Skip to main content
Erschienen in:

Open Access 23.06.2022 | Original Article

Universal tumor screening for lynch syndrome on colorectal cancer biopsies impacts surgical treatment decisions

verfasst von: Jennifer Vazzano, Jewel Tomlinson, Peter P. Stanich, Rachel Pearlman, Matthew F. Kalady, Wei Chen, Heather Hampel, Wendy L. Frankel

Erschienen in: Familial Cancer | Ausgabe 1/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Universal tumor screening (UTS) for Lynch syndrome (LS) on colorectal cancer (CRC) can be performed on biopsies or resection specimens. The advantage of biopsies is the chance to provide preoperative genetic counseling/testing (GC/T) so patients diagnosed with LS can make informed decisions regarding resection extent. We evaluated utilization of UTS on biopsies, percentage of patients with deficient mismatch repair (dMMR) who underwent GC/T preoperatively, and whether surgical/treatment decisions were impacted. We performed a retrospective review of medical records to assess CRC cases with dMMR immunohistochemical staining from 1/1/2017 to 2/26/2021. 1144 CRC patients had UTS using MMR immunohistochemistry; 559 biopsies (48.9%) and 585 resections (51.1%). The main reason UTS was not performed on biopsy was it occurred outside our health system. 58 (5%) of CRCs were dMMR and did not have MLH1 promoter hypermethylation (if MLH1 and PMS2 absent). 28/58 (48.3%) of dMMR cases were diagnosed on biopsy. Of those 28, 14 (50%) eventually underwent GC/T, and 7 (25%) had GT results prior to surgery. One of the 7 had incomplete documentation of results affecting their treatment plan. Of the remaining 6 with complete documentation, 5 underwent surgery and one was treated with immunotherapy only. Three patients elected a more extensive surgery. 6/28 (21.4%) dMMR patients identified on biopsy made an informed surgical/treatment decision based on their dMMR status/LS diagnosis. When applied, UTS on biopsy followed by genetic counseling and testing informs surgical decision-making. Process and implementation strategies are in place to overcome challenges to more broadly optimize this approach.
Hinweise
Jennifer Vazzano and Jewel Tomlinson are co-first authors.
Heather Hampel and Wendy L. Frankel are co-last authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Lynch syndrome (LS) is the most common hereditary predisposition to colorectal cancer (CRC) and is caused by a pathogenic germline variant in one of the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, PMS2) or deletions in the 3’ region of EPCAM [1]. A previous study by Pearlman et al. found that LS has a remarkably high prevalence, affecting one out of every 25 patients diagnosed with CRC [2].
Microsatellite instability and/or loss of expression of one or more MMR proteins are hallmark characteristics of LS-associated tumors. Tumor screening using immunohistochemical (IHC) staining for expression of the four MMR proteins allows for identification of patients with MMR deficient (dMMR) tumors. Patients with dMMR tumors not explained by MLH1 promoter hypermethylation should be referred for genetic counseling and discussion of confirmatory germline genetic testing for LS [3].
Historically, patients at increased risk of LS were identified through analysis of family history using criteria such as the Amsterdam Criteria and Bethesda Guidelines. However, studies have shown that these clinical criteria often miss patients with LS. One study found that limiting tumor analysis to patients who met the Bethesda Criteria failed to identify one in four cases of LS [4]. Another method for identifying patients at increased risk of LS is universal tumor screening (UTS). UTS involves screening all newly diagnosed CRC patients using MSI or IHC testing. UTS for LS on CRC is recommended by the National Society of Genetic Counselors (NSGC), National Comprehensive Cancer Network (NCCN), the U.S. Multi-Society Task on Colorectal Cancer, the American Gastroenterological Association, the American College of Gastroenterology, the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group [5, 6] and the American Society of Colon and Rectal Surgeons [7]. UTS can be performed on diagnostic colonoscopy biopsies or on resected surgical specimens with equivalent results [8].
Colorectal cancer patients with LS have an increased risk of metachronous CRC [1]. The range of risk for metachronous CRC with segmental resection is 12–43%, and for extended colectomy is reduced to 0–18% [9]. As a result, some professional organizations including the American Society of Colon and Rectal Surgeons [7] recommend that individuals with LS who develop CRC should have subtotal or total colectomy instead of segmental resection to reduce the risk for a second primary CRC. Diagnosing LS on biopsies rather than resections potentially allows for preoperative genetic counseling/testing (GC/T) and informed surgical decision-making regarding the extent of colectomy. Our study aimed to analyze UTS on biopsy specimens and the impacts on preoperative diagnosis of LS and surgical decision-making.

Methods

We performed a retrospective review of all CRC cases from the date our institution changed the UTS for LS protocol to include MMR IHC staining on CRC biopsies rather than resections wherever possible. As such, we reviewed all CRC cases from January 1, 2017 to February 26, 2021. Electronic medical records were reviewed for patients with dMMR, as defined by abnormal IHC. For tumors with absence of MLH1 and PMS2, MLH1 hypermethylation or BRAF p.V600E results were assessed to determine what proportion of the patients needed referral to cancer genetics to rule out LS (those with evidence of hypermethylation were not routinely referred). Records were then further reviewed to note UTS for LS timing, referral to genetics, genetic test results, preoperative discussions, and surgical procedures/treatment plans. A Fisher’s exact t-test was used to compare the number of patients that had total colectomies in the group of patients that had a dMMR CRC identified with MMR IHC on biopsies and had colectomy (5/20) vs. the group of patients that had a dMMR CRC identified with MMR IHC on resections (1/30).

Results

1144 consecutive CRC patients had UTS for LS using IHC staining for the four MMR proteins during the study period. MMR IHC was performed on a biopsy specimen for 559 patients (48.9%), while the other 585 (51.1%) had MMR IHC performed on their surgical resection specimen. Fifty-eight (5%) of the CRCs were dMMR as determined by loss of MSH2, MSH6, PMS2, or MLH1 without evidence of MLH1 promoter hypermethylation. Of these 58 cases, 28 (48.3%) were diagnosed on biopsy rather than surgical resection allowing for the possibility of genetic referral and testing prior to surgery.
While 14 of the 28 (50%) underwent GC/T at some point in their care, only 7 (25%) had information about their germline status available for surgical decision-making (Table 1; cases 4, 5, 6, 17, 25, 27, and 28). Of these 7, 4 underwent GC/T prior to surgery and 3 had a previously known LS diagnoses. Of the 4 patients who underwent GC/T prior to surgery, 1 of them received neoadjuvant chemotherapy. There were several reasons why patients in our study were not seen for genetic counseling prior to surgery. Reasons included: patient lost to follow-up (n = 1), patient declining the appointment or not scheduling (n = 4), patient not referred (n = 3), patient with emergent need for surgery due to perforation (n = 2), patient receiving chemotherapy only (n = 1), patient receiving palliative care (n = 2), or death (n = 1). Three patients had GC/T at an outside institution.
Table 1
Demographic data of deficient mismatch repair colorectal carcinoma cases diagnosed on biopsy
 
Age
Gender
Race
Tumor location
Immunohistochemical results
Treatment
Genetic status
1
62
Male
White
Right (ascending) colon
MSH6 absent
No surgery, palliative care
MSH6 mutation
2
31
Male
White
Transverse colon
MSH2 & MSH6 absent
None, chemo only
MSH2 mutation
3
50
Male
AA
Hepatic flexure
MSH6 absent
Laparoscopic right partial colectomy
MSH6 mutation
4
29
Male
White
Colon, descending
MLH1 & PMS2 absent
Total colectomy (larger surgery)
LS diagnosis already established
5
32
Male
White
Colon
PMS2 absent
Extended right hemicolectomy (smaller surgery elected)
PMS2 mutation
6
60
Male
White
Colon
PMS2 absent
Total (completion) colectomy (larger surgery due to previous right hemicolectomy and previous LS diagnosis)
PMS2 mutation
7
62
Male
White
Transverse colon
MSH2 absent
No surgery
LS diagnosis already established
8
79
Female
White
Splenic flexure
MLH1 & PMS2 absent
No surgery
Unknown, deceased
9
56
Male
AA
Colon
MLH1 & PMS2 absent
Open extended right hemicolectomy
Unknown
10
46
Male
White
Cecum and proximal transverse colon
MLH1 & PMS2 absent
Extended right hemicolectomy, en bloc resection abdominal wall and duodenum
Unknown
11
36
Male
White
Liver, colorectal origin
PMS2 absent
Small intestine, partial enterectomy
Unknown, deceased
12
43
Male
AA
Rectum
MSH2 absent
Neoadjuvant therapy, Rectosigmoid colon, laparoscopic low anterior resection
Unknown
13
42
Male
White
Liver met, colorectal origin
MLH1 & PMS2 absent
No surgery, palliative chemotherapy
Unknown
14
87
Female
White
Duodenum
MLH1 &PMS2 absent
Pancreaticoduodenectomy
Unknown
15
57
Female
White
Splenic flexure
MLH1 & PMS2 absent
Left colon, laparoscopic partial colectomy
Unknown
16
76
Male
White
Rectum
MSH2 absent
Neoadjuvant therapy, Partial laparoscopic colectomy
MSH2 mutation
17
43
Female
White
Right colon
MLH1 & PMS2 absent
Partial colectomy (surgical note mentions LS but not in relation to surgical plan)
MLH1 mutation
18
57
Male
White
Right (ascending) colon
PMS2 absent
Right colon, laparoscopic partial colectomy
Unknown
19
49
Female
White
Cecum
MSH2 & MSH6 absent
Partial colectomy
Unknown, deceased
20
78
Female
White
Small bowel
PMS2 absent
No surgery, deceased
Unknown, deceased
21
58
Male
White
Hepatic flexure
MSH2 & MSH6 absent
Laparoscopic extended right hemicolectomy
MSH2 mutation
22
56
Female
AA
Colon
MSH2 & MSH6 absent
Right hemicolectomy
MSH2 mutation
23
70
Male
White
Right colon/hepatic flexure
PMS2 absent
Laparoscopic partial colectomy
PMS2 mutation
24
64
Male
AA
Cecum and transverse colon
MLH1 & PMS2 absent
Right hemicolectomy
Negative
25
70
Male
White
Descending colon
PMS2 absent
Completion colectomy (larger surgery due to LS)
PMS2 mutation
26
68
Female
White
Colon
PMS absent
Neoadjuvant therapy, Ileum and colon, Colectomy
Unknown
27
39
Male
White
Colon
MSH6 absent
No surgery, immunotherapy
MSH6 mutation
28
42
Male
AA
Colon
MSH2 absent
Total colectomy (larger surgery due to LS)
MSH2 mutation
Of the 7 patients who had information about their germline status available for surgical decision-making, this information was included in the preoperative decision-making and clinical notes for 6 patients; for the one patient not included, there was incomplete documentation of their results impacting the surgical/treatment plan. Patient ages ranged from 29 to 70 (29, 32, 39, 42, 43, 60, and 70). Of the 6 patients with complete documentation, one patient did not have surgery and is on immunotherapy because of stage IV disease (case 27, Table 1). This treatment decision was based on the dMMR tumor, not LS status. For patients who had available information, it was utilized to guide treatment in all 6 of 6 patients. Of the 5 patients who had surgery, three patients had a more extensive colectomy due to their LS diagnosis (Cases 4, 25, 28, Table 1), while two elected a less extensive surgery after an informed risk/benefit discussion with their surgeon (Cases 5 and 17, Table 1).
Overall, 6 of 28 (21.4%) patients with dMMR CRC who underwent preoperative biopsy screening made an informed surgical or treatment decision based on their dMMR status/diagnosis of LS prior to resection. Of the remaining 22 patients: 2 had no surgery, 1 had no surgery due to death, 2 had no surgery and opted for palliative care only, 1 had no surgery and opted for chemotherapy only, 12 patients with colon cancer and 1 patient with rectal cancer underwent segmental resections, 1 patient with duodenal cancer had a pancreaticoduodenectomy, 1 patient had a partial enterectomy of the small intestine for metastatic cancer of colorectal origin, and 1 had total abdominal colectomy and ileorectal anastomosis (Table 1). Notably, when comparing these patients to the 30 patients that had dMMR CRC with MMR IHC testing done on their resections (post-surgery), we found that there were more patients that received total colectomies in this group (5 patients) than in the group that had their MMR IHC done on their postoperative resections (1 patient) (p = 0.03, Table 2).
Table 2
Surgical procedures performed for deficient mismatch repair colorectal carcinoma cases with mismatch repair protein immunohistochemistry performed on resection (postoperative) vs. biopsy (preoperative).
dMMR cases with MMR IHC performed on resections (#)
dMMR cases with MMR IHC performed on biopsies (#)
Right colectomy with en bloc removal of abdominal wall (1)
No surgery (6)
Segmental resections (including low anterior resection) (26)
Segmental resections (15)
Right hemicolectomy and en bloc small intestine (1)
Pancreaticoduodenectomy (1)
Ileocolectomy with appendectomy (1)
Partial enterectomy for metastatic colorectal carcinoma (1)
Total colectomy (1)
Total colectomy (5)
Total cases (30)
Total cases (28)
dMMR deficient mismatch repair, MMR IHC mismatch repair protein immunohistochemistry

Discussion

Universal tumor screening for CRC and other tumors is essential for identifying dMMR and screening for LS. Studies have shown that UTS of all CRC cases for LS by analysis of microsatellite instability or IHC for MMR proteins is the most sensitive [10] and the most cost‐effective strategy for diagnosing LS [11, 12]. These studies, together with others [4, 13], have shown that UTS is efficient, sensitive, and cost-effective. UTS can expand the patients’ treatment options including immunotherapy and when LS is diagnosed in someone with CRC, their relatives can undergo cascade testing and begin proper intensive surveillance to prevent cancer. Previous studies have not specifically addressed the effect of UTS using preoperative biopsies rather than resections for surgical decision-making. Immunohistochemistry has been shown to work as well on biopsies as resections for the MMR proteins [8, 14, 15]. Internal positive controls were used in all specimens with special attention to the staining intensity of the tumor nuclei in comparison to the controls. The internal positive controls included background lymphocytes, stromal cells and benign epithelium (if present) [3]. We found that the programmatic approach of UTS on biopsies can be successful, but there is room for improvement in the process. We found that 21.4% of patients with dMMR CRC who underwent preoperative biopsy testing made an informed surgical or treatment decision based on their dMMR status/LS diagnosis prior to undergoing resection.
We found several barriers in the process that led to the low number of patients who were able to make an informed pre-operative decision. First, there were many cases without a biopsy available to screen at our institution before resection. The primary reason for this is challenges in obtaining tumor samples from patients coming into our healthcare system for treatment from outside institutions. Most pathology is reviewed prior to additional surgery at our institution, but not all cases are received, and tissue blocks are not submitted in many instances so MSI or IHC cannot be completed. The treating physician can request review of all biopsy material prior to additional treatment. If tissue blocks are not received for UTS, they can be requested by the treating physician or pathologist. Additionally, there are some instances when UTS on a biopsy is not possible, such as colon perforation requiring urgent surgery (this accounted for two patients in our cohort).
The success of UTS is dependent on patients receiving the screening results with subsequent pursuit of genetic counseling and germline genetic testing in a timely manner. Poor compliance by patients is a major barrier to getting GC/T prior to surgery. Backes et al. previously reported poor compliance with genetic counseling referral among patients with IHC results suggestive of LS [16]. This group surveyed patients about barriers to pursuing genetic counseling services and their risk perception. They found that most patients underestimated their risk of LS and associated cancers, and only 57% of patients expected to benefit from genetic counseling. Only 28% of patients in their study actually pursued genetic counseling. They reported the most frequent barrier was insurance coverage/cost. Additionally, Tomiak et al. found that the term “genetic counseling” was a deterrent for patients to schedule an appointment because they thought it meant they would be visiting with a psychological counselor. [17] To mitigate the perception that genetic counseling implies psychological counseling, institutions may use outreach and educational material and use terms like genetic evaluation. Increasing knowledge of LS among referring physicians may help promote referrals and alleviate any patient confusion or fears in the context of a dMMR biopsy screening result. Lastly, surgeon engagement is critical to the success of this process. Surgeons must be aware that this information is available and have open communication with the pathologist and genetic counselors. Anecdotally, patients are more likely to undergo genetic counseling and testing when their surgeon explains the importance of the test results and how it would impact treatment and diagnoses for the rest of the patient's family.
Long wait times for appointments with genetics is likely another barrier to timely assessment, as there were sometimes months between patients’ referral dates and appointment dates. Centers should consider prioritizing patients with dMMR results to an expedited appointment. Of note, one patient in our study that had their results and had GC/T prior to surgery received neoadjuvant chemotherapy. This unique circumstance allowed more time before surgery for their results to become available and to complete their visit with genetics before surgery. It would be worth keeping record of which patients will receive neoadjuvant chemotherapy when triaging results/appointments for patients. Overall, a collaborative approach is best with interdisciplinary communication, clear roles for each subspecialist, and complete explanations for patients. As suggested by Chubak et al., an informational fact sheet could be provided in the patient's preoperative materials to increase awareness about MSI/IHC testing and LS [18], and we provide such a fact sheet at our institution.
Another barrier to informed preoperative counseling can occur when patients have complete germline testing prior to surgery but have still have an unexplained dMMR tumor. This can occur when MMR IHC screening suggests LS due to absent MMR protein, and genetic sequencing for MMR genes does not identify a germline mutation [19]. For these patients, tumor analysis is then necessary to detect somatic MMR mutations that would explain their dMMR tumor. Unfortunately, not all commercial laboratories accept biopsy specimens to perform this testing due to insufficient tumor quantity. Therefore, it may not be possible for patients with these discordant results to have full genetic testing results, both germline and somatic, prior to their surgery.
In one case in our study there was no mention of IHC screening results or recommendations for genetic counseling in preoperative notes by surgeons. As our study used a retrospective chart review, we were unable to know whether or not these complex preoperative discussions occurred. It is possible that surgeon bias or lack of knowledge about Lynch Syndrome and the risk of metachronous colorectal cancer may have affected decision-making, but ultimately, the patients did make the final decision. Of note, some patients suspected of having LS elected to pursue subtotal or extended colectomy while others chose a less extensive surgery after a risk/benefit discussion with their surgeon. Given the many surgical and surveillance options available to patients, an informed discussion is vital to deciding the best care for each individual patient.
We found several areas of potential process improvement to allow for more patients to have informed discussions with their surgeons prior to resection. The main area of improvement we identified is to obtain biopsies from outside institutions and screen them prior to planning the resection, as almost half of the total cases in our study had no biopsy available before resections to screen. Other areas of improvement include making sure patients get timely referrals for genetic counseling and testing, ensuring patients are not lost to follow up, shortening wait times for appointments with genetics, and improving patient compliance with making and attending appointments by providing thorough instructions and explanations of the benefits of genetic counseling prior to surgery.

Conclusion

We analyzed the performance of UTS on biopsies rather than resection specimens and the clinical impact. Overall, we found that 21.4% of patients with dMMR CRC who underwent preoperative biopsy testing made a fully informed surgical/treatment decision based on their dMMR status/diagnosis of LS prior to resection. Although our results are from a single institution, they are the first to show the implications of UTS for LS on biopsy specimens in terms of influencing surgical decision-making. Many challenges remain in using biopsies for LS screening to help inform the surgical procedure, especially at a tertiary institution, and there is room for improvement including patient follow-up and coordinating pre-surgery genetics consultations.

Declarations

Conflict of interest

JV, JT, RP, MK, WC, and WLF certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. PPS receives research support from Emtora Biosciences, Freenome Holdings Inc, Janssen Pharmaceuticals Inc., Pfizer Inc. and the PTEN Research foundation. HH is on the scientific advisory board for Invitae Genetics, Genome Medical and Promega. HH has stock/stock options in Genome Medical and GI OnDemand.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348(10):919–932CrossRef Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348(10):919–932CrossRef
2.
Zurück zum Zitat Pearlman R, et al (2021) Prospective statewide study of universal screening for hereditary colorectal cancer: the Ohio colorectal cancer prevention initiative. JCO Precis Oncol 5. Pearlman R, et al (2021) Prospective statewide study of universal screening for hereditary colorectal cancer: the Ohio colorectal cancer prevention initiative. JCO Precis Oncol 5.
3.
Zurück zum Zitat Chen W, Frankel WL (2019) A practical guide to biomarkers for the evaluation of colorectal cancer. Mod Pathol 32(Suppl 1):1–15CrossRef Chen W, Frankel WL (2019) A practical guide to biomarkers for the evaluation of colorectal cancer. Mod Pathol 32(Suppl 1):1–15CrossRef
4.
Zurück zum Zitat Hampel H et al (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26(35):5783–5788CrossRef Hampel H et al (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26(35):5783–5788CrossRef
5.
Zurück zum Zitat Evaluation of Genomic Applications in, P. and G. Prevention Working (2009) Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 11(1):35–41. Evaluation of Genomic Applications in, P. and G. Prevention Working (2009) Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 11(1):35–41.
6.
Zurück zum Zitat Weissman SM et al (2012) Identification of individuals at risk for Lynch syndrome using targeted evaluations and genetic testing: National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Colorectal Cancer joint practice guideline. J Genet Couns 21(4):484–493CrossRef Weissman SM et al (2012) Identification of individuals at risk for Lynch syndrome using targeted evaluations and genetic testing: National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Colorectal Cancer joint practice guideline. J Genet Couns 21(4):484–493CrossRef
7.
Zurück zum Zitat Herzig DO et al (2017) Clinical practice guidelines for the surgical treatment of patients with lynch syndrome. Dis Colon Rectum 60(2):137–143CrossRef Herzig DO et al (2017) Clinical practice guidelines for the surgical treatment of patients with lynch syndrome. Dis Colon Rectum 60(2):137–143CrossRef
8.
Zurück zum Zitat Kumarasinghe AP et al (2010) DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: a comparison of biopsy and resection material. Pathology 42(5):414–420CrossRef Kumarasinghe AP et al (2010) DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: a comparison of biopsy and resection material. Pathology 42(5):414–420CrossRef
9.
Zurück zum Zitat Cirocco W, Hampel H (2020) Lynch syndrome: management of the colon—what operation? Management of hereditary colorectal cancer. Springer, Berlin, pp 149–174CrossRef Cirocco W, Hampel H (2020) Lynch syndrome: management of the colon—what operation? Management of hereditary colorectal cancer. Springer, Berlin, pp 149–174CrossRef
10.
Zurück zum Zitat Moreira L et al (2012) Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308(15):1555–1565CrossRef Moreira L et al (2012) Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308(15):1555–1565CrossRef
11.
Zurück zum Zitat Gould-Suarez M et al (2014) Cost-effectiveness and diagnostic effectiveness analyses of multiple algorithms for the diagnosis of Lynch syndrome. Dig Dis Sci 59(12):2913–2926CrossRef Gould-Suarez M et al (2014) Cost-effectiveness and diagnostic effectiveness analyses of multiple algorithms for the diagnosis of Lynch syndrome. Dig Dis Sci 59(12):2913–2926CrossRef
12.
Zurück zum Zitat Snowsill T et al (2014) A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol Assess 18(58):1–406CrossRef Snowsill T et al (2014) A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol Assess 18(58):1–406CrossRef
13.
Zurück zum Zitat Hampel H et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352(18):1851–1860CrossRef Hampel H et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352(18):1851–1860CrossRef
14.
Zurück zum Zitat Shia J et al (2011) Immunohistochemical staining for DNA mismatch repair proteins in intestinal tract carcinoma: how reliable are biopsy samples? Am J Surg Pathol 35(3):447–454CrossRef Shia J et al (2011) Immunohistochemical staining for DNA mismatch repair proteins in intestinal tract carcinoma: how reliable are biopsy samples? Am J Surg Pathol 35(3):447–454CrossRef
15.
Zurück zum Zitat Vilkin A et al (2015) Immunohistochemistry staining for mismatch repair proteins: the endoscopic biopsy material provides useful and coherent results. Hum Pathol 46(11):1705–1711CrossRef Vilkin A et al (2015) Immunohistochemistry staining for mismatch repair proteins: the endoscopic biopsy material provides useful and coherent results. Hum Pathol 46(11):1705–1711CrossRef
16.
Zurück zum Zitat Backes FJ et al (2011) Endometrial cancer patients and compliance with genetic counseling: room for improvement. Gynecol Oncol 123(3):532–536CrossRef Backes FJ et al (2011) Endometrial cancer patients and compliance with genetic counseling: room for improvement. Gynecol Oncol 123(3):532–536CrossRef
17.
Zurück zum Zitat Tomiak E et al (2014) Reflex testing for Lynch syndrome: if we build it, will they come? Lessons learned from the uptake of clinical genetics services by individuals with newly diagnosed colorectal cancer (CRC). Fam Cancer 13(1):75–82CrossRef Tomiak E et al (2014) Reflex testing for Lynch syndrome: if we build it, will they come? Lessons learned from the uptake of clinical genetics services by individuals with newly diagnosed colorectal cancer (CRC). Fam Cancer 13(1):75–82CrossRef
18.
Zurück zum Zitat Chubak B, Heald B, Sharp RR (2011) Informed consent to microsatellite instability and immunohistochemistry screening for Lynch syndrome. Genet Med 13(4):356–360CrossRef Chubak B, Heald B, Sharp RR (2011) Informed consent to microsatellite instability and immunohistochemistry screening for Lynch syndrome. Genet Med 13(4):356–360CrossRef
19.
Zurück zum Zitat Chen W, Swanson BJ, Frankel WL (2017) Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol 12(1):24CrossRef Chen W, Swanson BJ, Frankel WL (2017) Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol 12(1):24CrossRef
Metadaten
Titel
Universal tumor screening for lynch syndrome on colorectal cancer biopsies impacts surgical treatment decisions
verfasst von
Jennifer Vazzano
Jewel Tomlinson
Peter P. Stanich
Rachel Pearlman
Matthew F. Kalady
Wei Chen
Heather Hampel
Wendy L. Frankel
Publikationsdatum
23.06.2022
Verlag
Springer Netherlands
Erschienen in
Familial Cancer / Ausgabe 1/2023
Print ISSN: 1389-9600
Elektronische ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-022-00302-3

Neu im Fachgebiet Onkologie

Fortgeschrittenes Melanom: Wann den Checkpoint-Inhibitor absetzen?

Eine ICI-Therapie sollte bei Betroffenen mit fortgeschrittenem Melanom mindestens ein Jahr fortgesetzt werden. Bei anhaltendem Ansprechen kann danach offenbar ohne hohes Risiko ein Therapieabbruch erwogen werden.

Positive Phase IIb-Studie zu spezifischer CAR-T-Zell-Therapie bei Myasthenia gravis

Eine auf das B-Zell-Reifungsantigen gerichtete mRNA-basierte CAR-T-Zell-Therapie wurde jetzt in einer ersten Phase IIb-Studie zur Behandlung der generalisierten Myasthenia gravis mit Placebo verglichen.

NSCLC: Hirnmetastasen durch elektrische Felder eindämmen

Zur Behandlung von Hirnmetasen bei nicht-kleinzelligem Lungenkrebs (NSCLC) stehen verschiedene Optionen zur Verfügung. TTFields – eine lokoregionäre, nicht-invasive physikalische Therapie – könnte sich hier einreihen.

Kontrollkoloskopie nach Polypektomie: Wann ist eine zweite Untersuchung nötig?

Wann benötigen polypektomierte Patienten und Patientinnen mehr als eine endoskopische Nachsorgeuntersuchung? Eine Kohortenstudie aus Großbritannien legt eine konkrete Strategie nahe.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.