Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2010

Open Access 01.12.2010 | Case report

Unilateral optic neuropathy following subdural hematoma: a case report

verfasst von: Alexandra Kretz, Christoph Preul, Hans-Joerg Fricke, Otto W Witte, Christoph Terborg

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2010

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Introduction

Unilateral optic neuropathy is commonly due to a prechiasmatic affliction of the anterior visual pathway, while losses in visual hemifields result from the damage to brain hemispheres. Here we report the unusual case of a patient who suffered from acute optic neuropathy following hemispherical subdural hematoma. Although confirmed up to now only through necropsy studies, our case strongly suggests a local, microcirculatory deficit identified through magnetic resonance imaging in vivo.

Case presentation

A 70-year-old Caucasian German who developed a massive left hemispheric subdural hematoma under oral anticoagulation presented with acute, severe visual impairment on his left eye, which was noticed after surgical decompression. Neurologic and ophthalmologic examinations indicated sinistral optic neuropathy with visual acuity reduced nearly to amaurosis. Ocular pathology such as vitreous body hemorrhage, papilledema, and central retinal artery occlusion were excluded. An orbital lesion was ruled out by means of orbital magnetic resonance imaging. However, cerebral diffusion-weighted imaging and T2 maps of magnetic resonance imaging revealed a circumscribed ischemic lesion within the edematous, slightly herniated temporomesial lobe within the immediate vicinity of the affected optic nerve. Thus, the clinical course and morphologic magnetic resonance imaging findings suggest the occurrence of pressure-induced posterior ischemic optic neuropathy due to microcirculatory compromise.

Conclusion

Although lesions of the second cranial nerve following subdural hematoma have been reported individually, their pathogenesis was preferentially proposed from autopsy studies. Here we discuss a dual, pressure-induced and secondarily ischemic pathomechanism on the base of in vivo magnetic resonance imaging diagnostics which may remain unconsidered by computed tomography.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1752-1947-4-19) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AK and CP interpreted the patient data and clinical course regarding the neurological disease. HF, OW and CT were major contributors in conceiving and writing the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ADC
apparent diffusion coefficient
AION
anterior ischemic optic neuropathy
CT
computed tomography
DWI
diffusion-weighted imaging
FLAIR
fluid attenuated inverse recovery
ICP
intracranial pressure
INR
international normalized ratio
MRI
magnetic resonance imaging
ON
optic neuropathy
PION
posterior ischemic optic neuropathy.

Introduction

Unilateral optic neuropathy (ON) following subdural hematoma has been confirmed by necropsy studies. In these studies, microcirculatory compromise of the optic nerve was proven as a pathogenic mechanism [1]. In this case report, diffusion-weighted images (DWI) of magnetic resonance imaging (MRI) scans showed signal alteration in the ipsilateral optic nerve as a strong evidence for the development of microvascular deficit. Thus, our case is in line with results from autopsies. To the best of our knowledge, this is the first case presentation that demonstrates microvascular impairment with optic neuropathy in vivo.

Case presentation

A 70-year-old Caucasian man of German nationality receiving warfarin therapy for the primary prevention of chronic atrial fibrillation was admitted to our hospital due to symptoms of a coronary syndrome. An initial international normalized ratio (INR) of 1.7 was elevated to therapeutic ranges (INR = 2.5). Three days later, the patient was found comatose after a first-ever generalized seizure. Cerebral computed tomography (CT) revealed a subdural hematoma measuring 16 mm at its maximum thickness and covering almost the entire left convexity which caused a massive midline shift (Figure 1A). Rapid cerebral MRI of the same day depicted a beginning ipsilateral uncal herniation towards the chiasmatic cistern (Figure 1B). Immediately after INR normalisation, surgical evacuation of the subdural hematoma and decompressive craniectomy were performed without any complications.
Two days after extubation and recovery from anaesthesia, the patient complained of severe sinistral visual loss. Neurologic and ophthalmologic examinations confirmed a severely reduced visual acuity on his left eye with concomitant afferent pupillary defect. A normal vascular fundoscopy and the lack of papilledema led to the working diagnosis of posterior ON. Four days after the surgery, a follow-up DWI of the cerebral MRI (Figure 1C) showed a signal hyperintense lesion within the left lateral, mesiobasal temporal lobe that was immediately adjacent to the distal prechiasmatic course of the affected optic nerve. Dull signal attenuation in corresponding apparent diffusion coefficient (ADC) maps, and gadolinium enhancement in T1 (not shown) led to the diagnosis of a subacute cerebral ischemic event.
The corresponding hyperintensity of T2-weighted images indicated focal brain edema in line with regional hypoperfusion and the preceding uncal shift (Figure 1D). Thus, pathomorphologic and sequence-specific MRI criteria suggest a primary mechanic compression followed by secondary microcirculatory impairment of the afflicted brain area. In support of this hypothesis, DWI alterations were not manifest at the initial MRI diagnostics. Although not directly proven by MRI but due to its close anatomic course and the temporal coincidence of optic nerve affliction, an equal dual pathomechanism was believed to be the cause of the appearance of ON. Further cerebral or orbital pathologies were not apparent (not shown). Within weeks, the patient was released for rehabilitation without further visual improvement.

Discussion

To date, only a few cases of ON following subdural hematoma are presented, and their pathomorphologic in vivo findings do not at all elucidate its aetiology. Generally, reports do not present the existence of papilledema or of radiologic in vivo evidence of optic nerve compression by mass effects [2]. In contrast, autopsy studies confirm optic nerve necrosis that is remote from space occupying lesions [1].
The pathophysiology of ON has been discussed in the context of diverse aetiological events, and adequate diagnostic approaches have already been proposed. Table 1 provides an overview of selected publications focussing on key diagnostic means to identify and characterize vascular, mechanical, and pharmacologic aetiologies of ON (Table 1).
Table 1
Overview of the different aetiologies of optic neuropathy.
Optic Neuropathy
Pathophysiology
Diagnostic Means
Diagnostic Parameter
Ref.
AION (anterior ischemic optic neuropathy)
Infarction of the ONH due to perfusion deficit of the SPCA
Infrared pupillography
Latent period of the pupil light reflex
[6]
  
Goldmann perimetry
Visual field impairment, (cecocentral) scotoma
[7]
  
VEP
Retarded P100 latency, diminished potential amplitude
[8]
  
Color fundus photography
Crowded, edematous disc, peripapillary hemorrhage
[7]
  
Fluorescein angiography (i.v.)
Vascular morphology and topology; discal perfusion delay
[7, 8]
  
Ocular blood flow system
Pulse synchronic alterations of intraocular pressure
[9]
  
Optical coherence tomography, e.g. by HRT
Circumferential scan of the ONH for quantitative, morphological analysis, e.g. cup size/volume, RNFL thickness
[10]
  
Scanning laser polarimetry, by confocal scanning laser ophthalmoscope
Estimation of RNFL thickness by retardation of polarized scanning laser beam
[11]
  
Laser doppler flowmeter, e.g. by HRF
Capillary blood flow of retina and choroidea via transpupillary laser scanning ophthalmoscopy
[12]
  
(Color) doppler imaging
Blood flow of intraorbital, retroorbital, small choroideal vessels including SPCA
[13]
  
MRI
DWI restriction, reduced ADC map
[4]
  
Fundoscopy
Edematous disc, macular infarction, subsequent disc pallor
[3, 4]
PION (posterior ischemic optic neuropathy)
Retrolaminar ischemia due to hypo-perfusion of the Zinn-Haller circle (pial, choroideal vessels, PCA)
Fundoscopy
Initially normal disc, pallid after weeks
[14]
  
MRI
 
[14]
CRAO (central retinal artery occlusion)
Perfusion deficit of the central retinal artery
Clinical examination fundoscopy
Absent papillary reflex or RAPD, cherry red spot of the macula
[15]
SAH (subarachnoid hemorrhage due to intracranial aneurysma rupture)
Perfusion deficit during surgical procedure (e.g. clipping), emboli, vasospasm
Cerebral angiography
Vessel calibres: aneurysm, emboli, vasospasm
[16]
CST (cavernous sinus thrombophlebitis)
Venous infarction due to thrombosis of ophthalmic veins
Venography
Absence of contrast filling in orbital veins
[5]
  
MRI
DWI restriction, ADC reduction along optic nerve
[5]
Compressive optic neuropathy
Mucus in paranasal sinus
Orbital CT
Erosion of optic canals
[17]
Toxic
e.g. IFNα therapy
Fundoscopy
Edematous disc
[18]
Pathophysiological concepts and key diagnostics as well as diagnostic parameters are provided together with selected references from the literature.
ADC, attenuated diffusion coefficient; AION, anterior ischemic optic neuropathy; CRAO, central retinal artery occlusion; CST, cavernous sinus thrombophlebitis; CT, computed tomography; DWI, diffusion weighted imaging; HRF, Heidelberg-Retina-Flowmeter; HRT, Heidelberg-Retina-Tomogram; MRI, magnetic resonance imaging; ONH, optic nerve head; PION, posterior ischemic optic neuropathy; PCA, posterior ciliary arteries; RAPD, relative afferent pupillary defect; RNFL, retinal nerve fibre layer; SAH, subarachnoid hemorrhage; SPCA, short posterior ciliary artery; VEP, visual evoked potential.
At present, only a few cases refer to the diagnostic value of MRI in ON. By means of MRI, unilateral [3] and simultaneous bilateral [4] ischemic ON were diagnosed. It was concluded that DWI and ADC maps of MRI may be useful in detecting ischemia of any white matter tracts that are disparate from the brain and spinal cord. MRI diagnostics may even prove suitable in distinguishing ischemic events from optic neuritis [3], while also providing the opportunity to simultaneously detect anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). Likewise, MRI venography in relation to DWI and ADC maps unequivocally confirmed that ON can be caused by cavernous sinus thrombophlebitis [5].
Using the MRI technique, we now provide a pathophysiologic insight on ON following space occupying subdural hematoma early in vivo. Radiological signs of herniation were discrete, although highly sensitive MRI revealed a mechanic, pressure-induced brain lesion of the mesiobasal temporal lobe in proximity to the affected optic nerve. However, focal ischemic injury was missed in detecting basal brain shift by CT. Since MRI pathologies fulfilled the criteria of ischemic compromise, we suggest that the local increase in intracranial pressure (ICP) exceeded the perfusion pressure of both structures, namely the formation of the uncus and the nearby passing optic nerve. Consistent with this notion of a microcirculatory deficit, the lesion did not follow the characteristic extent of a vascular territory.

Conclusions

We suggest that rare cases of acute ON following subdural hematoma are due to local pressure-induced optic nerve infarction. This pathomechanism may remain neglected when massive brain shift is lacking or when CT is the only diagnostic means. The use of serial MRI may help balance the discrepancy between the paucity of clinical reports and frequent neuropathological findings of anterior visual pathway damage in space-occupying brain injury [1].
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AK and CP interpreted the patient data and clinical course regarding the neurological disease. HF, OW and CT were major contributors in conceiving and writing the manuscript. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Lindenberg R, Walsh FB: Vascular compressions involving intracranial visual pathways. Trans Am Acad of Optha Otolaryngol. 1964, 68: 677-694. Lindenberg R, Walsh FB: Vascular compressions involving intracranial visual pathways. Trans Am Acad of Optha Otolaryngol. 1964, 68: 677-694.
2.
3.
Zurück zum Zitat Al-Shafai LS, Mikulis DJ: Diffusion MR imaging in a case of acute ischemic optic neuropathy. Am J Neuroradiol. 2006, 27: 255-257.PubMed Al-Shafai LS, Mikulis DJ: Diffusion MR imaging in a case of acute ischemic optic neuropathy. Am J Neuroradiol. 2006, 27: 255-257.PubMed
4.
Zurück zum Zitat Klein JP, Cohen AB, Kimberly WT, Shah AS, Leiderman YI, Cestari DM, Dinkin MJ: Diffusion-weighted magnetic resonance imaging of bilateral simultaneous optic nerve infarctions. Arch Neurol. 2009, 66: 132-133. 10.1001/archneurol.2008.523.PubMed Klein JP, Cohen AB, Kimberly WT, Shah AS, Leiderman YI, Cestari DM, Dinkin MJ: Diffusion-weighted magnetic resonance imaging of bilateral simultaneous optic nerve infarctions. Arch Neurol. 2009, 66: 132-133. 10.1001/archneurol.2008.523.PubMed
5.
Zurück zum Zitat Chen JS, Mukherjee P, Wintermark M: Restricted diffusion in bilateral optic nerves and retinas as an indicator of venous ischemia caused by cavernous sinus thrombophlebitis. Am J Neuroradiol. 2006, 27: 1815-1816.PubMed Chen JS, Mukherjee P, Wintermark M: Restricted diffusion in bilateral optic nerves and retinas as an indicator of venous ischemia caused by cavernous sinus thrombophlebitis. Am J Neuroradiol. 2006, 27: 1815-1816.PubMed
6.
Zurück zum Zitat Alexandridis E, Argyropoulos T, Krastel H: The latent period of the pupil light reflex in lesions of the optic nerve. Ophthalmologica. 1981, 182: 211-217.CrossRefPubMed Alexandridis E, Argyropoulos T, Krastel H: The latent period of the pupil light reflex in lesions of the optic nerve. Ophthalmologica. 1981, 182: 211-217.CrossRefPubMed
7.
Zurück zum Zitat Sohn BJ, Chun BY, Kwon JY: The effect of an intravitreal triamcinolone acetonide injection for acute nonarteritic anterior ischemic optic neuropathy. Korean J Ophthalmol. 2009, 23: 59-61. 10.3341/kjo.2009.23.1.59.CrossRefPubMedPubMedCentral Sohn BJ, Chun BY, Kwon JY: The effect of an intravitreal triamcinolone acetonide injection for acute nonarteritic anterior ischemic optic neuropathy. Korean J Ophthalmol. 2009, 23: 59-61. 10.3341/kjo.2009.23.1.59.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Frigui M, Kechaou M, Jemal M, Zina ZB, Feki J, Bahloul Z: Les neuropathies optiques au cours de la maladie de Behçet: à propos de 18 cas. Rev Med Interne. 2009, 30: 486-491. 10.1016/j.revmed.2008.12.021.CrossRefPubMed Frigui M, Kechaou M, Jemal M, Zina ZB, Feki J, Bahloul Z: Les neuropathies optiques au cours de la maladie de Behçet: à propos de 18 cas. Rev Med Interne. 2009, 30: 486-491. 10.1016/j.revmed.2008.12.021.CrossRefPubMed
9.
Zurück zum Zitat Langham ME, To'Mey KF: A clinical procedure for the measurements of the ocular pulse-pressure relationship and the ophthalmic arterial pressure. Exp Eye Res. 1978, 27: 17-25. 10.1016/0014-4835(78)90049-0.CrossRefPubMed Langham ME, To'Mey KF: A clinical procedure for the measurements of the ocular pulse-pressure relationship and the ophthalmic arterial pressure. Exp Eye Res. 1978, 27: 17-25. 10.1016/0014-4835(78)90049-0.CrossRefPubMed
10.
Zurück zum Zitat Saito H, Tomidokoro A, Sugimoto E, Aihara M, Tomita G, Fujie K, Wakakura M, Araie M: Optic disc tomography and peripapillary retinal nerve fiber layer thickness in nonarteritic ischemic optic neuropathy and open-angle glaucoma. Ophthalmology. 2006, 113: 1340-1344. 10.1016/j.ophtha.2006.01.072.CrossRefPubMed Saito H, Tomidokoro A, Sugimoto E, Aihara M, Tomita G, Fujie K, Wakakura M, Araie M: Optic disc tomography and peripapillary retinal nerve fiber layer thickness in nonarteritic ischemic optic neuropathy and open-angle glaucoma. Ophthalmology. 2006, 113: 1340-1344. 10.1016/j.ophtha.2006.01.072.CrossRefPubMed
11.
Zurück zum Zitat Danesh-Meyer HV, Carroll SC, Ku JYF, Hsiang J, Gaskin B, Gamble GG, Savino PJ: Correlation of retinal nerve fiber layer measured by scanning laser polarimeter to visual field in ischemic optic neuropathy. Arch Ophthalmol. 2006, 124: 1720-1726. 10.1001/archopht.124.12.1720.CrossRefPubMed Danesh-Meyer HV, Carroll SC, Ku JYF, Hsiang J, Gaskin B, Gamble GG, Savino PJ: Correlation of retinal nerve fiber layer measured by scanning laser polarimeter to visual field in ischemic optic neuropathy. Arch Ophthalmol. 2006, 124: 1720-1726. 10.1001/archopht.124.12.1720.CrossRefPubMed
12.
Zurück zum Zitat Leiba H, Rachmiel R, Harris A, Kagemann L, Pollack A, Zalish M: Optic nerve head blood flow measurements in nonarteritic anterior ischemic optic neuropathy. Eye. 2000, 14: 828-833.CrossRefPubMed Leiba H, Rachmiel R, Harris A, Kagemann L, Pollack A, Zalish M: Optic nerve head blood flow measurements in nonarteritic anterior ischemic optic neuropathy. Eye. 2000, 14: 828-833.CrossRefPubMed
13.
Zurück zum Zitat Ghanchi FD, Williamson TH, lim CS, Butt Z, Baxter GM, McKillop G, O'Brian C: Colour Doppler imaging in giant cell (temporal) arteritis: serial examination and comparison with nonarteritic anterior ischemic optic neuropathy. Eye. 1996, 10: 459-464.CrossRefPubMed Ghanchi FD, Williamson TH, lim CS, Butt Z, Baxter GM, McKillop G, O'Brian C: Colour Doppler imaging in giant cell (temporal) arteritis: serial examination and comparison with nonarteritic anterior ischemic optic neuropathy. Eye. 1996, 10: 459-464.CrossRefPubMed
14.
Zurück zum Zitat Mathur S, Karimi A, Mafee MF: Acute optic nerve infarction demonstrated by diffusion-weighted imaging in a case of rhinocerebral mucormycosis. Am J Neuroradiol. 2007, 28: 489-490.PubMed Mathur S, Karimi A, Mafee MF: Acute optic nerve infarction demonstrated by diffusion-weighted imaging in a case of rhinocerebral mucormycosis. Am J Neuroradiol. 2007, 28: 489-490.PubMed
15.
Zurück zum Zitat Hayreh SS, Zimmerman MB: Fundus changes in central retinal artery occlusion. Retina. 2007, 27: 276-289. 10.1097/01.iae.0000238095.97104.9b.CrossRefPubMed Hayreh SS, Zimmerman MB: Fundus changes in central retinal artery occlusion. Retina. 2007, 27: 276-289. 10.1097/01.iae.0000238095.97104.9b.CrossRefPubMed
16.
Zurück zum Zitat Chong CT, Chin KJ, Yip LW, Singh K: Case series: monocular visual loss associated with subarachnoid hemorrhage secondary to ruptured intracranial aneurysms. Can J Anesth. 2006, 53: 684-689. 10.1007/BF03021627.CrossRefPubMed Chong CT, Chin KJ, Yip LW, Singh K: Case series: monocular visual loss associated with subarachnoid hemorrhage secondary to ruptured intracranial aneurysms. Can J Anesth. 2006, 53: 684-689. 10.1007/BF03021627.CrossRefPubMed
17.
Zurück zum Zitat Cestari DM, Metson RB, Cunnane ME, Faquin WC: Case 40-2008: a 26-year-old man with blurred vision. N Engl J Med. 2008, 359: 2825-2833. 10.1056/NEJMcpc0805311.CrossRefPubMed Cestari DM, Metson RB, Cunnane ME, Faquin WC: Case 40-2008: a 26-year-old man with blurred vision. N Engl J Med. 2008, 359: 2825-2833. 10.1056/NEJMcpc0805311.CrossRefPubMed
18.
Zurück zum Zitat Rodney AJ, Gombos DS, Pagliaro LC, Tannir NM: Ischemic optic neuropathy associated with low-dose interferon alfa: report of two cases. Am J Clin Oncol. 2009, 32: 86-87. 10.1097/01.coc.0000236211.90803.96.CrossRefPubMedPubMedCentral Rodney AJ, Gombos DS, Pagliaro LC, Tannir NM: Ischemic optic neuropathy associated with low-dose interferon alfa: report of two cases. Am J Clin Oncol. 2009, 32: 86-87. 10.1097/01.coc.0000236211.90803.96.CrossRefPubMedPubMedCentral
Metadaten
Titel
Unilateral optic neuropathy following subdural hematoma: a case report
verfasst von
Alexandra Kretz
Christoph Preul
Hans-Joerg Fricke
Otto W Witte
Christoph Terborg
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2010
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/1752-1947-4-19

Weitere Artikel der Ausgabe 1/2010

Journal of Medical Case Reports 1/2010 Zur Ausgabe