Skip to main content
Erschienen in: Pediatric Radiology 6/2021

01.05.2021 | Child abuse imaging

Unravelling neuroinflammation in abusive head trauma with radiotracer imaging

verfasst von: Rahul M. Nikam, Xuyi Yue, Vinay V. Kandula, Bishnuhari Paudyal, Sigrid A. Langhans, Lauren W. Averill, Arabinda K. Choudhary

Erschienen in: Pediatric Radiology | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.
Literatur
1.
Zurück zum Zitat Choudhary AK, Servaes S, Slovis TL et al (2018) Consensus statement on abusive head trauma in infants and young children. Pediatr Radiol 48:1048–1065PubMedCrossRef Choudhary AK, Servaes S, Slovis TL et al (2018) Consensus statement on abusive head trauma in infants and young children. Pediatr Radiol 48:1048–1065PubMedCrossRef
2.
Zurück zum Zitat Christian CW, Committee on Child Abuse and Neglect (2015) The evaluation of suspected child physical abuse. Pediatrics 135:e1337–1354 Christian CW, Committee on Child Abuse and Neglect (2015) The evaluation of suspected child physical abuse. Pediatrics 135:e1337–1354
3.
Zurück zum Zitat Ryan ME (2020) Rapid magnetic resonance imaging screening for abusive head trauma. Pediatr Radiol 50:13–14PubMedCrossRef Ryan ME (2020) Rapid magnetic resonance imaging screening for abusive head trauma. Pediatr Radiol 50:13–14PubMedCrossRef
4.
Zurück zum Zitat Nuño M, Ugiliweneza B, Zepeda V et al (2018) Long-term impact of abusive head trauma in young children. Child Abuse Negl 85:39–46PubMedCrossRef Nuño M, Ugiliweneza B, Zepeda V et al (2018) Long-term impact of abusive head trauma in young children. Child Abuse Negl 85:39–46PubMedCrossRef
5.
Zurück zum Zitat Duhaime AC, Christian CW (2019) Abusive head trauma: evidence, obfuscation, and informed management. J Neurosurg Pediatr 24:481–488PubMedCrossRef Duhaime AC, Christian CW (2019) Abusive head trauma: evidence, obfuscation, and informed management. J Neurosurg Pediatr 24:481–488PubMedCrossRef
6.
Zurück zum Zitat Adamsbaum C, Grabar S, Mejean N, Rey-Salmon C (2010) Abusive head trauma: judicial admissions highlight violent and repetitive shaking. Pediatrics 126:546–555PubMedCrossRef Adamsbaum C, Grabar S, Mejean N, Rey-Salmon C (2010) Abusive head trauma: judicial admissions highlight violent and repetitive shaking. Pediatrics 126:546–555PubMedCrossRef
7.
Zurück zum Zitat Kleinman PK (2015) Diagnostic imaging of child abuse. Cambridge University Press, Cambridge Kleinman PK (2015) Diagnostic imaging of child abuse. Cambridge University Press, Cambridge
8.
Zurück zum Zitat Lind K, Laurent-Vannier A, Toure H et al (2013) Outcome after a shaken baby syndrome. Arch Pediatr 20:446–448PubMedCrossRef Lind K, Laurent-Vannier A, Toure H et al (2013) Outcome after a shaken baby syndrome. Arch Pediatr 20:446–448PubMedCrossRef
9.
Zurück zum Zitat Matschke J, Herrmann B, Sperhake J et al (2009) Shaken baby syndrome — a common variant of nonaccidental head injury in infants. Dtsch Arztebl 106:211–217 Matschke J, Herrmann B, Sperhake J et al (2009) Shaken baby syndrome — a common variant of nonaccidental head injury in infants. Dtsch Arztebl 106:211–217
10.
Zurück zum Zitat Jenny C, Hymel KP, Ritzen A et al (1999) Analysis of missed cases of abusive head trauma. J Am Med Assoc 281:621–626CrossRef Jenny C, Hymel KP, Ritzen A et al (1999) Analysis of missed cases of abusive head trauma. J Am Med Assoc 281:621–626CrossRef
11.
Zurück zum Zitat Pollanen MS, Smith CR, Chiasson DA et al (2002) Fatal child abuse-maltreatment syndrome: a retrospective study in Ontario, Canada, 1990-1995. Forensic Sci Int 126:101–104PubMedCrossRef Pollanen MS, Smith CR, Chiasson DA et al (2002) Fatal child abuse-maltreatment syndrome: a retrospective study in Ontario, Canada, 1990-1995. Forensic Sci Int 126:101–104PubMedCrossRef
13.
Zurück zum Zitat Iqbal O’Meara AM, Sequeira J, Miller Ferguson N (2020) Advances and future directions of diagnosis and management of pediatric abusive head trauma: a review of the literature. Front Neurol 11:118PubMedPubMedCentralCrossRef Iqbal O’Meara AM, Sequeira J, Miller Ferguson N (2020) Advances and future directions of diagnosis and management of pediatric abusive head trauma: a review of the literature. Front Neurol 11:118PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Leventhal JM, Asnes AG, Pavlovic L, Moles RL (2014) Diagnosing abusive head trauma: the challenges faced by clinicians. Pediatr Radiol 44:537–542CrossRef Leventhal JM, Asnes AG, Pavlovic L, Moles RL (2014) Diagnosing abusive head trauma: the challenges faced by clinicians. Pediatr Radiol 44:537–542CrossRef
15.
Zurück zum Zitat Orman G, Kralik SF, Meoded A et al (2020) MRI findings in pediatric abusive head trauma: a review. J Neuroimaging 30:15–27PubMedCrossRef Orman G, Kralik SF, Meoded A et al (2020) MRI findings in pediatric abusive head trauma: a review. J Neuroimaging 30:15–27PubMedCrossRef
16.
Zurück zum Zitat Buttram SDW, Wisniewski SR, Jackson EK et al (2007) Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J Neurotrauma 24:1707–1717PubMedCrossRef Buttram SDW, Wisniewski SR, Jackson EK et al (2007) Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J Neurotrauma 24:1707–1717PubMedCrossRef
17.
Zurück zum Zitat Wang G, Zhang YP, Gao Z et al (2018) Pathophysiological and behavioral deficits in developing mice following rotational acceleration–deceleration traumatic brain injury. Dis model Mech 11:dmm030387 Wang G, Zhang YP, Gao Z et al (2018) Pathophysiological and behavioral deficits in developing mice following rotational acceleration–deceleration traumatic brain injury. Dis model Mech 11:dmm030387
18.
Zurück zum Zitat Hanlon LA, Huh JW, Raghupathi R (2016) Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J Neuropathol Exp Neurol 75:214–226PubMedPubMedCentralCrossRef Hanlon LA, Huh JW, Raghupathi R (2016) Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J Neuropathol Exp Neurol 75:214–226PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Hedlund GL, Frasier LD (2009) Neuroimaging of abusive head trauma. Forensic Sci Med Pathol 5:280–290PubMedCrossRef Hedlund GL, Frasier LD (2009) Neuroimaging of abusive head trauma. Forensic Sci Med Pathol 5:280–290PubMedCrossRef
20.
Zurück zum Zitat Hsieh KLC, Zimmerman RA, Kao HW, Chen CY (2015) Revisiting neuroimaging of abusive head trauma in infants and young children. AJR Am J Roentgenol 204:944–952PubMedCrossRef Hsieh KLC, Zimmerman RA, Kao HW, Chen CY (2015) Revisiting neuroimaging of abusive head trauma in infants and young children. AJR Am J Roentgenol 204:944–952PubMedCrossRef
23.
Zurück zum Zitat Hettler J, Greenes DS (2003) Can the initial history predict whether a child with a head injury has been abused? Pediatrics 111:602–607PubMedCrossRef Hettler J, Greenes DS (2003) Can the initial history predict whether a child with a head injury has been abused? Pediatrics 111:602–607PubMedCrossRef
24.
Zurück zum Zitat Amyot F, Arciniegas DB, Brazaitis MP et al (2015) A review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma 32:1693–1721PubMedPubMedCentralCrossRef Amyot F, Arciniegas DB, Brazaitis MP et al (2015) A review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma 32:1693–1721PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Vázquez E, Delgado I, Sánchez-Montañez A et al (2014) Imaging abusive head trauma: why use both computed tomography and magnetic resonance imaging? Pediatr Radiol 44:589–603CrossRef Vázquez E, Delgado I, Sánchez-Montañez A et al (2014) Imaging abusive head trauma: why use both computed tomography and magnetic resonance imaging? Pediatr Radiol 44:589–603CrossRef
27.
Zurück zum Zitat Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2011) Immunolocalization of toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19PubMedCrossRef Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2011) Immunolocalization of toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19PubMedCrossRef
28.
Zurück zum Zitat Bell MJ, Kochanek PM, Doughty LA et al (1997) Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma 14:451–457PubMedCrossRef Bell MJ, Kochanek PM, Doughty LA et al (1997) Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma 14:451–457PubMedCrossRef
29.
Zurück zum Zitat Chiaretti A, Genovese O, Aloe L et al (2005) Interleukin 1β and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst 21:185–193PubMedCrossRef Chiaretti A, Genovese O, Aloe L et al (2005) Interleukin 1β and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst 21:185–193PubMedCrossRef
30.
Zurück zum Zitat Waters RJ, Murray GD, Teasdale GM et al (2013) Cytokine gene polymorphisms and outcome after traumatic brain injury. J Neurotrauma 30:1710–1716PubMedPubMedCentralCrossRef Waters RJ, Murray GD, Teasdale GM et al (2013) Cytokine gene polymorphisms and outcome after traumatic brain injury. J Neurotrauma 30:1710–1716PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ojo JO, Mouzon B, Greenberg MB et al (2013) Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged hTau mice. J Neuropathol Exp Neurol 72:137–151PubMedCrossRef Ojo JO, Mouzon B, Greenberg MB et al (2013) Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged hTau mice. J Neuropathol Exp Neurol 72:137–151PubMedCrossRef
32.
Zurück zum Zitat Petraglia A, Plog B, Dayawansa S et al (2014) The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int 5:184PubMedPubMedCentralCrossRef Petraglia A, Plog B, Dayawansa S et al (2014) The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int 5:184PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Gao H, Han Z, Bai R et al (2017) The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury. Brain Res 1657:1–8PubMedCrossRef Gao H, Han Z, Bai R et al (2017) The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury. Brain Res 1657:1–8PubMedCrossRef
34.
Zurück zum Zitat Kochanek PM, Berger RP, Fink EL et al (2013) The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care. Front Neurol 4:40PubMedPubMedCentralCrossRef Kochanek PM, Berger RP, Fink EL et al (2013) The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care. Front Neurol 4:40PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Venneti S, Lopresti BJ, Wang G et al (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131PubMedCrossRef Venneti S, Lopresti BJ, Wang G et al (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131PubMedCrossRef
36.
Zurück zum Zitat Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988PubMedCrossRef Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988PubMedCrossRef
37.
Zurück zum Zitat Turkheimer FE, Rizzo G, Bloomfield PS et al (2015) The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 43:586–592PubMedPubMedCentralCrossRef Turkheimer FE, Rizzo G, Bloomfield PS et al (2015) The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 43:586–592PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zanotti-Fregonara P, Veronese M, Rizzo G et al (2020) Letter to the editor re: confirmation of specific binding of the 18-kDa translocator protein (TSPO) radioligand [18F]GE-180: a blocking study using XBD173 in multiple sclerosis normal appearing white and grey matter. Mol Imaging Biol 22:10–12PubMedCrossRef Zanotti-Fregonara P, Veronese M, Rizzo G et al (2020) Letter to the editor re: confirmation of specific binding of the 18-kDa translocator protein (TSPO) radioligand [18F]GE-180: a blocking study using XBD173 in multiple sclerosis normal appearing white and grey matter. Mol Imaging Biol 22:10–12PubMedCrossRef
39.
Zurück zum Zitat Fan Z, Calsolaro V, Atkinson RA et al (2016) Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 57:1753–1759PubMedCrossRef Fan Z, Calsolaro V, Atkinson RA et al (2016) Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 57:1753–1759PubMedCrossRef
40.
Zurück zum Zitat Elia J, Li H, Zhang S et al (2018) 1.23 pilot study with new positron emission tomography (PET) radiotracer 18F-Ge180 to image neuroinflammation in youths with neuropsychiatric symptoms. J Am Acad Child Adolesc Psychiatry 57:S142CrossRef Elia J, Li H, Zhang S et al (2018) 1.23 pilot study with new positron emission tomography (PET) radiotracer 18F-Ge180 to image neuroinflammation in youths with neuropsychiatric symptoms. J Am Acad Child Adolesc Psychiatry 57:S142CrossRef
41.
Zurück zum Zitat Jain BG, Li H, Zhang S et al (2018) Use of the radiotracer 18F-GE180 for PET scan imaging of active neuro-inflammation in children with multiple sclerosis. Presented at the 15th International Child Neurology Congress 2018, Mumbai Jain BG, Li H, Zhang S et al (2018) Use of the radiotracer 18F-GE180 for PET scan imaging of active neuro-inflammation in children with multiple sclerosis. Presented at the 15th International Child Neurology Congress 2018, Mumbai
42.
Zurück zum Zitat Wadsworth H, Jones PA, Chau WF et al (2012) GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett 22:1308–1313PubMedCrossRef Wadsworth H, Jones PA, Chau WF et al (2012) GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett 22:1308–1313PubMedCrossRef
43.
Zurück zum Zitat Boutin H, Murray K, Pradillo J et al (2015) 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 42:503–511PubMedCrossRef Boutin H, Murray K, Pradillo J et al (2015) 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 42:503–511PubMedCrossRef
44.
Zurück zum Zitat Airas L, Dickens AM, Elo P et al (2015) In vivo PET imaging demonstrates diminished microglial activation after Fingolimod treatment in an animal model of multiple sclerosis. J Nucl Med 56:305–310 Airas L, Dickens AM, Elo P et al (2015) In vivo PET imaging demonstrates diminished microglial activation after Fingolimod treatment in an animal model of multiple sclerosis. J Nucl Med 56:305–310
45.
Zurück zum Zitat Nack A, Brendel M, Nedelcu J et al (2019) Expression of translocator protein and [18F]-GE180 ligand uptake in multiple sclerosis animal models. Cells 8:94PubMedCentralCrossRef Nack A, Brendel M, Nedelcu J et al (2019) Expression of translocator protein and [18F]-GE180 ligand uptake in multiple sclerosis animal models. Cells 8:94PubMedCentralCrossRef
46.
Zurück zum Zitat Liu B, Le KX, Park MA et al (2015) In vivo detection of age- and disease-related increases in neuroinflammation by18F-GE180 TSPO microPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci 35:15716–15730PubMedPubMedCentralCrossRef Liu B, Le KX, Park MA et al (2015) In vivo detection of age- and disease-related increases in neuroinflammation by18F-GE180 TSPO microPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci 35:15716–15730PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Brendel M, Probst F, Jaworska A et al (2016) Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med 57:954–960PubMedCrossRef Brendel M, Probst F, Jaworska A et al (2016) Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med 57:954–960PubMedCrossRef
48.
Zurück zum Zitat Yu I, Inaji M, Maeda J et al (2010) Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma 27:1463–1475PubMedCrossRef Yu I, Inaji M, Maeda J et al (2010) Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma 27:1463–1475PubMedCrossRef
49.
Zurück zum Zitat Cao T, Thomas TC, Ziebell JM et al (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75PubMedCrossRef Cao T, Thomas TC, Ziebell JM et al (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75PubMedCrossRef
50.
Zurück zum Zitat Venneti S, Wagner AK, Wang G et al (2007) The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol 207:118–127PubMedPubMedCentralCrossRef Venneti S, Wagner AK, Wang G et al (2007) The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol 207:118–127PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Folkersma H, Foster Dingley JC, van Berckel BNM et al (2011) Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation 8:67PubMedPubMedCentralCrossRef Folkersma H, Foster Dingley JC, van Berckel BNM et al (2011) Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation 8:67PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Wang Y, Yue X, Kiesewetter DO et al (2014) PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur J Nucl Med Mol Imaging 41:1440–1449PubMedPubMedCentralCrossRef Wang Y, Yue X, Kiesewetter DO et al (2014) PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur J Nucl Med Mol Imaging 41:1440–1449PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Miyazawa N, Diksic M, Yamamoto Y (1995) Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochir 137:207–216PubMedCrossRef Miyazawa N, Diksic M, Yamamoto Y (1995) Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochir 137:207–216PubMedCrossRef
54.
Zurück zum Zitat Grossman R, Paden CM, Fry PA et al (2012) Persistent region-dependent neuroinflammation, NMDA receptor loss and atrophy in an animal model of penetrating brain injury. Future Neurol 7:329–339PubMedPubMedCentralCrossRef Grossman R, Paden CM, Fry PA et al (2012) Persistent region-dependent neuroinflammation, NMDA receptor loss and atrophy in an animal model of penetrating brain injury. Future Neurol 7:329–339PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Grossman R, Shohami E, Alexandrovich A et al (2003) Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mouse model of closed head injury: a quantitative autoradiographic study. Neuroimage 20:1971–1981PubMedCrossRef Grossman R, Shohami E, Alexandrovich A et al (2003) Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mouse model of closed head injury: a quantitative autoradiographic study. Neuroimage 20:1971–1981PubMedCrossRef
56.
Zurück zum Zitat Soustiel JF, Palzur E, Vlodavsky E et al (2008) The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol 34:412–423PubMedCrossRef Soustiel JF, Palzur E, Vlodavsky E et al (2008) The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol 34:412–423PubMedCrossRef
57.
Zurück zum Zitat Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383PubMedCrossRef Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383PubMedCrossRef
58.
Zurück zum Zitat Folkersma H, Boellaard R, Yaqub M et al (2011) Widespread and prolonged increase in (R)-11C-PK11195 binding after traumatic brain injury. J Nucl Med 52:1235–1239PubMedCrossRef Folkersma H, Boellaard R, Yaqub M et al (2011) Widespread and prolonged increase in (R)-11C-PK11195 binding after traumatic brain injury. J Nucl Med 52:1235–1239PubMedCrossRef
59.
Zurück zum Zitat Coughlin JM, Wang Y, Munro CA et al (2015) Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis 74:58–65PubMedCrossRef Coughlin JM, Wang Y, Munro CA et al (2015) Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis 74:58–65PubMedCrossRef
60.
Zurück zum Zitat Coughlin JM, Yuchuanwang Y, Minn I et al (2017) Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League players. JAMA Neurol 74:67–74PubMedPubMedCentralCrossRef Coughlin JM, Yuchuanwang Y, Minn I et al (2017) Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League players. JAMA Neurol 74:67–74PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Scott G, Hellyer PJ, Ramlackhansingh AF et al (2015) Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage. J Neuroinflammation 12:224PubMedPubMedCentralCrossRef Scott G, Hellyer PJ, Ramlackhansingh AF et al (2015) Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage. J Neuroinflammation 12:224PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Greeley CS (2015) Abusive head trauma: a review of the evidence base. AJR Am J Roentgenol 204:967–973PubMedCrossRef Greeley CS (2015) Abusive head trauma: a review of the evidence base. AJR Am J Roentgenol 204:967–973PubMedCrossRef
63.
Zurück zum Zitat Menzel L, Kleber L, Friedrich C et al (2017) Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65:278–292PubMedCrossRef Menzel L, Kleber L, Friedrich C et al (2017) Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65:278–292PubMedCrossRef
65.
Zurück zum Zitat Abcouwer SF, Lin C-M, Shanmugam S et al (2013) Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 10:149PubMedPubMedCentralCrossRef Abcouwer SF, Lin C-M, Shanmugam S et al (2013) Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 10:149PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Lloyd E, Somera-Molina K, Van Eldik LJ et al (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28PubMedPubMedCentralCrossRef Lloyd E, Somera-Molina K, Van Eldik LJ et al (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Cheong CU, Chang CP, Chao CM et al (2013) Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediat Inflamm 2013:620837CrossRef Cheong CU, Chang CP, Chao CM et al (2013) Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediat Inflamm 2013:620837CrossRef
68.
Zurück zum Zitat Tobinick E, Kim NM, Reyzin G et al (2012) Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 26:1051–1070PubMedCrossRef Tobinick E, Kim NM, Reyzin G et al (2012) Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 26:1051–1070PubMedCrossRef
69.
Zurück zum Zitat Loane DJ, Stoica BA, Tchantchou F et al (2014) Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 11:857–869PubMedPubMedCentralCrossRef Loane DJ, Stoica BA, Tchantchou F et al (2014) Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 11:857–869PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Besson VC, Chen XR, Plotkine M, Marchand-Verrecchia C (2005) Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci Lett 388:7–12PubMedCrossRef Besson VC, Chen XR, Plotkine M, Marchand-Verrecchia C (2005) Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci Lett 388:7–12PubMedCrossRef
71.
Zurück zum Zitat Wang G, Shi Y, Jiang X et al (2015) HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci U S A 112:2853–2858PubMedPubMedCentralCrossRef Wang G, Shi Y, Jiang X et al (2015) HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci U S A 112:2853–2858PubMedPubMedCentralCrossRef
Metadaten
Titel
Unravelling neuroinflammation in abusive head trauma with radiotracer imaging
verfasst von
Rahul M. Nikam
Xuyi Yue
Vinay V. Kandula
Bishnuhari Paudyal
Sigrid A. Langhans
Lauren W. Averill
Arabinda K. Choudhary
Publikationsdatum
01.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 6/2021
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-04995-z

Weitere Artikel der Ausgabe 6/2021

Pediatric Radiology 6/2021 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.