Skip to main content
Erschienen in:

10.01.2022

Unsupervised Deep Anomaly Detection for Medical Images Using an Improved Adversarial Autoencoder

verfasst von: Haibo Zhang, Wenping Guo, Shiqing Zhang, Hongsheng Lu, Xiaoming Zhao

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Anomaly detection has been applied in the various disease of medical practice, such as breast cancer, retinal, lung lesion, and skin disease. However, in real-world anomaly detection, there exist a large number of healthy samples, and but very few sick samples. To alleviate the problem of data imbalance in anomaly detection, this paper proposes an unsupervised learning method for deep anomaly detection based on an improved adversarial autoencoder, in which a module called chain of convolutional block (CCB) is employed instead of the conventional skip-connections used in adversarial autoencoder. Such CCB connections provide considerable advantages via direct connections, not only preserving both global and local information but also alleviating the problem of semantic disparity between the encoding features and the corresponding decoding features. The proposed method is thus able to capture the distribution of normal samples within both image space and latent vector space. By means of minimizing the reconstruction error within both spaces during training phase, higher reconstruction error during test phase is indicative of an anomaly. Our method is trained only on the healthy persons in order to learn the distribution of normal samples and can detect sick samples based on high deviation from the distribution of normality in an unsupervised way. Experimental results for multiple datasets from different fields demonstrate that the proposed method yields superior performance to state-of-the-art methods.
Literatur
1.
Zurück zum Zitat Agrawal R, Kulkarni S, Walambe R, Kotecha K: Assistive Framework for Automatic Detection of All the Zones in Retinopathy of Prematurity Using Deep Learning. J Digit Imaging, 2021 Agrawal R, Kulkarni S, Walambe R, Kotecha K: Assistive Framework for Automatic Detection of All the Zones in Retinopathy of Prematurity Using Deep Learning. J Digit Imaging, 2021
2.
Zurück zum Zitat Feng-Ping A, Jun-e L, Jian-rong W: Medical image segmentation algorithm based on positive scaling invariant-self encoding CCA. Biomedical Signal Processing and Control 66:102395, 2021 Feng-Ping A, Jun-e L, Jian-rong W: Medical image segmentation algorithm based on positive scaling invariant-self encoding CCA. Biomedical Signal Processing and Control 66:102395, 2021
3.
Zurück zum Zitat Qiblawey Y, et al.: Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning. Diagnostics (Basel) 11:893, 2021 Qiblawey Y, et al.: Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning. Diagnostics (Basel) 11:893, 2021
4.
Zurück zum Zitat Jojoa Acosta MF, Caballero Tovar LY, Garcia-Zapirain MB, Percybrooks WS: Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Med Imaging 21:6, 2021CrossRef Jojoa Acosta MF, Caballero Tovar LY, Garcia-Zapirain MB, Percybrooks WS: Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Med Imaging 21:6, 2021CrossRef
5.
Zurück zum Zitat Jian C, et al.: Automatic brain extraction from 3D fetal MR image with deep learning-based multi-step framework. Comput Med Imaging Graph 88:101848, 2021CrossRef Jian C, et al.: Automatic brain extraction from 3D fetal MR image with deep learning-based multi-step framework. Comput Med Imaging Graph 88:101848, 2021CrossRef
6.
Zurück zum Zitat Muzamil S, Hussain T, Haider A, Waraich U, Ashiq U, Ayguade E: An Intelligent Iris Based Chronic Kidney Identification System. Symmetry-Basel 12:2066, 2020CrossRef Muzamil S, Hussain T, Haider A, Waraich U, Ashiq U, Ayguade E: An Intelligent Iris Based Chronic Kidney Identification System. Symmetry-Basel 12:2066, 2020CrossRef
7.
Zurück zum Zitat Rehman MU, Cho S, Kim J, Chong KT: BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder-Decoder Network. Diagnostics (Basel) 11:169, 2021 Rehman MU, Cho S, Kim J, Chong KT: BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder-Decoder Network. Diagnostics (Basel) 11:169, 2021
8.
Zurück zum Zitat Nakao T, et al.: Unsupervised Deep Anomaly Detection in Chest Radiographs. J Digit Imaging 34:418-427, 2021CrossRef Nakao T, et al.: Unsupervised Deep Anomaly Detection in Chest Radiographs. J Digit Imaging 34:418-427, 2021CrossRef
9.
Zurück zum Zitat Baur C, Denner S, Wiestler B, Navab N, Albarqouni S: Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study. Med Image Anal 69:101952, 2021CrossRef Baur C, Denner S, Wiestler B, Navab N, Albarqouni S: Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study. Med Image Anal 69:101952, 2021CrossRef
10.
Zurück zum Zitat Fujioka T, et al.: Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging. Diagnostics (Basel) 10:456, 2020 Fujioka T, et al.: Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging. Diagnostics (Basel) 10:456, 2020
11.
Zurück zum Zitat Tufail AB, Ma YK, Zhang QN: Binary Classification of Alzheimer's Disease Using sMRI Imaging Modality and Deep Learning. J Digit Imaging 33:1073-1090, 2020CrossRef Tufail AB, Ma YK, Zhang QN: Binary Classification of Alzheimer's Disease Using sMRI Imaging Modality and Deep Learning. J Digit Imaging 33:1073-1090, 2020CrossRef
12.
Zurück zum Zitat Park B, Park H, Lee SM, Seo JB, Kim N: Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks. J Digit Imaging 32:1019-1026, 2019CrossRef Park B, Park H, Lee SM, Seo JB, Kim N: Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks. J Digit Imaging 32:1019-1026, 2019CrossRef
13.
Zurück zum Zitat Kim GB, et al.: Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease. J Digit Imaging 31:415-424, 2018CrossRef Kim GB, et al.: Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease. J Digit Imaging 31:415-424, 2018CrossRef
14.
Zurück zum Zitat Erfani SM, Rajasegarar S, Karunasekera S, Leckie C: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn 58:121-134, 2016CrossRef Erfani SM, Rajasegarar S, Karunasekera S, Leckie C: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn 58:121-134, 2016CrossRef
15.
Zurück zum Zitat Akcay S, Abarghouei AA, Breckon TP: GANomaly: Semi-supervised Anomaly Detection via Adversarial Training, 2018 Akcay S, Abarghouei AA, Breckon TP: GANomaly: Semi-supervised Anomaly Detection via Adversarial Training, 2018
16.
Zurück zum Zitat Ibtehaz N, Rahman MS: MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 121:74-87, 2020CrossRef Ibtehaz N, Rahman MS: MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 121:74-87, 2020CrossRef
17.
Zurück zum Zitat Akcay S, Atapour-Abarghouei A, Breckon TP: Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection, 2019 Akcay S, Atapour-Abarghouei A, Breckon TP: Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection, 2019
18.
Zurück zum Zitat Zenati H, Romain M, Foo C-S, Lecouat B, Chandrasekhar V: Adversarially Learned Anomaly Detection, 2018 Zenati H, Romain M, Foo C-S, Lecouat B, Chandrasekhar V: Adversarially Learned Anomaly Detection, 2018
19.
Zurück zum Zitat Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti PA, Muller H: Building a reference multimedia database for interstitial lung diseases. Comput Med Imaging Graph 36:227-238, 2012CrossRef Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti PA, Muller H: Building a reference multimedia database for interstitial lung diseases. Comput Med Imaging Graph 36:227-238, 2012CrossRef
20.
Zurück zum Zitat Tschandl P, Rosendahl C, Kittler H: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161, 2018 Tschandl P, Rosendahl C, Kittler H: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161, 2018
21.
Zurück zum Zitat Gribbestad M, Hassan MU, I AH, Sundli K: Health Monitoring of Air Compressors Using Reconstruction-Based Deep Learning for Anomaly Detection with Increased Transparency. Entropy (Basel) 23:83, 2021 Gribbestad M, Hassan MU, I AH, Sundli K: Health Monitoring of Air Compressors Using Reconstruction-Based Deep Learning for Anomaly Detection with Increased Transparency. Entropy (Basel) 23:83, 2021
22.
Zurück zum Zitat Cowton J, Kyriazakis I, Plotz T, Bacardit J: A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors. Sensors (Basel) 18:2521, 2018 Cowton J, Kyriazakis I, Plotz T, Bacardit J: A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors. Sensors (Basel) 18:2521, 2018
23.
Zurück zum Zitat Petrick N, et al.: A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes, 2018 Petrick N, et al.: A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes, 2018
24.
Zurück zum Zitat Kingma D, Welling M: Auto-Encoding Variational Bayes. ICLR, 2013 Kingma D, Welling M: Auto-Encoding Variational Bayes. ICLR, 2013
25.
Zurück zum Zitat Gunduz H: An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification. Biomedical Signal Processing and Control 66:102452, 2021 Gunduz H: An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson's disease classification. Biomedical Signal Processing and Control 66:102452, 2021
26.
Zurück zum Zitat Saxena D, Cao J: Generative Adversarial Networks (GANs):Challenges, Solutions, and Future Directions. ACM Computing Surveys 54:1-42, 2021CrossRef Saxena D, Cao J: Generative Adversarial Networks (GANs):Challenges, Solutions, and Future Directions. ACM Computing Surveys 54:1-42, 2021CrossRef
27.
Zurück zum Zitat Goodfellow IJ, et al.: Generative Adversarial Networks. CoRR abs/1406.2661, 2014 Goodfellow IJ, et al.: Generative Adversarial Networks. CoRR abs/1406.2661, 2014
28.
Zurück zum Zitat Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, 2017 Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, 2017
29.
Zurück zum Zitat Radford A, Metz L, Chintala S: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016 Radford A, Metz L, Chintala S: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016
30.
Zurück zum Zitat Sabokrou M, Khalooei M, Fathy M, Adeli E: Adversarially Learned One-Class Classifier for Novelty Detection, 2018 Sabokrou M, Khalooei M, Fathy M, Adeli E: Adversarially Learned One-Class Classifier for Novelty Detection, 2018
31.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015 Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015
32.
Zurück zum Zitat Zongwei Z, Siddiquee MMR, Tajbakhsh N, Jianming L: UNet++: A Nested U-Net Architecture for Medical Image Segmentation, 2018 Zongwei Z, Siddiquee MMR, Tajbakhsh N, Jianming L: UNet++: A Nested U-Net Architecture for Medical Image Segmentation, 2018
34.
Zurück zum Zitat Perera P, Patel VM: Learning Deep Features for One-Class Classification. IEEE Trans Image Process 28:5450-5463, 2019CrossRef Perera P, Patel VM: Learning Deep Features for One-Class Classification. IEEE Trans Image Process 28:5450-5463, 2019CrossRef
35.
Zurück zum Zitat Zenati H, Foo CS, Lecouat B, Manek G, Chandrasekhar VR: Efficient GAN-Based Anomaly Detection. CoRR abs/1802.06222, 2018 Zenati H, Foo CS, Lecouat B, Manek G, Chandrasekhar VR: Efficient GAN-Based Anomaly Detection. CoRR abs/1802.06222, 2018
Metadaten
Titel
Unsupervised Deep Anomaly Detection for Medical Images Using an Improved Adversarial Autoencoder
verfasst von
Haibo Zhang
Wenping Guo
Shiqing Zhang
Hongsheng Lu
Xiaoming Zhao
Publikationsdatum
10.01.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 2/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-021-00558-8

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.