Skip to main content
Erschienen in:

12.12.2023 | Review Article

Unraveling the role of glial cell line–derived neurotrophic factor in the treatment of Parkinson’s disease

verfasst von: Violina Kakoty, K. C. Sarathlal, Palwinder Kaur, Pankaj Wadhwa, Sukriti Vishwas, Farhan R. Khan, Abdulfattah Yahya M. Alhazmi, Hassan Hussain Almasoudi, Gaurav Gupta, Dinesh Kumar Chellappan, Keshav Raj Paudel, Dileep Kumar, Kamal Dua, Sachin Kumar Singh

Erschienen in: Neurological Sciences | Ausgabe 4/2024

Einloggen, um Zugang zu erhalten

Abstract

Parkinson’s disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson’s disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line–derived neurotrophic factor (GDNF) in Parkinson’s disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson’s disease–related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson’s disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson’s disease in the future.
Literatur
1.
Zurück zum Zitat De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535PubMedCrossRef De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535PubMedCrossRef
2.
Zurück zum Zitat Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRef Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRef
3.
Zurück zum Zitat Tarazi FI, Sahli ZT, Wolny M, Mousa SA (2014) Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther 144:123–133PubMedCrossRef Tarazi FI, Sahli ZT, Wolny M, Mousa SA (2014) Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther 144:123–133PubMedCrossRef
4.
Zurück zum Zitat Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRefADS Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRefADS
5.
Zurück zum Zitat Saarma M, Sariola H (1999) Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 45:292–302PubMedCrossRef Saarma M, Sariola H (1999) Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 45:292–302PubMedCrossRef
6.
Zurück zum Zitat Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr et al (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470PubMedCrossRefADS Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr et al (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470PubMedCrossRefADS
7.
Zurück zum Zitat Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM (2020) GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 382:47–56PubMedPubMedCentralCrossRef Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM (2020) GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 382:47–56PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Glerup S, Lume M, Olsen D, Nyengaard JR, Vaegter CB, Gustafsen C et al (2013) SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRα1 and RET. Cell Rep 3:186–199PubMedCrossRef Glerup S, Lume M, Olsen D, Nyengaard JR, Vaegter CB, Gustafsen C et al (2013) SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRα1 and RET. Cell Rep 3:186–199PubMedCrossRef
9.
Zurück zum Zitat Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394PubMedCrossRef Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394PubMedCrossRef
10.
Zurück zum Zitat Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148PubMedPubMedCentralCrossRef Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D (2008) GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci 105:8114–8119PubMedPubMedCentralCrossRefADS Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D (2008) GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci 105:8114–8119PubMedPubMedCentralCrossRefADS
12.
Zurück zum Zitat Lisse TS, Sharma M, Vishlaghi N, Pullagura SR, Braun RE (2020) GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen Med 5:1–15CrossRef Lisse TS, Sharma M, Vishlaghi N, Pullagura SR, Braun RE (2020) GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen Med 5:1–15CrossRef
15.
Zurück zum Zitat Vargas-Leal V, Bruno R, Derfuss T, Krumbholz M, Hohlfeld R, Meinl E (2005) Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J Immunol 175:2301–2308PubMedCrossRef Vargas-Leal V, Bruno R, Derfuss T, Krumbholz M, Hohlfeld R, Meinl E (2005) Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J Immunol 175:2301–2308PubMedCrossRef
16.
Zurück zum Zitat Bordeaux M-C, Forcet C, Granger L, Corset V, Bidaud C, Billaud M et al (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19:4056–4063PubMedPubMedCentralCrossRef Bordeaux M-C, Forcet C, Granger L, Corset V, Bidaud C, Billaud M et al (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19:4056–4063PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M (2007) GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 36:185–194PubMedPubMedCentralCrossRef Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M (2007) GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 36:185–194PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175PubMedCrossRef Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175PubMedCrossRef
19.
Zurück zum Zitat Paratcha G, Ledda F (2008) GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391PubMedCrossRef Paratcha G, Ledda F (2008) GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391PubMedCrossRef
20.
Zurück zum Zitat Grondin R, Gash DM (1998) Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol 245:P35–P42PubMedCrossRef Grondin R, Gash DM (1998) Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol 245:P35–P42PubMedCrossRef
21.
Zurück zum Zitat Bäckman CM, Shan L, Zhang YJ, Hoffer BJ, Leonard S, Troncoso JC et al (2006) Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson’s disease: a real-time PCR study. Mol Cell Endocrinol 252:160–166PubMedCrossRef Bäckman CM, Shan L, Zhang YJ, Hoffer BJ, Leonard S, Troncoso JC et al (2006) Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson’s disease: a real-time PCR study. Mol Cell Endocrinol 252:160–166PubMedCrossRef
22.
Zurück zum Zitat Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862PubMedCrossRef Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862PubMedCrossRef
23.
Zurück zum Zitat Perrinjaquet M (2010) Control of neuronal survival, migration and outgrowth by GDNF and its receptors. Karolinska Institutet, Sweden Perrinjaquet M (2010) Control of neuronal survival, migration and outgrowth by GDNF and its receptors. Karolinska Institutet, Sweden
24.
Zurück zum Zitat Kawai K, Takahashi M (2020) Intracellular RET signaling pathways activated by GDNF. Cell Tissue Res 382:113–123PubMedCrossRef Kawai K, Takahashi M (2020) Intracellular RET signaling pathways activated by GDNF. Cell Tissue Res 382:113–123PubMedCrossRef
25.
Zurück zum Zitat Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44:S121–S125PubMedCrossRef Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44:S121–S125PubMedCrossRef
26.
Zurück zum Zitat Lin C, Cao W, Ren Z, Tang Y, Zhang C, Yang R et al (2017) GDNF secreted by nerves enhances PD-L1 expression via JAK2-STAT1 signaling activation in HNSCC. Oncoimmunology 6:e1353860PubMedPubMedCentralCrossRef Lin C, Cao W, Ren Z, Tang Y, Zhang C, Yang R et al (2017) GDNF secreted by nerves enhances PD-L1 expression via JAK2-STAT1 signaling activation in HNSCC. Oncoimmunology 6:e1353860PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Consales C, Volpicelli F, Greco D, Leone L, Colucci-D’Amato L, Perrone-Capano C et al (2007) GDNF signaling in embryonic midbrain neurons in vitro. Brain Res 1159:28–39PubMedCrossRef Consales C, Volpicelli F, Greco D, Leone L, Colucci-D’Amato L, Perrone-Capano C et al (2007) GDNF signaling in embryonic midbrain neurons in vitro. Brain Res 1159:28–39PubMedCrossRef
28.
Zurück zum Zitat Nicolas CS, Peineau S, Amici M, Csaba Z, Fafouri A, Javalet C et al (2012) The Jak/STAT pathway is involved in synaptic plasticity. Neuron 73:374–390PubMedPubMedCentralCrossRef Nicolas CS, Peineau S, Amici M, Csaba Z, Fafouri A, Javalet C et al (2012) The Jak/STAT pathway is involved in synaptic plasticity. Neuron 73:374–390PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Tzeng H-T, Chyuan I-T, Lai J-H (2021) Targeting the JAK-STAT pathway in autoimmune diseases and cancers: a focus on molecular mechanisms and therapeutic potential. Biochem Pharmacol 193:114760PubMedCrossRef Tzeng H-T, Chyuan I-T, Lai J-H (2021) Targeting the JAK-STAT pathway in autoimmune diseases and cancers: a focus on molecular mechanisms and therapeutic potential. Biochem Pharmacol 193:114760PubMedCrossRef
30.
Zurück zum Zitat Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Dev Brain Res 85:80–88CrossRef Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Dev Brain Res 85:80–88CrossRef
31.
Zurück zum Zitat Pochon N-M, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9:463–471PubMedCrossRef Pochon N-M, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9:463–471PubMedCrossRef
32.
Zurück zum Zitat Trupp M, Belluardo N, Funakoshi H, Ibáñez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17:3554–3567PubMedPubMedCentralCrossRef Trupp M, Belluardo N, Funakoshi H, Ibáñez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17:3554–3567PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Buj-Bello A, Buchman VL, Horton A, Rosenthal A, Davies AM (1995) GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15:821–828PubMedCrossRef Buj-Bello A, Buchman VL, Horton A, Rosenthal A, Davies AM (1995) GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15:821–828PubMedCrossRef
34.
Zurück zum Zitat Trupp M, Rydén M, Jörnvall H, Funakoshi H, Timmusk T, Arenas E et al (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148PubMedCrossRef Trupp M, Rydén M, Jörnvall H, Funakoshi H, Timmusk T, Arenas E et al (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148PubMedCrossRef
35.
Zurück zum Zitat Zurn AD, Baetge EE, Hammang JP, Tan SA, Aebischer P (1994) Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones. Neuroreport 6:113–118PubMedCrossRef Zurn AD, Baetge EE, Hammang JP, Tan SA, Aebischer P (1994) Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones. Neuroreport 6:113–118PubMedCrossRef
36.
Zurück zum Zitat Mount HTJ, Dean DO, Alberch J, Dreyfus CF, Black IB (1995) Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proc Natl Acad Sci 92:9092–9096PubMedPubMedCentralCrossRefADS Mount HTJ, Dean DO, Alberch J, Dreyfus CF, Black IB (1995) Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proc Natl Acad Sci 92:9092–9096PubMedPubMedCentralCrossRefADS
37.
Zurück zum Zitat Martin D, Miller G, Rosendahl M, Russell DA (1995) Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res 683:172–178PubMedCrossRef Martin D, Miller G, Rosendahl M, Russell DA (1995) Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res 683:172–178PubMedCrossRef
38.
Zurück zum Zitat Arenas E, Trupp M, Åkerud P, Ibáñez CF (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15:1465–1473PubMedCrossRef Arenas E, Trupp M, Åkerud P, Ibáñez CF (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15:1465–1473PubMedCrossRef
39.
Zurück zum Zitat Beck KD, Irwin I, Valverde J, Brennan TJ, Langston JW, Hefti F (1996) GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis. Neuron 16:665–673PubMedCrossRef Beck KD, Irwin I, Valverde J, Brennan TJ, Langston JW, Hefti F (1996) GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis. Neuron 16:665–673PubMedCrossRef
40.
Zurück zum Zitat Williams LR, Inouye G, Cummins V, Pelleymounter MA (1996) Glial cell line-derived neurotrophic factor sustains axotomized basal forebrain cholinergic neurons in vivo: dose-response comparison to nerve growth factor and brain-derived neurotrophic factor. J Pharmacol Exp Ther 277:1140–1151PubMed Williams LR, Inouye G, Cummins V, Pelleymounter MA (1996) Glial cell line-derived neurotrophic factor sustains axotomized basal forebrain cholinergic neurons in vivo: dose-response comparison to nerve growth factor and brain-derived neurotrophic factor. J Pharmacol Exp Ther 277:1140–1151PubMed
41.
Zurück zum Zitat Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83PubMedCrossRefADS Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83PubMedCrossRefADS
42.
Zurück zum Zitat Chu Y, Kordower JH (2021) GDNF signaling in subjects with minimal motor deficits and Parkinson’s disease. Neurobiol Dis 153:105298PubMedCrossRef Chu Y, Kordower JH (2021) GDNF signaling in subjects with minimal motor deficits and Parkinson’s disease. Neurobiol Dis 153:105298PubMedCrossRef
43.
Zurück zum Zitat Trupp M, Arenas E, Fainzilber M, Nilsson A-S, Sieber B-A, Grigoriou M et al (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789PubMedCrossRefADS Trupp M, Arenas E, Fainzilber M, Nilsson A-S, Sieber B-A, Grigoriou M et al (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789PubMedCrossRefADS
44.
Zurück zum Zitat Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M et al (1996) GDNF--induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85:1113–1124PubMedCrossRef Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M et al (1996) GDNF--induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85:1113–1124PubMedCrossRef
45.
Zurück zum Zitat Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedCrossRefADS Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedCrossRefADS
46.
Zurück zum Zitat Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedCrossRefADS Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedCrossRefADS
47.
Zurück zum Zitat Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedCrossRefADS Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedCrossRefADS
48.
Zurück zum Zitat Oppenheim RW, Houenou LJ, Parsadanian AS, Prevette D, Snider WD, Shen L (2000) Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci 20:5001–5011PubMedPubMedCentralCrossRef Oppenheim RW, Houenou LJ, Parsadanian AS, Prevette D, Snider WD, Shen L (2000) Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci 20:5001–5011PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118PubMedPubMedCentralCrossRef Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA et al (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373:339–341PubMedCrossRefADS Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA et al (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373:339–341PubMedCrossRefADS
51.
Zurück zum Zitat Gash DM, Gerhardt GA, Hoffer BJ (1997) Effects of glial cell line-derived neurotrophic factor on the nigrostriatal dopamine system in rodents and nonhuman primates. Adv Pharmacol 42:911–915CrossRef Gash DM, Gerhardt GA, Hoffer BJ (1997) Effects of glial cell line-derived neurotrophic factor on the nigrostriatal dopamine system in rodents and nonhuman primates. Adv Pharmacol 42:911–915CrossRef
52.
Zurück zum Zitat Tomac A, Lindqvist E, Lin L-F, Ögren SO, Young D, Hoffer BJ et al (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339PubMedCrossRefADS Tomac A, Lindqvist E, Lin L-F, Ögren SO, Young D, Hoffer BJ et al (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339PubMedCrossRefADS
53.
Zurück zum Zitat Yan Q, Matheson C, Lopez OT (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373:341–344PubMedCrossRefADS Yan Q, Matheson C, Lopez OT (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373:341–344PubMedCrossRefADS
54.
Zurück zum Zitat Ramsey AJ, Fitzpatrick PF (1998) Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37:8980–8986PubMedCrossRef Ramsey AJ, Fitzpatrick PF (1998) Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37:8980–8986PubMedCrossRef
55.
Zurück zum Zitat Gordon SL, Quinsey NS, Dunkley PR, Dickson PW (2008) Tyrosine hydroxylase activity is regulated by two distinct dopamine-binding sites. J Neurochem 106:1614–1623PubMedCrossRef Gordon SL, Quinsey NS, Dunkley PR, Dickson PW (2008) Tyrosine hydroxylase activity is regulated by two distinct dopamine-binding sites. J Neurochem 106:1614–1623PubMedCrossRef
56.
Zurück zum Zitat Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279:1181–1190PubMed Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279:1181–1190PubMed
57.
Zurück zum Zitat Bourque M-J, Trudeau L-E (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–3180PubMedCrossRef Bourque M-J, Trudeau L-E (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–3180PubMedCrossRef
58.
Zurück zum Zitat Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L et al (2001) GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat Neurosci 4:1071–1078PubMedCrossRef Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L et al (2001) GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat Neurosci 4:1071–1078PubMedCrossRef
59.
Zurück zum Zitat Barroso-Chinea P, Cruz-Muros I, Afonso-Oramas D, Castro-Hernández J, Salas-Hernández J, Chtarto A et al (2016) Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiol Dis 88:44–54PubMedCrossRef Barroso-Chinea P, Cruz-Muros I, Afonso-Oramas D, Castro-Hernández J, Salas-Hernández J, Chtarto A et al (2016) Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiol Dis 88:44–54PubMedCrossRef
60.
Zurück zum Zitat Littrell OM, Pomerleau F, Huettl P, Surgener S, McGinty JF, Middaugh LD et al (2012) Enhanced dopamine transporter activity in middle-aged Gdnf heterozygous mice. Neurobiol Aging 33:427–4e1CrossRef Littrell OM, Pomerleau F, Huettl P, Surgener S, McGinty JF, Middaugh LD et al (2012) Enhanced dopamine transporter activity in middle-aged Gdnf heterozygous mice. Neurobiol Aging 33:427–4e1CrossRef
61.
Zurück zum Zitat Eslamboli A, Cummings RM, Ridley RM, Baker HF, Muzyczka N, Burger C et al (2003) Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol 184:536–548PubMedCrossRef Eslamboli A, Cummings RM, Ridley RM, Baker HF, Muzyczka N, Burger C et al (2003) Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol 184:536–548PubMedCrossRef
65.
Zurück zum Zitat Aly AE, Harmon BT, Dines K, Sesenoglu-laird O, Padegimas L, Cooper MJ et al (2019) Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol 56:688–701PubMedCrossRef Aly AE, Harmon BT, Dines K, Sesenoglu-laird O, Padegimas L, Cooper MJ et al (2019) Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol 56:688–701PubMedCrossRef
75.
Zurück zum Zitat Georgievska B, Kirik D, Rosenblad C, Lundberg C, Björklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13:75–82PubMedCrossRef Georgievska B, Kirik D, Rosenblad C, Lundberg C, Björklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13:75–82PubMedCrossRef
76.
Zurück zum Zitat Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773PubMedCrossRefADS Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773PubMedCrossRefADS
77.
Zurück zum Zitat Kirik D, Rosenblad C, Björklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700PubMedPubMedCentralCrossRef Kirik D, Rosenblad C, Björklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Kornum BR, Stott SRW, Mattsson B, Wisman L, Ettrup A, Hermening S et al (2010) Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain. Exp Neurol 222:70–85PubMedCrossRef Kornum BR, Stott SRW, Mattsson B, Wisman L, Ettrup A, Hermening S et al (2010) Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain. Exp Neurol 222:70–85PubMedCrossRef
79.
Zurück zum Zitat Dodiya HB, Bjorklund T, Stansell J III, Mandel RJ, Kirik D, Kordower JH (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587PubMedCrossRef Dodiya HB, Bjorklund T, Stansell J III, Mandel RJ, Kirik D, Kordower JH (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587PubMedCrossRef
80.
Zurück zum Zitat Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777PubMedPubMedCentralCrossRef Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P et al (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577PubMedPubMedCentralCrossRef Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P et al (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Elder JB, Lonser RR et al (2021) An update on gene therapy approaches for Parkinson’s disease: restoration of dopaminergic function. J Parkinsons Dis 11:S173–S182PubMedPubMedCentralCrossRef Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Elder JB, Lonser RR et al (2021) An update on gene therapy approaches for Parkinson’s disease: restoration of dopaminergic function. J Parkinsons Dis 11:S173–S182PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S et al (2017) Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 4:43–63PubMedPubMedCentralCrossRef Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S et al (2017) Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 4:43–63PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Choi-Lundberg DL, Lin Q, Schallert T, Crippens D, Davidson BL, Chang Y-N et al (1998) Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp Neurol 154:261–275PubMedCrossRef Choi-Lundberg DL, Lin Q, Schallert T, Crippens D, Davidson BL, Chang Y-N et al (1998) Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp Neurol 154:261–275PubMedCrossRef
85.
Zurück zum Zitat Connor B, Kozlowski DA, Schallert T, Tillerson JL, Davidson BL, Bohn MC (1999) Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther 6:1936–1951PubMedCrossRef Connor B, Kozlowski DA, Schallert T, Tillerson JL, Davidson BL, Bohn MC (1999) Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther 6:1936–1951PubMedCrossRef
Metadaten
Titel
Unraveling the role of glial cell line–derived neurotrophic factor in the treatment of Parkinson’s disease
verfasst von
Violina Kakoty
K. C. Sarathlal
Palwinder Kaur
Pankaj Wadhwa
Sukriti Vishwas
Farhan R. Khan
Abdulfattah Yahya M. Alhazmi
Hassan Hussain Almasoudi
Gaurav Gupta
Dinesh Kumar Chellappan
Keshav Raj Paudel
Dileep Kumar
Kamal Dua
Sachin Kumar Singh
Publikationsdatum
12.12.2023
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 4/2024
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-023-07253-2

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Kaliumhaltiges Kochsalz schützt vor Schlaganfallrezidiven

Erhalten Menschen nach einem Schlaganfall statt normalem Kochsalz eine kaliumhaltige Alternative, reduziert dies sowohl das Risiko für erneute ischämische und hämorrhagische Insulte als auch die Gesamtmortalität. Dafür sprechen Ergebnisse einer großen randomisierten Studie.

Der Mann mit der Alzheimermutation, der keine Demenz bekommt

Nur sehr selten werden Menschen mit einer Alzheimermutation von einer familiären Demenz verschont, was meist an protektiven Genvarianten liegt. Ein über 70-jähriger Mann stellt die Forschung jedoch vor ein Rätsel. Vielleicht hat ihm die Arbeit in großer Hitze geholfen.

Auch nach TIA kommt es zu kognitivem Abbau

Trotz raschem und vollständigem Verschwinden der Symptome bergen auch transitorische ischämische Attacken das Risiko langfristigen kognitiven Abbaus, wie eine Studie zeigt. Die Größenordnung gleicht jener nach einem Schlaganfall.

Schlaganfall oder Schlaganfall-Imitator?

Ein breites Spektrum von Erkrankungen kann einen Schlaganfall vortäuschen. Bei der notwendigen schnellen Unterscheidung zwischen solchen „stroke mimics“ und echten Schlaganfällen können einige klinische Faktoren und Symptome unterstützend herangezogen werden. 

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.