
12.3
N/S
 
Veron et al. 2009 [56]
2005-2006
109
MSP3α (109 samples)
13.8
 
    
MSP-1 + MSP3α (57 samples)
21
 
Guyana
Bonilla et al. 2006 [57]
2000
61
CSP
39.3
N/S
Colombia
Imwong et al. 2007 [27]
2001-2003
82
Microsatellites
10-40
1.1
 
Cristiano et al. 2008 [58]
2006
55
MSP3α
36.4
N/S
Venezuela
Ord et al. 2005 [59]
1995-1997
58
MSP3α
10
N/S
 
Leclerc et al. 2005 [60]
Not stated
39
MSP-1
0
N/A
Oceania
      
Papua New Guinea
Henry-Halldin et al. 2011 [61]
2001-2003
703: Wosera region
CSP
36.8
N/S
   
986: Mugil region
 
34.4
 
 
Mueller et al. 2002 [62]
2002
11
MSP3α
18
N/S
 
Koepfli et al. 2009 [63]
2004-2005
108
Microsatellites
81.4
1-8
 
Gomez et al. 2003 [64]
Not stated
89
pvMS1
4.5
N/S
aMean MOI was not reported, shown is the observed COI range
N/S: Mean MOI was not reported; N/A: none of the samples tested were polyclonal
The population genetic structure of P. falciparum is closely associated with transmission intensity, hence population structure and diversity varies greatly according to geographical location, at least on a global scale [65, 66]. Plasmodium falciparum populations in regions with low levels of transmission generally have low proportions of polyclonal infection high levels of linkage disequilibrium (LD) suggesting significant inbreeding and infrequent recombination. The inverse is also true, with parasite populations in high transmission areas characterized by a high proportion of multiple infections low levels of LD suggesting significant outcrossing and frequent recombination [27, 65]. Few studies have been performed amongst sympatric populations of P. vivax and P. falciparum, however from what is known, there appears to be a distinctly different model of population structure for P. vivax compared to that of P. falciparum[2, 25, 27, 37]. Using samples collected from a low transmission setting in rural Amazonia, Ferreira and colleagues reported higher genetic diversity and frequency of polyclonal infections for P. vivax compared to P. falciparum[2]. Interestingly, strong LD, and frequent replacement of predominant microsatellite haplotypes over time was also observed amongst the same P. vivax population [2]. The unique biology of P. vivax is likely to be responsible for the apparent paradox of multiple clone infection in a low transmission setting. The latent hypnozoite stage of the P. vivax lifecycle increases the likelihood of superinfection with a second clone, potentially resulting in the reactivation of heterologous hypnozoites and an increased likelihood of meiotic recombination, ultimately increasing genetic diversity within the population [2, 33].
Indeed, microsatellite genotyping has revealed that the level of genetic variability is highly variable among distinct P. vivax populations worldwide. Using the same panel of 17 microsatellites, 100% of P. vivax infections in southern Vietnam were found to be polyclonal [33], compared to 11-70% polyclonality observed following analysis of isolates collected in the Peruvian Amazon [28] (Table 1). Similarly, when using a panel of nine microsatellites Imwong and colleagues reported low genetic diversity, high levels of inbreeding and linkage disequilibrium in Colombia, compared to high levels of genetic diversity in India, Thailand and Laos [27] (Table 1). These results emphasize that it cannot be assumed that global parasite populations are equivalent and as a result, may not be impacted by intervention measures to the same extent.
In order to enable accurate comparisons of genetic diversity of global P. vivax populations, a standardized approach to microsatellite genotyping is required, similar to that implemented for investigation of P. falciparum[67]. However, there remain a number of challenges and limitations to developing such an approach. Selection of both the appropriate number and length of microsatellites to be used for genotyping is crucial to obtain accurate results [29]. Increasing the number of markers investigated increases the likelihood of detecting multiple clone infections. Havryliuk and colleagues reported that a combination of nine markers was sufficient to identify 90% of multiple clone infections amongst samples collected in Acre, Brazil and that 11 markers enabled 100% of multiple clone infections to be identified [25]. In addition, it is known that repeat length can influence diversity associated with a microsatellite, with longer arrays of di-, tri- and tetra-nucleotide repeats more diverse than shorter sequences [2, 53, 6871].
The diversity of a given microsatellite, and the number of microsatellites required to accurately genotype P. vivax strains will differ in different epidemiological settings and geographic regions [27, 33, 63]. Gunawardena and colleagues reported diversity of the MS16 microsatellite was far higher amongst Sri Lankan P. vivax strains compared to strains collected in Ethiopia, despite a higher rate of polyclonal infections detected amongst the Ethiopian samples tested [37] (Table 1). A similarly high level of MS16 diversity was observed by Koepfli and colleagues, reporting that more clones were detected using MS16, compared with the MSP1-f3 marker amongst strains from Papua New Guinea (PNG), due to a greater likelihood of clones sharing the same MSP1-f3 allele [72]. Furthermore, the same authors also demonstrated that in the context of a multiple clone infection, clones representing a minority of the population may be missed by PCR, and that detectability of specific P. vivax clones in a particular individual varied depending on the day that sample was collected [72]. Taken together, these results suggest that prior to development of a standardized strategy for P. vivax genotyping, the suitability of candidate markers must be widely assessed in distinct populations. In addition to identifying suitable markers, the criteria for assigning minor/multiple alleles must also be standardized to further limit discrepancies reported between studies.

The importance of Plasmodium vivax population genetics studies

Identifying routes of transmission and gene flow

Investigating the genetic diversity of Plasmodium vivax populations is essential from both a public health perspective, and
to help achieve malaria control and elimination. Detection and analysis of individual clones within populations has not only provided a greater understanding of genetic diversity, but also of P. vivax prevalence and incidence [31, 46, 73, 74]. Prevalence is one indicator of transmission and the main malariometric measurement in investigations including the global Malaria Atlas Project (MAP) [75]. For control and elimination strategies to succeed, the origin and movement of P. vivax populations must be identified, which can be achieved by genotyping isolates from several different regions. Using a panel of 12 microsatellite markers, Gunawardena and colleagues reported that isolates collected in Sri Lanka, Myanmar and Ethiopia all clustered according to their geographic origins, demonstrating that these microsatellites may be used to map the origin of P. vivax isolates, at least on a broad continental scale [37]. Genome-wide single nucleotide polymorphisms (SNPs) may provide a higher resolution for geographic positioning on a local scale, however such SNPs have not yet been identified for P. vivax.
The construction of population structure networks and maps demonstrating genetic relatedness of parasites in specific regions can enable not only the identification of parasite origins but also routes of population movement, and therefore the likelihood of successful elimination within a given region with respect to parasite diversity, population movement and the burden of imported cases [76]. The Pacific Malaria Initiative (PacMI) recently reported the results of an epidemiological survey performed in order to investigate the likelihood of success of potential malaria elimination campaigns in two isolated island provinces of Vanuatu and the Solomon Islands, Tafea and Temotu provinces, respectively [77]. The results of prior studies conducted in other provinces of both nations reported a predominance of P. falciparum, with high parasite prevalence (up to 35%) and transmission rates [7780]. Although extensive genetic characterization of the parasite populations was not performed, the results of the recent PacMI survey revealed that compared to other provinces within each country, the malaria epidemiology in the isolated Tafea and Temotu provinces was hypoendemic, with low parasite prevalence and a predominance of P. vivax[77]. Coupled with restricted travel and screening of incoming passengers for infection with malaria parasites, both island provinces were flagged as candidates for future malaria elimination campaigns [77].
Porous land borders between malaria endemic countries, specifically throughout Southeast Asia and the Middle East, are potential barriers to the successful implementation of malaria elimination campaigns [77, 81]. Migration of infected individuals resulting in importation of Plasmodium spp. and subsequent transmission by local vectors has contributed to the global spread of malaria [82]. Migration of infected individuals may seriously confound containment of P. vivax, as individuals can be unaware of their infection status due to long incubation periods. Hence, the potential for reintroduction of endemic malaria into non-endemic countries, is high. Khan and colleagues recently reported both detection of competent malaria vectors and an increase in malaria cases, mostly due to P. vivax, in Qatar, due to a massive influx of migrant workers from India and Pakistan [83]. Imported cases also have the potential to increase genetic diversity of existing P. vivax populations in malaria endemic countries [82]. Following reports of increasing P. vivax genetic diversity in Korea [84], Choi and colleagues used genotyping to successfully distinguish between autochthonous and imported P. vivax cases, identifying that the imported infections originated in neighbouring Asian countries. Imported infections also pose a risk in non-endemic regions of endemic countries. Many South American countries are geographically heterogeneous with regard to malaria transmission, and imported cases can result in serious illness and death amongst non-immune populations [85].
Genotyping imported infections is also essential to monitor the introduction and spread of drug resistance into sensitive populations. Population genetic surveys in Venezuela enabled identification of the introduction and spread of chloroquine resistant P. falciparum, resulting in changes to the national malaria treatment guidelines and rollout of more effective anti-malarials to combat the spread of drug resistance [82].
Combined, the results of these studies demonstrate the importance of population surveillance; to enable identification of routes of P. vivax introduction to, and transmission within, a given population. To achieve malaria elimination targets, the movement of P. vivax populations must be controlled to limit not only reintroduction of the disease into non-endemic countries, but also to restrict global genetic diversity and the spread of drug resistance.

Impact assessment of intervention and vector control strategies

Investigation of genetic diversity within P. vivax populations is a useful gauge of both the likelihood of success and subsequently, the impact of intervention methods. Interventions such as anti-malarials and candidate vaccines would be anticipated to be more successful in a population with low genetic diversity and any reduction in genetic diversity following the introduction of intervention measures may be regarded as an indicator of success.
In the absence of a continuous in vitro culture system and defined markers to identify drug resistance, genotyping is currently used to monitor treatment efficacy, and the emergence of resistant P. vivax strains. An understanding of haplotype frequency within a given population is therefore essential [86]. With respect to P. vivax parasites detected following drug treatment, there are three possible sources: re-infection with a new clone, recrudescence of a drug resistant clone, or relapse as a result of reactivation of liver hypnozoites [87]. As biomarkers do not currently exist to determine whether recurrent P. vivax parasitaemia is due to reactivation of liver hypnozoites, genotyping is used to identify whether recurrent episodes of P. vivax infection are the result of re-infection with a new clone or recrudescence/relapse of an existing drug-resistant clone [87, 88]. The basis for this approach is that genetic diversity is sufficient to be able to distinguish between strains using a panel of diverse markers [86]. Confounding the distinction between relapse and re-infection, Imwong and colleagues reported that contrary to the long-held belief that reactivated hypnozoites were genetically identical to the strain responsible for primary infection, reactivated hypnozoites might indeed be heterologous [87]. Hence, it may not always be possible to distinguish re-infection from relapse, especially in regions with reduced parasite diversity. To maximize the ability to distinguish between strains, a panel of diverse markers should be used [63, 86, 89]. The markers used must be sufficiently diverse and located in distinct genomic positions, however markers may be more or less suited for use dependent upon genetic diversity within a given population [27, 63, 86]. As a result, community-based investigations of parasite diversity and allele frequencies are vital to enable accurate analysis of anti-malarial interventions [27, 86].
The impact of vector control strategies, such as insecticide spraying, is also measurable using population genetics methods. Jongwutiwes and colleagues reported differences in the diversity of P. vivax amongst populations in the north-west and south of Thailand [90]. Limited diversity, suggestive of a recent population bottleneck was observed in the south, where anti-malarial insecticide spraying had been implemented and was ongoing. In the north-west, a region bordering Myanmar, anti-malarial control measures have not been implemented to the same extent as in the south, and as a result, diversity of the P. vivax population investigated was high [90].

Identification of immunogenic targets and potential vaccine candidates

Development of a vaccine targeting P. vivax lags far behind efforts to design a vaccine against P. falciparum[91]. This is an inevitable reflection of the reduced research focus on P. vivax. The main obstacle impeding P. vivax research is the lack of available parasite material, since P. vivax cannot be continuously cultured in vitro and infected individuals typically present with low parasitaemia [9295]. As a result, the majority of clinical immunology studies rely on using recombinant P. vivax proteins, typically expressed from reference strains [95]. However, an understanding of population genetic structure can also give insight into the development of host immune responses. Population genetics studies can identify signatures of balancing selection within parasite surface antigen genes, enabling identification of domains targeted by strong host immune pressure and thus identification of potential vaccine candidates, as has been done for P. falciparum[23, 96, 97]. The utility of diversity data is enhanced when additional information is known, such as the allelic frequency within a given population [96]. For example, in a population with low microsatellite diversity, low diversity amongst genes encoding antigens would also be expected. As strain-specific immunity is thought to be a major reason for the failure of malaria vaccine trials to date [98], reduced diversity amongst antigen-encoding genes would encode less diverse surface antigens, increasing the breadth of vaccine efficacy, and the generation of effective immune responses [99, 100].
There are three phases of the malaria parasite lifecycle that could be effectively targeted by host immune responses: inhibition of hepatocyte invasion at the pre-erythrocytic stage (e.g. vaccines targeting antigens such as CSP), inhibition of erythrocyte invasion during the asexual blood stage (merozoite surface protein 1, MSP1; apical membrane antigen 1, AMA1), and inhibition of parasite fertilization and development in the mosquito midgut (oocyst/ookinete 25 kD surface protein, Pvs25) [91, 101]. The majority of the vaccine candidates currently under investigation for P. vivax are orthologues of P. falciparum vaccine candidate antigens [91, 101]. However, due to biological differences, and differences in the extent and distribution of genetic diversity, it is not always possible to draw conclusions for P. vivax on the basis of what is known for P. falciparum. Few studies have been performed to investigate the diversity of vaccine candidate antigens in sympatric populations. This is despite the fact that many believe a globally effective malaria vaccine must contain not only multiple antigens, but also a combination of P. falciparum and P. vivax antigens due to sympatric circulation of both species in many endemic regions [101]. Indeed, differences may exist between regions of the same antigen under immune pressure in P. falciparum and P. vivax parasites, as has been reported for AMA1 [97, 102104]. Assessment of genetic diversity, and therefore suitability of candidate antigens is therefore essential to design an effective multi-species and/or a P. vivax vaccine.

Conclusions

Partly as a consequence of the common misconception that P. vivax infection is benign, research funding and focus directed towards this neglected malaria parasite has been limited relative to P. falciparum. As a result, much remains unknown regarding P. vivax biology, epidemiology and pathogenesis. However, it is now understood that globally, P. vivax populations are highly genetically diverse, and that this diversity varies greatly according to geographic region. In order to achieve malaria control and elimination targets, population genetic surveys are vital to map the diversity and structure of local populations and to estimate the likelihood of success and measure the outcome of malaria intervention methods. To assist vaccine development, genetic structure and diversity of candidate antigens needs to be assessed in sympatric P. vivax and P. falciparum populations worldwide.

Acknowledgements

This work was supported by Project Grant 1003825 from the National Health and Medical Research Council (NHMRC) of Australia. JCR is supported by a NHMRC Principal Research Fellowship. This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AA drafted the paper. AEB and JCR provided input into scope and content and assisted in drafting the paper. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar IR, Baird JK, Snow RW, Hay SI: The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010, 4: e774-10.1371/journal.pntd.0000774.PubMedCentralPubMed Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar IR, Baird JK, Snow RW, Hay SI: The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010, 4: e774-10.1371/journal.pntd.0000774.PubMedCentralPubMed
2.
Zurück zum Zitat Ferreira MU, Karunaweera ND, da Silva-Nunes M, da Silva NS, Wirth DF, Hartl DL: Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis. 2007, 195: 1218-1226. 10.1086/512685.PubMed Ferreira MU, Karunaweera ND, da Silva-Nunes M, da Silva NS, Wirth DF, Hartl DL: Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis. 2007, 195: 1218-1226. 10.1086/512685.PubMed
3.
Zurück zum Zitat Kasehagen LJ, Mueller I, McNamara DT, Bockarie MJ, Kiniboro B, Rare L, Lorry K, Kastens W, Reeder JC, Kazura JW, Zimmerman PA: Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. Am J Trop Med Hyg. 2006, 75: 588-596.PubMedCentralPubMed Kasehagen LJ, Mueller I, McNamara DT, Bockarie MJ, Kiniboro B, Rare L, Lorry K, Kastens W, Reeder JC, Kazura JW, Zimmerman PA: Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. Am J Trop Med Hyg. 2006, 75: 588-596.PubMedCentralPubMed
4.
Zurück zum Zitat Jun G, Yeom JS, Hong JY, Shin EH, Chang KS, Yu JR, Oh S, Chung H, Park JW: Resurgence of Plasmodium vivax malaria in the Republic of Korea during 2006-2007. Am J Trop Med Hyg. 2009, 81: 605-610. 10.4269/ajtmh.2009.09-0111.PubMed Jun G, Yeom JS, Hong JY, Shin EH, Chang KS, Yu JR, Oh S, Chung H, Park JW: Resurgence of Plasmodium vivax malaria in the Republic of Korea during 2006-2007. Am J Trop Med Hyg. 2009, 81: 605-610. 10.4269/ajtmh.2009.09-0111.PubMed
5.
Zurück zum Zitat Carme B, Ardillon V, Girod R, Grenier C, Joubert M, Djossou F, Ravachol F: Update on the epidemiology of malaria in French Guiana. Med Trop (Mars). 2009, 69: 19-25. Carme B, Ardillon V, Girod R, Grenier C, Joubert M, Djossou F, Ravachol F: Update on the epidemiology of malaria in French Guiana. Med Trop (Mars). 2009, 69: 19-25.
6.
Zurück zum Zitat Mendis K, Sina BJ, Marchesini P, Carter R: The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001, 64: 97-106.PubMed Mendis K, Sina BJ, Marchesini P, Carter R: The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001, 64: 97-106.PubMed
7.
Zurück zum Zitat Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM: Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007, 77: 79-87.PubMedCentralPubMed Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM: Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007, 77: 79-87.PubMedCentralPubMed
8.
Zurück zum Zitat Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA: Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009, 9: 555-566. 10.1016/S1473-3099(09)70177-X.PubMed Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA: Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009, 9: 555-566. 10.1016/S1473-3099(09)70177-X.PubMed
9.
Zurück zum Zitat Genton B, D'Acremont V, Rare L, Baea K, Reeder JC, Alpers MP, Muller I: Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 2008, 5: e127-10.1371/journal.pmed.0050127.PubMedCentralPubMed Genton B, D'Acremont V, Rare L, Baea K, Reeder JC, Alpers MP, Muller I: Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 2008, 5: e127-10.1371/journal.pmed.0050127.PubMedCentralPubMed
10.
Zurück zum Zitat Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, Lampah DA, Price RN: Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 2008, 5: e128-10.1371/journal.pmed.0050128.PubMedCentralPubMed Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, Lampah DA, Price RN: Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 2008, 5: e128-10.1371/journal.pmed.0050128.PubMedCentralPubMed
11.
Zurück zum Zitat Alexandre MA, Ferreira CO, Siqueira AM, Magalhaes BL, Mourao MP, Lacerda MV, Alecrim MG: Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis. 2010, 16: 1611-1614.PubMedCentralPubMed Alexandre MA, Ferreira CO, Siqueira AM, Magalhaes BL, Mourao MP, Lacerda MV, Alecrim MG: Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis. 2010, 16: 1611-1614.PubMedCentralPubMed
12.
Zurück zum Zitat Barcus MJ, Basri H, Picarima H, Manyakori C, Sekartuti , Elyazar I, Bangs MJ, Maguire JD, Baird JK: Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am J Trop Med Hyg. 2007, 77: 984-991.PubMed Barcus MJ, Basri H, Picarima H, Manyakori C, Sekartuti , Elyazar I, Bangs MJ, Maguire JD, Baird JK: Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am J Trop Med Hyg. 2007, 77: 984-991.PubMed
13.
Zurück zum Zitat Fernandez-Becerra C, Pinazo MJ, Gonzalez A, Alonso PL, del Portillo HA, Gascon J: Increased expression levels of the pvcrt-o and pvmdr1 genes in a patient with severe Plasmodium vivax malaria. Malar J. 2009, 8: 55-10.1186/1475-2875-8-55.PubMedCentralPubMed Fernandez-Becerra C, Pinazo MJ, Gonzalez A, Alonso PL, del Portillo HA, Gascon J: Increased expression levels of the pvcrt-o and pvmdr1 genes in a patient with severe Plasmodium vivax malaria. Malar J. 2009, 8: 55-10.1186/1475-2875-8-55.PubMedCentralPubMed
14.
Zurück zum Zitat Kochar DK, Das A, Kochar SK, Saxena V, Sirohi P, Garg S, Kochar A, Khatri MP, Gupta V: Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India. Am J Trop Med Hyg. 2009, 80: 194-198.PubMed Kochar DK, Das A, Kochar SK, Saxena V, Sirohi P, Garg S, Kochar A, Khatri MP, Gupta V: Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India. Am J Trop Med Hyg. 2009, 80: 194-198.PubMed
15.
Zurück zum Zitat Shrinking the Malaria Map: A Prospectus on Malaria Elimination. Edited by: Feachem RGA, Phillips AA, Targett GA. 2009, San Francisco: The Global Health Group, Global Health Sciences, University of California, San Francisco, First Shrinking the Malaria Map: A Prospectus on Malaria Elimination. Edited by: Feachem RGA, Phillips AA, Targett GA. 2009, San Francisco: The Global Health Group, Global Health Sciences, University of California, San Francisco, First
16.
Zurück zum Zitat The maIERA Consultative Group on Drugs: A research agenda for malaria eradication: drugs. PLoS Med. 2011, 8: e1000402 The maIERA Consultative Group on Drugs: A research agenda for malaria eradication: drugs. PLoS Med. 2011, 8: e1000402
17.
Zurück zum Zitat Baird JK, Hoffman SL: Primaquine therapy for malaria. Clin Infect Dis. 2004, 39: 1336-1345. 10.1086/424663.PubMed Baird JK, Hoffman SL: Primaquine therapy for malaria. Clin Infect Dis. 2004, 39: 1336-1345. 10.1086/424663.PubMed
18.
Zurück zum Zitat Joshi H, Prajapati SK, Verma A, Kang'a S, Carlton JM: Plasmodium vivax in India. Trends Parasitol. 2008, 24: 228-235. 10.1016/j.pt.2008.01.007.PubMed Joshi H, Prajapati SK, Verma A, Kang'a S, Carlton JM: Plasmodium vivax in India. Trends Parasitol. 2008, 24: 228-235. 10.1016/j.pt.2008.01.007.PubMed
19.
Zurück zum Zitat Schultz L, Wapling J, Mueller I, Ntsuke PO, Senn N, Nale J, Kiniboro B, Buckee CO, Tavul L, Siba PM, Reeder JC, Barry AE: Multilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission. Malar J. 2010, 9: 336-10.1186/1475-2875-9-336.PubMedCentralPubMed Schultz L, Wapling J, Mueller I, Ntsuke PO, Senn N, Nale J, Kiniboro B, Buckee CO, Tavul L, Siba PM, Reeder JC, Barry AE: Multilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission. Malar J. 2010, 9: 336-10.1186/1475-2875-9-336.PubMedCentralPubMed
20.
Zurück zum Zitat Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ: Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol. 2008, 25: 1245-1252. 10.1093/molbev/msn073.PubMedCentralPubMed Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ: Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol. 2008, 25: 1245-1252. 10.1093/molbev/msn073.PubMedCentralPubMed
21.
Zurück zum Zitat Reid H, Vallely A, Taleo G, Tatem AJ, Kelly G, Riley I, Harris I, Henri I, Iamaher S, Clements AC: Baseline spatial distribution of malaria prior to an elimination programme in Vanuatu. Malar J. 2010, 9: 150-10.1186/1475-2875-9-150.PubMedCentralPubMed Reid H, Vallely A, Taleo G, Tatem AJ, Kelly G, Riley I, Harris I, Henri I, Iamaher S, Clements AC: Baseline spatial distribution of malaria prior to an elimination programme in Vanuatu. Malar J. 2010, 9: 150-10.1186/1475-2875-9-150.PubMedCentralPubMed
22.
Zurück zum Zitat Grynberg P, Fontes CJ, Hughes AL, Braga EM: Polymorphism at the apical membrane antigen 1 locus reflects the world population history of Plasmodium vivax. BMC Evol Biol. 2008, 8: 123-10.1186/1471-2148-8-123.PubMedCentralPubMed Grynberg P, Fontes CJ, Hughes AL, Braga EM: Polymorphism at the apical membrane antigen 1 locus reflects the world population history of Plasmodium vivax. BMC Evol Biol. 2008, 8: 123-10.1186/1471-2148-8-123.PubMedCentralPubMed
23.
Zurück zum Zitat Cui L, Escalante AA, Imwong M, Snounou G: The genetic diversity of Plasmodium vivax populations. Trends Parasitol. 2003, 19: 220-226. 10.1016/S1471-4922(03)00085-0.PubMed Cui L, Escalante AA, Imwong M, Snounou G: The genetic diversity of Plasmodium vivax populations. Trends Parasitol. 2003, 19: 220-226. 10.1016/S1471-4922(03)00085-0.PubMed
24.
Zurück zum Zitat Baum J, Billker O, Bousema T, Dinglasan R, McGovern V, Mota MM, Mueller I, Sinden R: A research agenda for malaria eradication: basic science and enabling technologies. PLoS Med. 2011, 8: e1000399 Baum J, Billker O, Bousema T, Dinglasan R, McGovern V, Mota MM, Mueller I, Sinden R: A research agenda for malaria eradication: basic science and enabling technologies. PLoS Med. 2011, 8: e1000399
25.
Zurück zum Zitat Havryliuk T, Ferreira MU: A closer look at multiple-clone Plasmodium vivax infections: detection methods, prevalence and consequences. Mem Inst Oswaldo Cruz. 2009, 104: 67-73.PubMed Havryliuk T, Ferreira MU: A closer look at multiple-clone Plasmodium vivax infections: detection methods, prevalence and consequences. Mem Inst Oswaldo Cruz. 2009, 104: 67-73.PubMed
26.
Zurück zum Zitat Karunaweera ND, Ferreira MU, Munasinghe A, Barnwell JW, Collins WE, King CL, Kawamoto F, Hartl DL, Wirth DF: Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene. 2008, 410: 105-112. 10.1016/j.gene.2007.11.022.PubMed Karunaweera ND, Ferreira MU, Munasinghe A, Barnwell JW, Collins WE, King CL, Kawamoto F, Hartl DL, Wirth DF: Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene. 2008, 410: 105-112. 10.1016/j.gene.2007.11.022.PubMed
27.
Zurück zum Zitat Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, Newton PN, Kim JR, Nandy A, Osorio L, Carlton JM, White NJ, Day NP, Anderson TJ: Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol. 2007, 37: 1013-1022. 10.1016/j.ijpara.2007.02.010.PubMed Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, Newton PN, Kim JR, Nandy A, Osorio L, Carlton JM, White NJ, Day NP, Anderson TJ: Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol. 2007, 37: 1013-1022. 10.1016/j.ijpara.2007.02.010.PubMed
28.
Zurück zum Zitat Van den Eede P, Van der Auwera G, Delgado C, Huyse T, Soto-Calle VE, Gamboa D, Grande T, Rodriguez H, Llanos A, Anne J, Erhart A, D'Alessandro U: Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon. Malar J. 2010, 9: 151-10.1186/1475-2875-9-151.PubMedCentralPubMed Van den Eede P, Van der Auwera G, Delgado C, Huyse T, Soto-Calle VE, Gamboa D, Grande T, Rodriguez H, Llanos A, Anne J, Erhart A, D'Alessandro U: Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon. Malar J. 2010, 9: 151-10.1186/1475-2875-9-151.PubMedCentralPubMed
29.
Zurück zum Zitat Brito CF, Ferreira MU: Molecular markers and genetic diversity of Plasmodium vivax. Mem Inst Oswaldo Cruz. 2011, 106: (Suppl 1):12-26.PubMed Brito CF, Ferreira MU: Molecular markers and genetic diversity of Plasmodium vivax. Mem Inst Oswaldo Cruz. 2011, 106: (Suppl 1):12-26.PubMed
30.
Zurück zum Zitat Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourneur F, Looareesuwan S, White NJ, Snounou G: Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005, 4: 20-10.1186/1475-2875-4-20.PubMedCentralPubMed Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourneur F, Looareesuwan S, White NJ, Snounou G: Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005, 4: 20-10.1186/1475-2875-4-20.PubMedCentralPubMed
31.
Zurück zum Zitat Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J: Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg. 2003, 68: 613-619.PubMed Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J: Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg. 2003, 68: 613-619.PubMed
32.
Zurück zum Zitat Rungsihirunrat K, Chaijaroenkul W, Siripoon N, Seugorn A, Na-Bangchang K: Genotyping of polymorphic marker (MSP3alpha and MSP3beta) genes of Plasmodium vivax field isolates from malaria endemic of Thailand. Trop Med Int Health. 2011, 16: 794-801. 10.1111/j.1365-3156.2011.02771.x.PubMed Rungsihirunrat K, Chaijaroenkul W, Siripoon N, Seugorn A, Na-Bangchang K: Genotyping of polymorphic marker (MSP3alpha and MSP3beta) genes of Plasmodium vivax field isolates from malaria endemic of Thailand. Trop Med Int Health. 2011, 16: 794-801. 10.1111/j.1365-3156.2011.02771.x.PubMed
33.
Zurück zum Zitat Van den Eede P, Erhart A, Van der Auwera G, Van Overmeir C, Thang ND, Hung le X, Anne J, D'Alessandro U: High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping. Am J Trop Med Hyg. 2010, 82: 223-227. 10.4269/ajtmh.2010.09-0458.PubMed Van den Eede P, Erhart A, Van der Auwera G, Van Overmeir C, Thang ND, Hung le X, Anne J, D'Alessandro U: High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping. Am J Trop Med Hyg. 2010, 82: 223-227. 10.4269/ajtmh.2010.09-0458.PubMed
34.
Zurück zum Zitat Prajapati SK, Verma A, Adak T, Yadav RS, Kumar A, Eapen A, Das MK, Singh N, Sharma SK, Rizvi MA, Dash AP, Joshi H: Allelic dimorphism of Plasmodium vivax gam-1 in the Indian subcontinent. Malar J. 2006, 5: 90-10.1186/1475-2875-5-90.PubMedCentralPubMed Prajapati SK, Verma A, Adak T, Yadav RS, Kumar A, Eapen A, Das MK, Singh N, Sharma SK, Rizvi MA, Dash AP, Joshi H: Allelic dimorphism of Plasmodium vivax gam-1 in the Indian subcontinent. Malar J. 2006, 5: 90-10.1186/1475-2875-5-90.PubMedCentralPubMed
35.
Zurück zum Zitat Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert A, Tonomsing N, Maji A, Addy M, Day NP, White NJ, Pukrittayakamee S: Genetic diversity of Plasmodium vivax in Kolkata, India. Malar J. 2006, 5: 71-10.1186/1475-2875-5-71.PubMedCentralPubMed Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert A, Tonomsing N, Maji A, Addy M, Day NP, White NJ, Pukrittayakamee S: Genetic diversity of Plasmodium vivax in Kolkata, India. Malar J. 2006, 5: 71-10.1186/1475-2875-5-71.PubMedCentralPubMed
36.
Zurück zum Zitat Wickramarachchi T, Premaratne PH, Dias S, Handunnetti SM, Udagama-Randeniya PV: Genetic complexity of Plasmodium vivax infections in Sri Lanka, as reflected at the merozoite-surface-protein-3alpha locus. Ann Trop Med Parasitol. 2010, 104: 95-108. 10.1179/136485910X12607012374190.PubMed Wickramarachchi T, Premaratne PH, Dias S, Handunnetti SM, Udagama-Randeniya PV: Genetic complexity of Plasmodium vivax infections in Sri Lanka, as reflected at the merozoite-surface-protein-3alpha locus. Ann Trop Med Parasitol. 2010, 104: 95-108. 10.1179/136485910X12607012374190.PubMed
37.
Zurück zum Zitat Gunawardena S, Karunaweera ND, Ferreira MU, Phone-Kyaw M, Pollack RJ, Alifrangis M, Rajakaruna RS, Konradsen F, Amerasinghe PH, Schousboe ML, Galappaththy GN, Abeyasinghe RR, Hartl DL, Wirth DF: Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia. Am J Trop Med Hyg. 2010, 82: 235-242. 10.4269/ajtmh.2010.09-0588.PubMedCentralPubMed Gunawardena S, Karunaweera ND, Ferreira MU, Phone-Kyaw M, Pollack RJ, Alifrangis M, Rajakaruna RS, Konradsen F, Amerasinghe PH, Schousboe ML, Galappaththy GN, Abeyasinghe RR, Hartl DL, Wirth DF: Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia. Am J Trop Med Hyg. 2010, 82: 235-242. 10.4269/ajtmh.2010.09-0588.PubMedCentralPubMed
38.
Zurück zum Zitat Khatoon L, Baliraine FN, Bonizzoni M, Malik SA, Yan G: Genetic structure of Plasmodium vivax and Plasmodium falciparum in the Bannu district of Pakistan. Malar J. 2010, 9: 112-10.1186/1475-2875-9-112.PubMedCentralPubMed Khatoon L, Baliraine FN, Bonizzoni M, Malik SA, Yan G: Genetic structure of Plasmodium vivax and Plasmodium falciparum in the Bannu district of Pakistan. Malar J. 2010, 9: 112-10.1186/1475-2875-9-112.PubMedCentralPubMed
39.
Zurück zum Zitat Zakeri S, Raeisi A, Afsharpad M, Kakar Q, Ghasemi F, Atta H, Zamani G, Memon MS, Salehi M, Djadid ND: Molecular characterization of Plasmodium vivax clinical isolates in Pakistan and Iran using pvmsp-1, pvmsp-3alpha and pvcsp genes as molecular markers. Parasitol Int. 2010, 59: 15-21. 10.1016/j.parint.2009.06.006.PubMed Zakeri S, Raeisi A, Afsharpad M, Kakar Q, Ghasemi F, Atta H, Zamani G, Memon MS, Salehi M, Djadid ND: Molecular characterization of Plasmodium vivax clinical isolates in Pakistan and Iran using pvmsp-1, pvmsp-3alpha and pvcsp genes as molecular markers. Parasitol Int. 2010, 59: 15-21. 10.1016/j.parint.2009.06.006.PubMed
40.
Zurück zum Zitat Yang Z, Miao J, Huang Y, Li X, Putaporntip C, Jongwutiwes S, Gao Q, Udomsangpetch R, Sattabongkot J, Cui L: Genetic structures of geographically distinct Plasmodium vivax populations assessed by PCR/RFLP analysis of the merozoite surface protein 3beta gene. Acta Trop. 2006, 100: 205-212. 10.1016/j.actatropica.2006.10.011.PubMedCentralPubMed Yang Z, Miao J, Huang Y, Li X, Putaporntip C, Jongwutiwes S, Gao Q, Udomsangpetch R, Sattabongkot J, Cui L: Genetic structures of geographically distinct Plasmodium vivax populations assessed by PCR/RFLP analysis of the merozoite surface protein 3beta gene. Acta Trop. 2006, 100: 205-212. 10.1016/j.actatropica.2006.10.011.PubMedCentralPubMed
41.
Zurück zum Zitat Zhong D, Bonizzoni M, Zhou G, Wang G, Chen B, Vardo-Zalik A, Cui L, Yan G, Zheng B: Genetic diversity of Plasmodium vivax malaria in China and Myanmar. Infect Genet Evol. 2011, 11: 1419-1425. 10.1016/j.meegid.2011.05.009.PubMedCentralPubMed Zhong D, Bonizzoni M, Zhou G, Wang G, Chen B, Vardo-Zalik A, Cui L, Yan G, Zheng B: Genetic diversity of Plasmodium vivax malaria in China and Myanmar. Infect Genet Evol. 2011, 11: 1419-1425. 10.1016/j.meegid.2011.05.009.PubMedCentralPubMed
42.
Zurück zum Zitat Kim TS, Kim HH, Lee SS, Na BK, Lin K, Cho SH, Kang YJ, Kim DK, Sohn Y, Kim H, Lee HW: Prevalence of Plasmodium vivax VK210 and VK247 subtype in Myanmar. Malar J. 2010, 9: 195-10.1186/1475-2875-9-195.PubMedCentralPubMed Kim TS, Kim HH, Lee SS, Na BK, Lin K, Cho SH, Kang YJ, Kim DK, Sohn Y, Kim H, Lee HW: Prevalence of Plasmodium vivax VK210 and VK247 subtype in Myanmar. Malar J. 2010, 9: 195-10.1186/1475-2875-9-195.PubMedCentralPubMed
43.
Zurück zum Zitat Moon SU, Lee HW, Kim JY, Na BK, Cho SH, Lin K, Sohn WM, Kim TS: High frequency of genetic diversity of Plasmodium vivax field isolates in Myanmar. Acta Trop. 2009, 109: 30-36. 10.1016/j.actatropica.2008.09.006.PubMed Moon SU, Lee HW, Kim JY, Na BK, Cho SH, Lin K, Sohn WM, Kim TS: High frequency of genetic diversity of Plasmodium vivax field isolates in Myanmar. Acta Trop. 2009, 109: 30-36. 10.1016/j.actatropica.2008.09.006.PubMed
44.
Zurück zum Zitat Chen N, Auliff A, Rieckmann K, Gatton M, Cheng Q: Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis. 2007, 195: 934-941. 10.1086/512242.PubMed Chen N, Auliff A, Rieckmann K, Gatton M, Cheng Q: Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis. 2007, 195: 934-941. 10.1086/512242.PubMed
45.
Zurück zum Zitat Zakeri S, Dinparast Djadid N, Zeinali S: Sequence heterogeneity of the merozoite surface protein-1 gene (MSP-1) of Plasmodium vivax wild isolates in southeastern Iran. Acta Trop. 2003, 88: 91-97. 10.1016/S0001-706X(03)00192-X.PubMed Zakeri S, Dinparast Djadid N, Zeinali S: Sequence heterogeneity of the merozoite surface protein-1 gene (MSP-1) of Plasmodium vivax wild isolates in southeastern Iran. Acta Trop. 2003, 88: 91-97. 10.1016/S0001-706X(03)00192-X.PubMed
46.
Zurück zum Zitat Zakeri S, Abouie Mehrizi A, Djadid ND, Snounou G: Circumsporozoite protein gene diversity among temperate and tropical Plasmodium vivax isolates from Iran. Trop Med Int Health. 2006, 11: 729-737. 10.1111/j.1365-3156.2006.01613.x.PubMed Zakeri S, Abouie Mehrizi A, Djadid ND, Snounou G: Circumsporozoite protein gene diversity among temperate and tropical Plasmodium vivax isolates from Iran. Trop Med Int Health. 2006, 11: 729-737. 10.1111/j.1365-3156.2006.01613.x.PubMed
47.
Zurück zum Zitat Zakeri S, Barjesteh H, Djadid ND: Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J. 2006, 5: 53-10.1186/1475-2875-5-53.PubMedCentralPubMed Zakeri S, Barjesteh H, Djadid ND: Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J. 2006, 5: 53-10.1186/1475-2875-5-53.PubMedCentralPubMed
48.
Zurück zum Zitat Severini C, Menegon M, Di Luca M, Abdullaev I, Majori G, Razakov SA, Gradoni L: Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region. Trans R Soc Trop Med Hyg. 2004, 98: 585-592. 10.1016/j.trstmh.2004.01.003.PubMed Severini C, Menegon M, Di Luca M, Abdullaev I, Majori G, Razakov SA, Gradoni L: Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region. Trans R Soc Trop Med Hyg. 2004, 98: 585-592. 10.1016/j.trstmh.2004.01.003.PubMed
49.
Zurück zum Zitat Zakeri S, Safi N, Afsharpad M, Butt W, Ghasemi F, Mehrizi AA, Atta H, Zamani G, Djadid ND: Genetic structure of Plasmodium vivax isolates from two malaria endemic areas in Afghanistan. Acta Trop. 2010, 113: 12-19. 10.1016/j.actatropica.2009.08.025.PubMed Zakeri S, Safi N, Afsharpad M, Butt W, Ghasemi F, Mehrizi AA, Atta H, Zamani G, Djadid ND: Genetic structure of Plasmodium vivax isolates from two malaria endemic areas in Afghanistan. Acta Trop. 2010, 113: 12-19. 10.1016/j.actatropica.2009.08.025.PubMed
50.
Zurück zum Zitat Zeyrek FY, Tachibana S, Yuksel F, Doni N, Palacpac N, Arisue N, Horii T, Coban C, Tanabe K: Limited polymorphism of the Plasmodium vivax merozoite surface protein 1 gene in isolates from Turkey. Am J Trop Med Hyg. 2010, 83: 1230-1237. 10.4269/ajtmh.2010.10-0353.PubMedCentralPubMed Zeyrek FY, Tachibana S, Yuksel F, Doni N, Palacpac N, Arisue N, Horii T, Coban C, Tanabe K: Limited polymorphism of the Plasmodium vivax merozoite surface protein 1 gene in isolates from Turkey. Am J Trop Med Hyg. 2010, 83: 1230-1237. 10.4269/ajtmh.2010.10-0353.PubMedCentralPubMed
51.
Zurück zum Zitat Sutton PL, Neyra V, Hernandez JN, Branch OH: Plasmodium falciparum and Plasmodium vivax infections in the Peruvian Amazon: propagation of complex, multiple allele-type infections without super-infection. Am J Trop Med Hyg. 2009, 81: 950-960. 10.4269/ajtmh.2009.09-0132.PubMedCentralPubMed Sutton PL, Neyra V, Hernandez JN, Branch OH: Plasmodium falciparum and Plasmodium vivax infections in the Peruvian Amazon: propagation of complex, multiple allele-type infections without super-infection. Am J Trop Med Hyg. 2009, 81: 950-960. 10.4269/ajtmh.2009.09-0132.PubMedCentralPubMed
52.
Zurück zum Zitat Rezende AM, Tarazona-Santos E, Couto AD, Fontes CJ, De Souza JM, Carvalho LH, Brito CF: Analysis of genetic variability of Plasmodium vivax isolates from different Brazilian Amazon areas using tandem repeats. Am J Trop Med Hyg. 2009, 80: 729-733.PubMed Rezende AM, Tarazona-Santos E, Couto AD, Fontes CJ, De Souza JM, Carvalho LH, Brito CF: Analysis of genetic variability of Plasmodium vivax isolates from different Brazilian Amazon areas using tandem repeats. Am J Trop Med Hyg. 2009, 80: 729-733.PubMed
53.
Zurück zum Zitat Rezende AM, Tarazona-Santos E, Fontes CJ, Souza JM, Couto AD, Carvalho LH, Brito CF: Microsatellite loci: determining the genetic variability of Plasmodium vivax. Trop Med Int Health. 2010, 15: 718-726. 10.1111/j.1365-3156.2010.02535.x.PubMed Rezende AM, Tarazona-Santos E, Fontes CJ, Souza JM, Couto AD, Carvalho LH, Brito CF: Microsatellite loci: determining the genetic variability of Plasmodium vivax. Trop Med Int Health. 2010, 15: 718-726. 10.1111/j.1365-3156.2010.02535.x.PubMed
54.
Zurück zum Zitat Storti-Melo LM, de Souza-Neiras WC, Cassiano GC, Joazeiro AC, Fontes CJ, Bonini-Domingos CR, Couto AA, Povoa MM, de Mattos LC, Cavasini CE, Rossit AR, Machado RL: Plasmodium vivax circumsporozoite variants and Duffy blood group genotypes in the Brazilian Amazon region. Trans R Soc Trop Med Hyg. 2009, 103: 672-678. 10.1016/j.trstmh.2008.07.018.PubMed Storti-Melo LM, de Souza-Neiras WC, Cassiano GC, Joazeiro AC, Fontes CJ, Bonini-Domingos CR, Couto AA, Povoa MM, de Mattos LC, Cavasini CE, Rossit AR, Machado RL: Plasmodium vivax circumsporozoite variants and Duffy blood group genotypes in the Brazilian Amazon region. Trans R Soc Trop Med Hyg. 2009, 103: 672-678. 10.1016/j.trstmh.2008.07.018.PubMed
55.
Zurück zum Zitat Orjuela-Sanchez P, da Silva NS, da Silva-Nunes M, Ferreira MU: Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia. Am J Trop Med Hyg. 2009, 81: 961-968. 10.4269/ajtmh.2009.09-0337.PubMed Orjuela-Sanchez P, da Silva NS, da Silva-Nunes M, Ferreira MU: Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia. Am J Trop Med Hyg. 2009, 81: 961-968. 10.4269/ajtmh.2009.09-0337.PubMed
56.
Zurück zum Zitat Veron V, Legrand E, Yrinesi J, Volney B, Simon S, Carme B: Genetic diversity of msp3alpha and msp1_b5 markers of Plasmodium vivax in French Guiana. Malar J. 2009, 8: 40-10.1186/1475-2875-8-40.PubMedCentralPubMed Veron V, Legrand E, Yrinesi J, Volney B, Simon S, Carme B: Genetic diversity of msp3alpha and msp1_b5 markers of Plasmodium vivax in French Guiana. Malar J. 2009, 8: 40-10.1186/1475-2875-8-40.PubMedCentralPubMed
57.
Zurück zum Zitat Bonilla JA, Validum L, Cummings R, Palmer CJ: Genetic diversity of Plasmodium vivax Pvcsp and Pvmsp1 in Guyana, South America. Am J Trop Med Hyg. 2006, 75: 830-835.PubMed Bonilla JA, Validum L, Cummings R, Palmer CJ: Genetic diversity of Plasmodium vivax Pvcsp and Pvmsp1 in Guyana, South America. Am J Trop Med Hyg. 2006, 75: 830-835.PubMed
58.
Zurück zum Zitat Cristiano FA, Perez MA, Nicholls RS, Guerra AP: Polymorphism in the Plasmodium vivax msp 3: gene in field samples from Tierralta, Colombia. Mem Inst Oswaldo Cruz. 2008, 103: 493-496. 10.1590/S0074-02762008000500015.PubMed Cristiano FA, Perez MA, Nicholls RS, Guerra AP: Polymorphism in the Plasmodium vivax msp 3: gene in field samples from Tierralta, Colombia. Mem Inst Oswaldo Cruz. 2008, 103: 493-496. 10.1590/S0074-02762008000500015.PubMed
59.
Zurück zum Zitat Ord R, Polley S, Tami A, Sutherland CJ: High sequence diversity and evidence of balancing selection in the Pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol. 2005, 144: 86-93. 10.1016/j.molbiopara.2005.08.005.PubMed Ord R, Polley S, Tami A, Sutherland CJ: High sequence diversity and evidence of balancing selection in the Pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol. 2005, 144: 86-93. 10.1016/j.molbiopara.2005.08.005.PubMed
60.
Zurück zum Zitat Leclerc MC, Gauthier C, Villegas L, Urdaneta L: Genetic diversity of merozoite surface protein-1 gene of Plasmodium vivax isolates in mining villages of Venezuela (Bolivar State). Acta Trop. 2005, 95: 26-32. 10.1016/j.actatropica.2005.03.007.PubMed Leclerc MC, Gauthier C, Villegas L, Urdaneta L: Genetic diversity of merozoite surface protein-1 gene of Plasmodium vivax isolates in mining villages of Venezuela (Bolivar State). Acta Trop. 2005, 95: 26-32. 10.1016/j.actatropica.2005.03.007.PubMed
61.
Zurück zum Zitat Henry-Halldin CN, Sepe D, Susapu M, McNamara DT, Bockarie M, King CL, Zimmerman PA: High-throughput molecular diagnosis of circumsporozoite variants VK210 and VK247 detects complex Plasmodium vivax infections in malaria endemic populations in Papua New Guinea. Infect Genet Evol. 2011, 11: 391-398. 10.1016/j.meegid.2010.11.010.PubMedCentralPubMed Henry-Halldin CN, Sepe D, Susapu M, McNamara DT, Bockarie M, King CL, Zimmerman PA: High-throughput molecular diagnosis of circumsporozoite variants VK210 and VK247 detects complex Plasmodium vivax infections in malaria endemic populations in Papua New Guinea. Infect Genet Evol. 2011, 11: 391-398. 10.1016/j.meegid.2010.11.010.PubMedCentralPubMed
62.
Zurück zum Zitat Mueller I, Kaiok J, Reeder JC, Cortes A: The population structure of Plasmodium falciparum and Plasmodium vivax during an epidemic of malaria in the Eastern Highlands of Papua New Guinea. Am J Trop Med Hyg. 2002, 67: 459-464.PubMed Mueller I, Kaiok J, Reeder JC, Cortes A: The population structure of Plasmodium falciparum and Plasmodium vivax during an epidemic of malaria in the Eastern Highlands of Papua New Guinea. Am J Trop Med Hyg. 2002, 67: 459-464.PubMed
63.
Zurück zum Zitat Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, Genton B, Beck HP, Felger I: Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis. 2009, 199: 1074-1080. 10.1086/597303.PubMed Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, Genton B, Beck HP, Felger I: Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis. 2009, 199: 1074-1080. 10.1086/597303.PubMed
64.
Zurück zum Zitat Gomez JC, McNamara DT, Bockarie MJ, Baird JK, Carlton JM, Zimmerman PA: Identification of a polymorphic Plasmodium vivax microsatellite marker. Am J Trop Med Hyg. 2003, 69: 377-379.PubMedCentralPubMed Gomez JC, McNamara DT, Bockarie MJ, Baird JK, Carlton JM, Zimmerman PA: Identification of a polymorphic Plasmodium vivax microsatellite marker. Am J Trop Med Hyg. 2003, 69: 377-379.PubMedCentralPubMed
65.
Zurück zum Zitat Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP: Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000, 17: 1467-1482.PubMed Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP: Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000, 17: 1467-1482.PubMed
66.
Zurück zum Zitat Mu J, Awadalla P, Duan J, McGee KM, Joy DA, McVean GA, Su XZ: Recombination hotspots and population structure in Plasmodium falciparum. PLoS Biol. 2005, 3: e335-10.1371/journal.pbio.0030335.PubMedCentralPubMed Mu J, Awadalla P, Duan J, McGee KM, Joy DA, McVean GA, Su XZ: Recombination hotspots and population structure in Plasmodium falciparum. PLoS Biol. 2005, 3: e335-10.1371/journal.pbio.0030335.PubMedCentralPubMed
67.
Zurück zum Zitat Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP: Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999, 119 (Pt 2): 113-125.PubMed Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP: Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999, 119 (Pt 2): 113-125.PubMed
68.
Zurück zum Zitat Imwong M, Sudimack D, Pukrittayakamee S, Osorio L, Carlton JM, Day NP, White NJ, Anderson TJ: Microsatellite variation, repeat array length, and population history of Plasmodium vivax. Mol Biol Evol. 2006, 23: 1016-1018. 10.1093/molbev/msj116.PubMed Imwong M, Sudimack D, Pukrittayakamee S, Osorio L, Carlton JM, Day NP, White NJ, Anderson TJ: Microsatellite variation, repeat array length, and population history of Plasmodium vivax. Mol Biol Evol. 2006, 23: 1016-1018. 10.1093/molbev/msj116.PubMed
69.
Zurück zum Zitat Russell B, Suwanarusk R, Lek-Uthai U: Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol. 2006, 22: 399-401. 10.1016/j.pt.2006.06.013.PubMed Russell B, Suwanarusk R, Lek-Uthai U: Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol. 2006, 22: 399-401. 10.1016/j.pt.2006.06.013.PubMed
70.
Zurück zum Zitat Leclerc MC, Durand P, Gauthier C, Patot S, Billotte N, Menegon M, Severini C, Ayala FJ, Renaud F: Meager genetic variability of the human malaria agent Plasmodium vivax. Proc Natl Acad Sci USA. 2004, 101: 14455-14460. 10.1073/pnas.0405186101.PubMedCentralPubMed Leclerc MC, Durand P, Gauthier C, Patot S, Billotte N, Menegon M, Severini C, Ayala FJ, Renaud F: Meager genetic variability of the human malaria agent Plasmodium vivax. Proc Natl Acad Sci USA. 2004, 101: 14455-14460. 10.1073/pnas.0405186101.PubMedCentralPubMed
71.
Zurück zum Zitat de Souza-Neiras WC, de Melo LM, Machado RL: The genetic diversity of Plasmodium vivax--a review. Mem Inst Oswaldo Cruz. 2007, 102: 245-254.PubMed de Souza-Neiras WC, de Melo LM, Machado RL: The genetic diversity of Plasmodium vivax--a review. Mem Inst Oswaldo Cruz. 2007, 102: 245-254.PubMed
72.
Zurück zum Zitat Koepfli C, Schoepflin S, Bretscher M, Lin E, Kiniboro B, Zimmerman PA, Siba P, Smith TA, Mueller I, Felger I: How much remains undetected? Probability of molecular detection of human plasmodia in the field. PLoS One. 2011, 6: e19010-10.1371/journal.pone.0019010.PubMedCentralPubMed Koepfli C, Schoepflin S, Bretscher M, Lin E, Kiniboro B, Zimmerman PA, Siba P, Smith TA, Mueller I, Felger I: How much remains undetected? Probability of molecular detection of human plasmodia in the field. PLoS One. 2011, 6: e19010-10.1371/journal.pone.0019010.PubMedCentralPubMed
73.
Zurück zum Zitat Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP: Genetic diversity and dynamics of plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology. 2000, 121 (Pt 3): 257-272.PubMed Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP: Genetic diversity and dynamics of plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology. 2000, 121 (Pt 3): 257-272.PubMed
74.
Zurück zum Zitat Daubersies P, Sallenave-Sales S, Magne S, Trape JF, Contamin H, Fandeur T, Rogier C, Mercereau-Puijalon O, Druilhe P: Rapid turnover of Plasmodium falciparum populations in asymptomatic individuals living in a high transmission area. Am J Trop Med Hyg. 1996, 54: 18-26.PubMed Daubersies P, Sallenave-Sales S, Magne S, Trape JF, Contamin H, Fandeur T, Rogier C, Mercereau-Puijalon O, Druilhe P: Rapid turnover of Plasmodium falciparum populations in asymptomatic individuals living in a high transmission area. Am J Trop Med Hyg. 1996, 54: 18-26.PubMed
75.
Zurück zum Zitat Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW: Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J. 2007, 6: 17-10.1186/1475-2875-6-17.PubMedCentralPubMed Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW: Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J. 2007, 6: 17-10.1186/1475-2875-6-17.PubMedCentralPubMed
76.
Zurück zum Zitat Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett G: Operational strategies to achieve and maintain malaria elimination. Lancet. 2010, 376: 1592-1603. 10.1016/S0140-6736(10)61269-X.PubMedCentralPubMed Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett G: Operational strategies to achieve and maintain malaria elimination. Lancet. 2010, 376: 1592-1603. 10.1016/S0140-6736(10)61269-X.PubMedCentralPubMed
77.
Zurück zum Zitat The Pacific Malaria Initiative Survey Group (PMISG) on behalf of the Ministries of Health of Vanuatu and Solomon Islands: Malaria on isolated Melanesian islands prior to the initiation of malaria elimination activities. Malar J. 2010, 9: 218 The Pacific Malaria Initiative Survey Group (PMISG) on behalf of the Ministries of Health of Vanuatu and Solomon Islands: Malaria on isolated Melanesian islands prior to the initiation of malaria elimination activities. Malar J. 2010, 9: 218
78.
Zurück zum Zitat Maguire JD, Bangs MJ, Brennan L, Rieckmann K, Taleo G: Cross-sectional characterization of malaria in Sanma and Shefa Provinces, Republic of Vanuatu: malaria control implications. P N G Med J. 2006, 49: 22-31.PubMed Maguire JD, Bangs MJ, Brennan L, Rieckmann K, Taleo G: Cross-sectional characterization of malaria in Sanma and Shefa Provinces, Republic of Vanuatu: malaria control implications. P N G Med J. 2006, 49: 22-31.PubMed
79.
Zurück zum Zitat Maitland K, Williams TN, Peto TE, Day KP, Clegg JB, Weatherall DJ, Bowden DK: Absence of malaria-specific mortality in children in an area of hyperendemic malaria. Trans R Soc Trop Med Hyg. 1997, 91: 562-566. 10.1016/S0035-9203(97)90026-2.PubMed Maitland K, Williams TN, Peto TE, Day KP, Clegg JB, Weatherall DJ, Bowden DK: Absence of malaria-specific mortality in children in an area of hyperendemic malaria. Trans R Soc Trop Med Hyg. 1997, 91: 562-566. 10.1016/S0035-9203(97)90026-2.PubMed
80.
Zurück zum Zitat Hii JL, Kanai L, Foligela A, Kan SK, Burkot TR, Wirtz RA: Impact of permethrin-impregnated mosquito nets compared with DDT house-spraying against malaria transmission by Anopheles farauti and An.punctulatus in the Solomon Islands. Med Vet Entomol. 1993, 7: 333-338. 10.1111/j.1365-2915.1993.tb00701.x.PubMed Hii JL, Kanai L, Foligela A, Kan SK, Burkot TR, Wirtz RA: Impact of permethrin-impregnated mosquito nets compared with DDT house-spraying against malaria transmission by Anopheles farauti and An.punctulatus in the Solomon Islands. Med Vet Entomol. 1993, 7: 333-338. 10.1111/j.1365-2915.1993.tb00701.x.PubMed
81.
Zurück zum Zitat Feachem R, Sabot O: A new global malaria eradication strategy. Lancet. 2008, 371: 1633-1635. 10.1016/S0140-6736(08)60424-9.PubMed Feachem R, Sabot O: A new global malaria eradication strategy. Lancet. 2008, 371: 1633-1635. 10.1016/S0140-6736(08)60424-9.PubMed
82.
Zurück zum Zitat Rodriguez-Morales AJ, Delgado L, Martinez N, Franco-Paredes C: Impact of imported malaria on the burden of disease in northeastern Venezuela. J Travel Med. 2006, 13: 15-20. 10.1111/j.1708-8305.2006.00006.x.PubMed Rodriguez-Morales AJ, Delgado L, Martinez N, Franco-Paredes C: Impact of imported malaria on the burden of disease in northeastern Venezuela. J Travel Med. 2006, 13: 15-20. 10.1111/j.1708-8305.2006.00006.x.PubMed
83.
Zurück zum Zitat Khan FY, Lutof AK, Yassin MA, Khattab MA, Saleh M, Rezeq HY, Almaslamani M: Imported malaria in Qatar: a 1 year hospital-based study in 2005. Travel Med Infect Dis. 2009, 7: 111-117. 10.1016/j.tmaid.2009.01.003.PubMed Khan FY, Lutof AK, Yassin MA, Khattab MA, Saleh M, Rezeq HY, Almaslamani M: Imported malaria in Qatar: a 1 year hospital-based study in 2005. Travel Med Infect Dis. 2009, 7: 111-117. 10.1016/j.tmaid.2009.01.003.PubMed
84.
Zurück zum Zitat Choi KM, Choi YK, Kang YA, Seo SY, Lee HW, Cho SH, Lee WJ, Rhie HG, Lee HS, Kim JY: Study of the genetic discrimination between imported and autochthonous cases of malaria in South Korea. J Travel Med. 2011, 18: 63-66. 10.1111/j.1708-8305.2010.00473.x.PubMed Choi KM, Choi YK, Kang YA, Seo SY, Lee HW, Cho SH, Lee WJ, Rhie HG, Lee HS, Kim JY: Study of the genetic discrimination between imported and autochthonous cases of malaria in South Korea. J Travel Med. 2011, 18: 63-66. 10.1111/j.1708-8305.2010.00473.x.PubMed
85.
Zurück zum Zitat Rodriguez-Morales AJ, Ferrer MV, Barrera MA, Pacheco M, Daza V, Franco-Paredes C: Imported cases of malaria admitted to two hospitals of Margarita Island, Venezuela, 1998-2005. Travel Med Infect Dis. 2009, 7: 44-48. 10.1016/j.tmaid.2008.09.006.PubMed Rodriguez-Morales AJ, Ferrer MV, Barrera MA, Pacheco M, Daza V, Franco-Paredes C: Imported cases of malaria admitted to two hospitals of Margarita Island, Venezuela, 1998-2005. Travel Med Infect Dis. 2009, 7: 44-48. 10.1016/j.tmaid.2008.09.006.PubMed
86.
Zurück zum Zitat Gatton ML, Cheng Q: Can estimates of antimalarial efficacy from field studies be improved?. Trends Parasitol. 2008, 24: 68-73. 10.1016/j.pt.2007.11.003.PubMedCentralPubMed Gatton ML, Cheng Q: Can estimates of antimalarial efficacy from field studies be improved?. Trends Parasitol. 2008, 24: 68-73. 10.1016/j.pt.2007.11.003.PubMedCentralPubMed
87.
Zurück zum Zitat Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, Guthmann JP, Nosten F, Carlton J, Looareesuwan S, Nair S, Sudimack D, Day NP, Anderson TJ, White NJ: Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis. 2007, 195: 927-933. 10.1086/512241.PubMed Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, Guthmann JP, Nosten F, Carlton J, Looareesuwan S, Nair S, Sudimack D, Day NP, Anderson TJ, White NJ: Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis. 2007, 195: 927-933. 10.1086/512241.PubMed
88.
Zurück zum Zitat Teka H, Petros B, Yamuah L, Tesfaye G, Elhassan I, Muchohi S, Kokwaro G, Aseffa A, Engers H: Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia. Malar J. 2008, 7: 220-10.1186/1475-2875-7-220.PubMedCentralPubMed Teka H, Petros B, Yamuah L, Tesfaye G, Elhassan I, Muchohi S, Kokwaro G, Aseffa A, Engers H: Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia. Malar J. 2008, 7: 220-10.1186/1475-2875-7-220.PubMedCentralPubMed
89.
Zurück zum Zitat Havryliuk T, Orjuela-Sanchez P, Ferreira MU: Plasmodium vivax: microsatellite analysis of multiple-clone infections. Exp Parasitol. 2008, 120: 330-336. 10.1016/j.exppara.2008.08.012.PubMed Havryliuk T, Orjuela-Sanchez P, Ferreira MU: Plasmodium vivax: microsatellite analysis of multiple-clone infections. Exp Parasitol. 2008, 120: 330-336. 10.1016/j.exppara.2008.08.012.PubMed
90.
Zurück zum Zitat Jongwutiwes S, Putaporntip C, Hughes AL: Bottleneck effects on vaccine-candidate antigen diversity of malaria parasites in Thailand. Vaccine. 2010, 28: 3112-3117. 10.1016/j.vaccine.2010.02.062.PubMedCentralPubMed Jongwutiwes S, Putaporntip C, Hughes AL: Bottleneck effects on vaccine-candidate antigen diversity of malaria parasites in Thailand. Vaccine. 2010, 28: 3112-3117. 10.1016/j.vaccine.2010.02.062.PubMedCentralPubMed
91.
Zurück zum Zitat Galinski MR, Barnwell JW: Plasmodium vivax: who cares?. Malar J. 2008, 7 (Suppl 1): S9-10.1186/1475-2875-7-S1-S9.PubMedCentralPubMed Galinski MR, Barnwell JW: Plasmodium vivax: who cares?. Malar J. 2008, 7 (Suppl 1): S9-10.1186/1475-2875-7-S1-S9.PubMedCentralPubMed
92.
Zurück zum Zitat Golenda CF, Li J, Rosenberg R: Continuous in vitro propagation of the malaria parasite Plasmodium vivax. Proc Natl Acad Sci USA. 1997, 94: 6786-6791. 10.1073/pnas.94.13.6786.PubMedCentralPubMed Golenda CF, Li J, Rosenberg R: Continuous in vitro propagation of the malaria parasite Plasmodium vivax. Proc Natl Acad Sci USA. 1997, 94: 6786-6791. 10.1073/pnas.94.13.6786.PubMedCentralPubMed
93.
Zurück zum Zitat Mons B, Collins WE, Skinner JC, van der Star W, Croon JJ, van der Kaay HJ: Plasmodium vivax: in vitro growth and reinvasion in red blood cells of Aotus nancymai. Exp Parasitol. 1988, 66: 183-188. 10.1016/0014-4894(88)90089-6.PubMed Mons B, Collins WE, Skinner JC, van der Star W, Croon JJ, van der Kaay HJ: Plasmodium vivax: in vitro growth and reinvasion in red blood cells of Aotus nancymai. Exp Parasitol. 1988, 66: 183-188. 10.1016/0014-4894(88)90089-6.PubMed
94.
Zurück zum Zitat Chotivanich K, Silamut K, Udomsangpetch R, Stepniewska KA, Pukrittayakamee S, Looareesuwan S, White NJ: Ex-vivo short-term culture and developmental assessment of Plasmodium vivax. Trans R Soc Trop Med Hyg. 2001, 95: 677-680. 10.1016/S0035-9203(01)90113-0.PubMed Chotivanich K, Silamut K, Udomsangpetch R, Stepniewska KA, Pukrittayakamee S, Looareesuwan S, White NJ: Ex-vivo short-term culture and developmental assessment of Plasmodium vivax. Trans R Soc Trop Med Hyg. 2001, 95: 677-680. 10.1016/S0035-9203(01)90113-0.PubMed
95.
Zurück zum Zitat Gentil F, Bargieri DY, Leite JA, Francoso KS, Patricio MB, Espindola NM, Vaz AJ, Palatnik-de-Sousa CB, Rodrigues MM, Costa FT, Soares IS: A recombinant vaccine based on domain II of Plasmodium vivax Apical Membrane Antigen 1 induces high antibody titres in mice. Vaccine. 2010, 28: 6183-6190. 10.1016/j.vaccine.2010.07.017.PubMed Gentil F, Bargieri DY, Leite JA, Francoso KS, Patricio MB, Espindola NM, Vaz AJ, Palatnik-de-Sousa CB, Rodrigues MM, Costa FT, Soares IS: A recombinant vaccine based on domain II of Plasmodium vivax Apical Membrane Antigen 1 induces high antibody titres in mice. Vaccine. 2010, 28: 6183-6190. 10.1016/j.vaccine.2010.07.017.PubMed
96.
Zurück zum Zitat Weedall GD, Conway DJ: Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol. 2010, 26: 363-369. 10.1016/j.pt.2010.04.002.PubMed Weedall GD, Conway DJ: Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol. 2010, 26: 363-369. 10.1016/j.pt.2010.04.002.PubMed
97.
Zurück zum Zitat Gunasekera AM, Wickramarachchi T, Neafsey DE, Ganguli I, Perera L, Premaratne PH, Hartl D, Handunnetti SM, Udagama-Randeniya PV, Wirth DF: Genetic diversity and selection at the Plasmodium vivax apical membrane antigen-1 (PvAMA-1) locus in a Sri Lankan population. Mol Biol Evol. 2007, 24: 939-947. 10.1093/molbev/msm013.PubMed Gunasekera AM, Wickramarachchi T, Neafsey DE, Ganguli I, Perera L, Premaratne PH, Hartl D, Handunnetti SM, Udagama-Randeniya PV, Wirth DF: Genetic diversity and selection at the Plasmodium vivax apical membrane antigen-1 (PvAMA-1) locus in a Sri Lankan population. Mol Biol Evol. 2007, 24: 939-947. 10.1093/molbev/msm013.PubMed
98.
Zurück zum Zitat Richards JS, Beeson JG: The future for blood-stage vaccines against malaria. Immunol Cell Biol. 2009, 87: 377-390. 10.1038/icb.2009.27.PubMed Richards JS, Beeson JG: The future for blood-stage vaccines against malaria. Immunol Cell Biol. 2009, 87: 377-390. 10.1038/icb.2009.27.PubMed
99.
Zurück zum Zitat Dias S, Longacre S, Escalante AA, Udagama-Randeniya PV: Genetic diversity and recombination at the C-terminal fragment of the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) in Sri Lanka. Infect Genet Evol. 2011, 11: 145-156. 10.1016/j.meegid.2010.09.007.PubMed Dias S, Longacre S, Escalante AA, Udagama-Randeniya PV: Genetic diversity and recombination at the C-terminal fragment of the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) in Sri Lanka. Infect Genet Evol. 2011, 11: 145-156. 10.1016/j.meegid.2010.09.007.PubMed
100.
Zurück zum Zitat Ferreira MU, da Silva Nunes M, Wunderlich G: Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol. 2004, 11: 987-995.PubMedCentralPubMed Ferreira MU, da Silva Nunes M, Wunderlich G: Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol. 2004, 11: 987-995.PubMedCentralPubMed
101.
Zurück zum Zitat Arevalo-Herrera M, Chitnis C, Herrera S: Current status of Plasmodium vivax vaccine. Hum Vaccin. 2010, 6: 124-132. 10.4161/hv.6.1.9931.PubMed Arevalo-Herrera M, Chitnis C, Herrera S: Current status of Plasmodium vivax vaccine. Hum Vaccin. 2010, 6: 124-132. 10.4161/hv.6.1.9931.PubMed
102.
Zurück zum Zitat Remarque EJ, Faber BW, Kocken CH, Thomas AW: Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008, 24: 74-84. 10.1016/j.pt.2007.12.002.PubMed Remarque EJ, Faber BW, Kocken CH, Thomas AW: Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008, 24: 74-84. 10.1016/j.pt.2007.12.002.PubMed
103.
Zurück zum Zitat Ord RL, Tami A, Sutherland CJ: ama1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency. PLoS One. 2008, 3: e3366-10.1371/journal.pone.0003366.PubMedCentralPubMed Ord RL, Tami A, Sutherland CJ: ama1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency. PLoS One. 2008, 3: e3366-10.1371/journal.pone.0003366.PubMedCentralPubMed
104.
Zurück zum Zitat Polley SD, Chokejindachai W, Conway DJ: Allele frequency-based analyses robustly map sequence sites under balancing selection in a malaria vaccine candidate antigen. Genetics. 2003, 165: 555-561.PubMedCentralPubMed Polley SD, Chokejindachai W, Conway DJ: Allele frequency-based analyses robustly map sequence sites under balancing selection in a malaria vaccine candidate antigen. Genetics. 2003, 165: 555-561.PubMedCentralPubMed
Metadaten
Titel
Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination
verfasst von
Alicia Arnott
Alyssa E Barry
John C Reeder
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2012
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-11-14

Weitere Artikel der Ausgabe 1/2012

Malaria Journal 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.