Skip to main content
Erschienen in:

04.05.2024 | Review

Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives

verfasst von: Jing Guo, Changyi He, Huimiao Song, Huiwu Gao, Shi Yao, Shan-Shan Dong, Tie-Lin Yang

Erschienen in: Neuroscience Bulletin | Ausgabe 9/2024

Einloggen, um Zugang zu erhalten

Abstract

Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
Literatur
1.
Zurück zum Zitat Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S. New WHO prevalence estimates of mental disorders in conflict settings: A systematic review and meta-analysis. Lancet 2019, 394: 240–248.PubMedPubMedCentralCrossRef Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S. New WHO prevalence estimates of mental disorders in conflict settings: A systematic review and meta-analysis. Lancet 2019, 394: 240–248.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Fleischhacker WW, Arango C, Arteel P, Barnes TRE, Carpenter W, Duckworth K. Schizophrenia—time to commit to policy change. Schizophr Bull 2014, 40: S165–S194.PubMedPubMedCentralCrossRef Fleischhacker WW, Arango C, Arteel P, Barnes TRE, Carpenter W, Duckworth K. Schizophrenia—time to commit to policy change. Schizophr Bull 2014, 40: S165–S194.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Hjorthøj C, Stürup AE, McGrath JJ, Nordentoft M. Years of potential life lost and life expectancy in schizophrenia: A systematic review and meta-analysis. Lancet Psychiatry 2017, 4: 295–301.PubMedCrossRef Hjorthøj C, Stürup AE, McGrath JJ, Nordentoft M. Years of potential life lost and life expectancy in schizophrenia: A systematic review and meta-analysis. Lancet Psychiatry 2017, 4: 295–301.PubMedCrossRef
4.
Zurück zum Zitat Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604: 502–508.PubMedPubMedCentralCrossRef Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604: 502–508.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Xu MQ, Sun WS, Liu BX, Feng GY, Yu L, Yang L, et al. Prenatal malnutrition and adult schizophrenia: Further evidence from the 1959–1961 Chinese famine. Schizophr Bull 2009, 35: 568–576.PubMedPubMedCentralCrossRef Xu MQ, Sun WS, Liu BX, Feng GY, Yu L, Yang L, et al. Prenatal malnutrition and adult schizophrenia: Further evidence from the 1959–1961 Chinese famine. Schizophr Bull 2009, 35: 568–576.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Wu Q, Wang X, Wang Y, Long YJ, Zhao JP, Wu RR. Developments in biological mechanisms and treatments for negative symptoms and cognitive dysfunction of schizophrenia. Neurosci Bull 2021, 37: 1609–1624.PubMedPubMedCentralCrossRef Wu Q, Wang X, Wang Y, Long YJ, Zhao JP, Wu RR. Developments in biological mechanisms and treatments for negative symptoms and cognitive dysfunction of schizophrenia. Neurosci Bull 2021, 37: 1609–1624.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Saugstad LF. Social class, marriage, and fertility in schizophrenia. Schizophr Bull 1989, 15: 9–43.PubMedCrossRef Saugstad LF. Social class, marriage, and fertility in schizophrenia. Schizophr Bull 1989, 15: 9–43.PubMedCrossRef
8.
Zurück zum Zitat Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, et al. Candidate biomarkers in psychiatric disorders: State of the field. World Psychiatry 2023, 22: 236–262.PubMedPubMedCentralCrossRef Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, et al. Candidate biomarkers in psychiatric disorders: State of the field. World Psychiatry 2023, 22: 236–262.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 2014, 71: 1323–1331.PubMedPubMedCentralCrossRef Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 2014, 71: 1323–1331.PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med 2016, 22: 1248–1255.PubMedCrossRef Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med 2016, 22: 1248–1255.PubMedCrossRef
12.
Zurück zum Zitat Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006, 7: 818–827.PubMedCrossRef Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006, 7: 818–827.PubMedCrossRef
13.
Zurück zum Zitat Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image processing and quality control for the first 10, 000 brain imaging datasets from UK Biobank. Neuroimage 2018, 166: 400–424.PubMedCrossRef Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image processing and quality control for the first 10, 000 brain imaging datasets from UK Biobank. Neuroimage 2018, 166: 400–424.PubMedCrossRef
14.
Zurück zum Zitat Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 2016, 19: 1523–1536.PubMedPubMedCentralCrossRef Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 2016, 19: 1523–1536.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science 2020, 367: eaay6690.PubMedPubMedCentralCrossRef Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science 2020, 367: eaay6690.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 2016, 89: 248–268.PubMedPubMedCentralCrossRef Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 2016, 89: 248–268.PubMedPubMedCentralCrossRef
19.
20.
Zurück zum Zitat Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, MacKay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31: 1487–1505.PubMedCrossRef Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, MacKay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31: 1487–1505.PubMedCrossRef
21.
Zurück zum Zitat Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 2007, 34: 144–155.PubMedCrossRef Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 2007, 34: 144–155.PubMedCrossRef
22.
23.
Zurück zum Zitat Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61: 1000–1016.PubMedCrossRef Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61: 1000–1016.PubMedCrossRef
24.
Zurück zum Zitat Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002, 3: 142–151.PubMedCrossRef Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002, 3: 142–151.PubMedCrossRef
25.
Zurück zum Zitat Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 676–682.PubMedPubMedCentralCrossRef Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 676–682.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Spreng RN, Mar RA, Kim ASN. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. J Cogn Neurosci 2009, 21: 489–510.PubMedCrossRef Spreng RN, Mar RA, Kim ASN. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. J Cogn Neurosci 2009, 21: 489–510.PubMedCrossRef
27.
Zurück zum Zitat Raichle ME, Snyder AZ. A default mode of brain function: A brief history of an evolving idea. Neuroimage 2007, 37: 1083–1090;discussion 1097–1099. Raichle ME, Snyder AZ. A default mode of brain function: A brief history of an evolving idea. Neuroimage 2007, 37: 1083–1090;discussion 1097–1099.
28.
Zurück zum Zitat Damoiseaux JS. Effects of aging on functional and structural brain connectivity. Neuroimage 2017, 160: 32–40.PubMedCrossRef Damoiseaux JS. Effects of aging on functional and structural brain connectivity. Neuroimage 2017, 160: 32–40.PubMedCrossRef
30.
Zurück zum Zitat Scholtens LH, van den Heuvel MP. Multimodal connectomics in psychiatry: Bridging scales from micro to macro. Biol Psychiatry Cogn Neurosci Neuroimaging 2018, 3: 767–776.PubMed Scholtens LH, van den Heuvel MP. Multimodal connectomics in psychiatry: Bridging scales from micro to macro. Biol Psychiatry Cogn Neurosci Neuroimaging 2018, 3: 767–776.PubMed
31.
Zurück zum Zitat Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014, 137: 2382–2395.PubMedPubMedCentralCrossRef Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014, 137: 2382–2395.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. NeuroImage 2013, 80: 515–526.PubMedCrossRef Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. NeuroImage 2013, 80: 515–526.PubMedCrossRef
33.
Zurück zum Zitat Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, et al. The human connectome project: A retrospective. Neuroimage 2021, 244: 118543.PubMedCrossRef Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, et al. The human connectome project: A retrospective. Neuroimage 2021, 244: 118543.PubMedCrossRef
34.
Zurück zum Zitat Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023, 24: 747–760.PubMedCrossRef Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023, 24: 747–760.PubMedCrossRef
35.
Zurück zum Zitat de Reus MA, Saenger VM, Kahn RS, van den Heuvel MP. An edge-centric perspective on the human connectome: Link communities in the brain. Philos Trans R Soc Lond B Biol Sci 2014, 369: 20130527.PubMedPubMedCentralCrossRef de Reus MA, Saenger VM, Kahn RS, van den Heuvel MP. An edge-centric perspective on the human connectome: Link communities in the brain. Philos Trans R Soc Lond B Biol Sci 2014, 369: 20130527.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat van den Heuvel MP, Kahn RS, Goñi J, Sporns O. High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci U S A 2012, 109: 11372–11377.PubMedPubMedCentralCrossRef van den Heuvel MP, Kahn RS, Goñi J, Sporns O. High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci U S A 2012, 109: 11372–11377.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Ge J, Yang G, Han M, Zhou S, Men W, Qin L, et al. Increasing diversity in connectomics with the Chinese human connectome project. Nat Neurosci 2023, 26: 163–172.PubMedCrossRef Ge J, Yang G, Han M, Zhou S, Men W, Qin L, et al. Increasing diversity in connectomics with the Chinese human connectome project. Nat Neurosci 2023, 26: 163–172.PubMedCrossRef
38.
Zurück zum Zitat Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK, Avedissian C, et al. Genetics of brain fiber architecture and intellectual performance. J Neurosci 2009, 29: 2212–2224.PubMedPubMedCentralCrossRef Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK, Avedissian C, et al. Genetics of brain fiber architecture and intellectual performance. J Neurosci 2009, 29: 2212–2224.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Bearden CE, van Erp TGM, Thompson PM, Toga AW, Cannon TD. Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 2007, 28: 519–532.PubMedPubMedCentralCrossRef Bearden CE, van Erp TGM, Thompson PM, Toga AW, Cannon TD. Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 2007, 28: 519–532.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Blokland GA, McMahon KL, Hoffman J, Zhu G, Meredith M, Martin NG, et al. Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biol Psychol 2008, 79: 70–79.PubMedPubMedCentralCrossRef Blokland GA, McMahon KL, Hoffman J, Zhu G, Meredith M, Martin NG, et al. Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biol Psychol 2008, 79: 70–79.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, et al. Genetic control over the resting brain. Proc Natl Acad Sci U S A 2010, 107: 1223–1228.PubMedPubMedCentralCrossRef Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, et al. Genetic control over the resting brain. Proc Natl Acad Sci U S A 2010, 107: 1223–1228.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Meda SA, Ruaño G, Windemuth A, O’Neil K, Berwise C, Dunn SM, et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci U S A 2014, 111: E2066–E2075.PubMedPubMedCentralCrossRef Meda SA, Ruaño G, Windemuth A, O’Neil K, Berwise C, Dunn SM, et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci U S A 2014, 111: E2066–E2075.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Bohlken MM, Mandl RCW, Brouwer RM, van den Heuvel MP, Hedman AM, Kahn RS, et al. Heritability of structural brain network topology: A DTI study of 156 twins. Hum Brain Mapp 2014, 35: 5295–5305.PubMedPubMedCentralCrossRef Bohlken MM, Mandl RCW, Brouwer RM, van den Heuvel MP, Hedman AM, Kahn RS, et al. Heritability of structural brain network topology: A DTI study of 156 twins. Hum Brain Mapp 2014, 35: 5295–5305.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat van den Heuvel MP, van Soelen IL, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE. Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 2013, 23: 19–23.PubMedCrossRef van den Heuvel MP, van Soelen IL, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE. Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 2013, 23: 19–23.PubMedCrossRef
45.
Zurück zum Zitat Romme IAC, de Reus MA, Ophoff RA, Kahn RS, van den Heuvel MP. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol Psychiatry 2017, 81: 495–502.PubMedCrossRef Romme IAC, de Reus MA, Ophoff RA, Kahn RS, van den Heuvel MP. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol Psychiatry 2017, 81: 495–502.PubMedCrossRef
46.
Zurück zum Zitat Wheeler AL, Felsky D, Viviano JD, Stojanovski S, Ameis SH, Szatmari P, et al. BDNF-dependent effects on amygdala-cortical circuitry and depression risk in children and youth. Cereb Cortex 2018, 28: 1760–1770.PubMedCrossRef Wheeler AL, Felsky D, Viviano JD, Stojanovski S, Ameis SH, Szatmari P, et al. BDNF-dependent effects on amygdala-cortical circuitry and depression risk in children and youth. Cereb Cortex 2018, 28: 1760–1770.PubMedCrossRef
47.
Zurück zum Zitat Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, et al. Agenesis of the corpus callosum: Genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007, 8: 287–299.PubMedCrossRef Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, et al. Agenesis of the corpus callosum: Genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007, 8: 287–299.PubMedCrossRef
48.
Zurück zum Zitat Gong X, Lu W, Kendrick KM, Pu W, Wang C, Jin L, et al. A brain-wide association study of DISC1 genetic variants reveals a relationship with the structure and functional connectivity of the precuneus in schizophrenia. Hum Brain Mapp 2014, 35: 5414–5430.PubMedPubMedCentralCrossRef Gong X, Lu W, Kendrick KM, Pu W, Wang C, Jin L, et al. A brain-wide association study of DISC1 genetic variants reveals a relationship with the structure and functional connectivity of the precuneus in schizophrenia. Hum Brain Mapp 2014, 35: 5414–5430.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Liu B, Fan L, Cui Y, Zhang X, Hou B, Li Y, et al. DISC1 Ser704Cys impacts thalamic-prefrontal connectivity. Brain Struct Funct 2015, 220: 91–100.PubMedCrossRef Liu B, Fan L, Cui Y, Zhang X, Hou B, Li Y, et al. DISC1 Ser704Cys impacts thalamic-prefrontal connectivity. Brain Struct Funct 2015, 220: 91–100.PubMedCrossRef
50.
Zurück zum Zitat Liu B, Zhang X, Hou B, Li J, Qiu C, Qin W, et al. The impact of MIR137 on dorsolateral prefrontal-hippocampal functional connectivity in healthy subjects. Neuropsychopharmacology 2014, 39: 2153–2160.PubMedPubMedCentralCrossRef Liu B, Zhang X, Hou B, Li J, Qiu C, Qin W, et al. The impact of MIR137 on dorsolateral prefrontal-hippocampal functional connectivity in healthy subjects. Neuropsychopharmacology 2014, 39: 2153–2160.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98: 6917–6922.PubMedPubMedCentralCrossRef Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98: 6917–6922.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Donohoe G, Morris DW, Clarke S, McGhee KA, Schwaiger S, Nangle JM, et al. Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: A preliminary study. Neuropsychologia 2007, 45: 454–458.PubMedCrossRef Donohoe G, Morris DW, Clarke S, McGhee KA, Schwaiger S, Nangle JM, et al. Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: A preliminary study. Neuropsychologia 2007, 45: 454–458.PubMedCrossRef
53.
Zurück zum Zitat Donohoe G, Rose E, Frodl T, Morris D, Spoletini I, Adriano F, et al. ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neuroimage 2011, 54: 2132–2137.PubMedCrossRef Donohoe G, Rose E, Frodl T, Morris D, Spoletini I, Adriano F, et al. ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neuroimage 2011, 54: 2132–2137.PubMedCrossRef
54.
Zurück zum Zitat Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A 2004, 101: 12604–12609.PubMedPubMedCentralCrossRef Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A 2004, 101: 12604–12609.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Otnaess MK, Djurovic S, Rimol LM, Kulle B, Kähler AK, Jönsson EG, et al. Evidence for a possible association of neurotrophin receptor (NTRK-3) gene polymorphisms with hippocampal function and schizophrenia. Neurobiol Dis 2009, 34: 518–524.PubMedCrossRef Otnaess MK, Djurovic S, Rimol LM, Kulle B, Kähler AK, Jönsson EG, et al. Evidence for a possible association of neurotrophin receptor (NTRK-3) gene polymorphisms with hippocampal function and schizophrenia. Neurobiol Dis 2009, 34: 518–524.PubMedCrossRef
56.
Zurück zum Zitat Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, et al. Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry 2010, 67: 991–1001.PubMedPubMedCentralCrossRef Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, et al. Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry 2010, 67: 991–1001.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Lin Z, Long Y, Wu Z, Xiang Z, Ju Y, Liu Z. Associations between brain abnormalities and common genetic variants for schizophrenia: A narrative review of structural and functional neuroimaging findings. Ann Palliat Med 2021, 10: 10031–10052.PubMedCrossRef Lin Z, Long Y, Wu Z, Xiang Z, Ju Y, Liu Z. Associations between brain abnormalities and common genetic variants for schizophrenia: A narrative review of structural and functional neuroimaging findings. Ann Palliat Med 2021, 10: 10031–10052.PubMedCrossRef
58.
Zurück zum Zitat Taquet M, Smith SM, Prohl AK, Peters JM, Warfield SK, Scherrer B, et al. A structural brain network of genetic vulnerability to psychiatric illness. Mol Psychiatry 2021, 26: 2089–2100.PubMedCrossRef Taquet M, Smith SM, Prohl AK, Peters JM, Warfield SK, Scherrer B, et al. A structural brain network of genetic vulnerability to psychiatric illness. Mol Psychiatry 2021, 26: 2089–2100.PubMedCrossRef
59.
Zurück zum Zitat Gong Q, Hu X, Pettersson-Yeo W, Xu X, Lui S, Crossley N, et al. Network-level dysconnectivity in drug-Naïve first-episode psychosis: Dissociating transdiagnostic and diagnosis-specific alterations. Neuropsychopharmacology 2017, 42: 933–940.PubMedCrossRef Gong Q, Hu X, Pettersson-Yeo W, Xu X, Lui S, Crossley N, et al. Network-level dysconnectivity in drug-Naïve first-episode psychosis: Dissociating transdiagnostic and diagnosis-specific alterations. Neuropsychopharmacology 2017, 42: 933–940.PubMedCrossRef
60.
Zurück zum Zitat Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F, Sharp K, et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci 2021, 24: 737–745.PubMedPubMedCentralCrossRef Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F, Sharp K, et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci 2021, 24: 737–745.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 2018, 562: 210–216.PubMedPubMedCentralCrossRef Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 2018, 562: 210–216.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, et al. Common genetic variants influence human subcortical brain structures. Nature 2015, 520: 224–229.PubMedPubMedCentralCrossRef Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, et al. Common genetic variants influence human subcortical brain structures. Nature 2015, 520: 224–229.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Hibar DP, Adams HHH, Jahanshad N, Chauhan G, Stein JL, Hofer E, et al. Novel genetic loci associated with hippocampal volume. Nat Commun 2017, 8: 13624.PubMedPubMedCentralCrossRef Hibar DP, Adams HHH, Jahanshad N, Chauhan G, Stein JL, Hofer E, et al. Novel genetic loci associated with hippocampal volume. Nat Commun 2017, 8: 13624.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, et al. Genetic architecture of subcortical brain structures in 38, 851 individuals. Nat Genet 2019, 51: 1624–1636.PubMedPubMedCentralCrossRef Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, et al. Genetic architecture of subcortical brain structures in 38, 851 individuals. Nat Genet 2019, 51: 1624–1636.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci 2014, 37: 733–741.PubMedPubMedCentralCrossRef Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci 2014, 37: 733–741.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Cohen MX, Young J, Baek JM, Kessler C, Ranganath C. Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res Cogn Brain Res 2005, 25: 851–861.PubMedCrossRef Cohen MX, Young J, Baek JM, Kessler C, Ranganath C. Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res Cogn Brain Res 2005, 25: 851–861.PubMedCrossRef
68.
Zurück zum Zitat Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B, et al. Disturbed gyrification of the prefrontal region in male schizophrenic patients: A morphometric postmortem study. Am J Psychiatry 2000, 157: 34–39.PubMedCrossRef Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B, et al. Disturbed gyrification of the prefrontal region in male schizophrenic patients: A morphometric postmortem study. Am J Psychiatry 2000, 157: 34–39.PubMedCrossRef
69.
Zurück zum Zitat James AC, James S, Smith DM, Javaloyes A. Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 2004, 161: 1023–1029.PubMedCrossRef James AC, James S, Smith DM, Javaloyes A. Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 2004, 161: 1023–1029.PubMedCrossRef
70.
Zurück zum Zitat Jou RJ, Hardan AY, Keshavan MS. Reduced cortical folding in individuals at high risk for schizophrenia: A pilot study. Schizophr Res 2005, 75: 309–313.PubMedCrossRef Jou RJ, Hardan AY, Keshavan MS. Reduced cortical folding in individuals at high risk for schizophrenia: A pilot study. Schizophr Res 2005, 75: 309–313.PubMedCrossRef
71.
Zurück zum Zitat van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2016, 21: 547–553.PubMedCrossRef van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2016, 21: 547–553.PubMedCrossRef
72.
Zurück zum Zitat van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol Psychiatry 2018, 84: 644–654.PubMedPubMedCentralCrossRef van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol Psychiatry 2018, 84: 644–654.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Brugger SP, Howes OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia: A meta-analysis. JAMA Psychiatry 2017, 74: 1104–1111.PubMedPubMedCentralCrossRef Brugger SP, Howes OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia: A meta-analysis. JAMA Psychiatry 2017, 74: 1104–1111.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Zalesky A, Fornito A, Seal ML, Cocchi L, Westin CF, Bullmore ET, et al. Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 2011, 69: 80–89.PubMedCrossRef Zalesky A, Fornito A, Seal ML, Cocchi L, Westin CF, Bullmore ET, et al. Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 2011, 69: 80–89.PubMedCrossRef
75.
Zurück zum Zitat Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 2018, 23: 1261–1269.PubMedCrossRef Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 2018, 23: 1261–1269.PubMedCrossRef
76.
Zurück zum Zitat Balevich EC, Haznedar MM, Wang E, Newmark RE, Bloom R, Schneiderman JS, et al. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Res 2015, 231: 244–251.PubMedPubMedCentralCrossRef Balevich EC, Haznedar MM, Wang E, Newmark RE, Bloom R, Schneiderman JS, et al. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Res 2015, 231: 244–251.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 2001, 158: 1105–1113.PubMedCrossRef Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 2001, 158: 1105–1113.PubMedCrossRef
78.
Zurück zum Zitat Anticevic A, Repovs G, Krystal JH, Barch DM. A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference. Schizophr Res 2012, 141: 8–14.PubMedCrossRef Anticevic A, Repovs G, Krystal JH, Barch DM. A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference. Schizophr Res 2012, 141: 8–14.PubMedCrossRef
79.
Zurück zum Zitat Hua M, Peng Y, Zhou Y, Qin W, Yu C, Liang M. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020, 99: 109837.PubMedCrossRef Hua M, Peng Y, Zhou Y, Qin W, Yu C, Liang M. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020, 99: 109837.PubMedCrossRef
80.
Zurück zum Zitat Martino M, Magioncalda P, Yu H, Li X, Wang Q, Meng Y, et al. Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-Naïve patients with schizophrenia. Schizophr Bull 2018, 44: 419–431.PubMedCrossRef Martino M, Magioncalda P, Yu H, Li X, Wang Q, Meng Y, et al. Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-Naïve patients with schizophrenia. Schizophr Bull 2018, 44: 419–431.PubMedCrossRef
81.
Zurück zum Zitat Li A, Zalesky A, Yue W, Howes O, Yan H, Liu Y, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med 2020, 26: 558–565.PubMedCrossRef Li A, Zalesky A, Yue W, Howes O, Yan H, Liu Y, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med 2020, 26: 558–565.PubMedCrossRef
82.
Zurück zum Zitat Liang S, Li T. Functional striatal abnormalities: A distinct brain signature of schizophrenia. Neurosci Bull 2021, 37: 284–286.PubMedCrossRef Liang S, Li T. Functional striatal abnormalities: A distinct brain signature of schizophrenia. Neurosci Bull 2021, 37: 284–286.PubMedCrossRef
83.
Zurück zum Zitat Fornito A, Harrison BJ, Goodby E, Dean A, Ooi C, Nathan PJ, et al. Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry 2013, 70: 1143–1151.PubMedCrossRef Fornito A, Harrison BJ, Goodby E, Dean A, Ooi C, Nathan PJ, et al. Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry 2013, 70: 1143–1151.PubMedCrossRef
84.
Zurück zum Zitat Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 2012, 8: 49–76.PubMedCrossRef Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 2012, 8: 49–76.PubMedCrossRef
85.
Zurück zum Zitat Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.PubMedCrossRef Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.PubMedCrossRef
86.
Zurück zum Zitat Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007, 164: 450–457.PubMedCrossRef Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007, 164: 450–457.PubMedCrossRef
87.
Zurück zum Zitat Dauvermann MR, Mothersill D, Rokita KI, King S, Holleran L, Ruan K, et al. Changes in default-mode network associated with childhood trauma in schizophrenia. Schizophr Bull 2021, 47: 1482–1494.PubMedPubMedCentralCrossRef Dauvermann MR, Mothersill D, Rokita KI, King S, Holleran L, Ruan K, et al. Changes in default-mode network associated with childhood trauma in schizophrenia. Schizophr Bull 2021, 47: 1482–1494.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Sendi MSE, Zendehrouh E, Ellis CA, Liang Z, Fu Z, Mathalon DH, et al. Aberrant dynamic functional connectivity of default mode network in schizophrenia and links to symptom severity. Front Neural Circuits 2021, 15: 649417.PubMedPubMedCentralCrossRef Sendi MSE, Zendehrouh E, Ellis CA, Liang Z, Fu Z, Mathalon DH, et al. Aberrant dynamic functional connectivity of default mode network in schizophrenia and links to symptom severity. Front Neural Circuits 2021, 15: 649417.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Jamea AA, Alblowi M, Alghamdi J, Alosaimi FD, Albadr F, Abualait T, et al. Altered default mode network activity and cortical thickness as vulnerability indicators for SCZ: A preliminary resting state MRI study. Eur Rev Med Pharmacol Sci 2021, 25: 669–677.PubMed Jamea AA, Alblowi M, Alghamdi J, Alosaimi FD, Albadr F, Abualait T, et al. Altered default mode network activity and cortical thickness as vulnerability indicators for SCZ: A preliminary resting state MRI study. Eur Rev Med Pharmacol Sci 2021, 25: 669–677.PubMed
90.
Zurück zum Zitat Liu H, Kaneko Y, Ouyang X, Li L, Hao Y, Chen EY, et al. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophr Bull 2012, 38: 285–294.PubMedCrossRef Liu H, Kaneko Y, Ouyang X, Li L, Hao Y, Chen EY, et al. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophr Bull 2012, 38: 285–294.PubMedCrossRef
91.
Zurück zum Zitat Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009, 106: 1279–1284.PubMedPubMedCentralCrossRef Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009, 106: 1279–1284.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Sasabayashi D, Takahashi T, Takayanagi Y, Nemoto K, Ueno M, Furuichi A, et al. Resting state hyperconnectivity of the default mode network in schizophrenia and clinical high-risk state for psychosis. Cereb Cortex 2023, 33: 8456–8464.PubMedCrossRef Sasabayashi D, Takahashi T, Takayanagi Y, Nemoto K, Ueno M, Furuichi A, et al. Resting state hyperconnectivity of the default mode network in schizophrenia and clinical high-risk state for psychosis. Cereb Cortex 2023, 33: 8456–8464.PubMedCrossRef
93.
94.
Zurück zum Zitat Li H, Tang J, Chen L, Liao Y, Zhou B, He Y, et al. Reduced middle cingulate gyrus volume in late-onset schizophrenia in a Chinese Han population: A voxel-based structural MRI study. Neurosci Bull 2015, 31: 626–627.PubMedPubMedCentralCrossRef Li H, Tang J, Chen L, Liao Y, Zhou B, He Y, et al. Reduced middle cingulate gyrus volume in late-onset schizophrenia in a Chinese Han population: A voxel-based structural MRI study. Neurosci Bull 2015, 31: 626–627.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Marino M, Spironelli C, Mantini D, Craven AR, Ersland L, Angrilli A, et al. Default mode network alterations underlie auditory verbal hallucinations in schizophrenia. J Psychiatr Res 2022, 155: 24–32.PubMedCrossRef Marino M, Spironelli C, Mantini D, Craven AR, Ersland L, Angrilli A, et al. Default mode network alterations underlie auditory verbal hallucinations in schizophrenia. J Psychiatr Res 2022, 155: 24–32.PubMedCrossRef
96.
Zurück zum Zitat Diederen KMJ, Neggers SFW, de Weijer AD, van Lutterveld R, Daalman K, Eickhoff SB, et al. Aberrant resting-state connectivity in non-psychotic individuals with auditory hallucinations. Psychol Med 2013, 43: 1685–1696.PubMedCrossRef Diederen KMJ, Neggers SFW, de Weijer AD, van Lutterveld R, Daalman K, Eickhoff SB, et al. Aberrant resting-state connectivity in non-psychotic individuals with auditory hallucinations. Psychol Med 2013, 43: 1685–1696.PubMedCrossRef
98.
Zurück zum Zitat Friston KJ, Frith CD. Schizophrenia: A disconnection syndrome? Clin Neurosci 1995, 3: 89–97.PubMed Friston KJ, Frith CD. Schizophrenia: A disconnection syndrome? Clin Neurosci 1995, 3: 89–97.PubMed
99.
Zurück zum Zitat van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RCW, Cahn W, et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 2013, 70: 783–792.PubMedCrossRef van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RCW, Cahn W, et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 2013, 70: 783–792.PubMedCrossRef
100.
Zurück zum Zitat Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008, 28: 9239–9248.PubMedPubMedCentralCrossRef Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008, 28: 9239–9248.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci 2010, 30: 9477–9487.PubMedPubMedCentralCrossRef Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci 2010, 30: 9477–9487.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Cocchi L, Harding IH, Lord A, Pantelis C, Yucel M, Zalesky A. Disruption of structure-function coupling in the schizophrenia connectome. Neuroimage Clin 2014, 4: 779–787.PubMedPubMedCentralCrossRef Cocchi L, Harding IH, Lord A, Pantelis C, Yucel M, Zalesky A. Disruption of structure-function coupling in the schizophrenia connectome. Neuroimage Clin 2014, 4: 779–787.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. J Neurosci 2010, 30: 15915–15926.PubMedPubMedCentralCrossRef van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. J Neurosci 2010, 30: 15915–15926.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Cui LB, Wei Y, Xi YB, Griffa A, De Lange SC, Kahn RS, et al. Connectome-based patterns of first-episode medication-Naïve patients with schizophrenia. Schizophr Bull 2019, 45: 1291–1299.PubMedPubMedCentralCrossRef Cui LB, Wei Y, Xi YB, Griffa A, De Lange SC, Kahn RS, et al. Connectome-based patterns of first-episode medication-Naïve patients with schizophrenia. Schizophr Bull 2019, 45: 1291–1299.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Cui LB, Liu K, Li C, Wang LX, Guo F, Tian P, et al. Putamen-related regional and network functional deficits in first-episode schizophrenia with auditory verbal hallucinations. Schizophr Res 2016, 173: 13–22.PubMedCrossRef Cui LB, Liu K, Li C, Wang LX, Guo F, Tian P, et al. Putamen-related regional and network functional deficits in first-episode schizophrenia with auditory verbal hallucinations. Schizophr Res 2016, 173: 13–22.PubMedCrossRef
106.
Zurück zum Zitat Li B, Cui LB, Xi YB, Friston KJ, Guo F, Wang HN, et al. Abnormal effective connectivity in the brain is involved in auditory verbal hallucinations in schizophrenia. Neurosci Bull 2017, 33: 281–291.PubMedPubMedCentralCrossRef Li B, Cui LB, Xi YB, Friston KJ, Guo F, Wang HN, et al. Abnormal effective connectivity in the brain is involved in auditory verbal hallucinations in schizophrenia. Neurosci Bull 2017, 33: 281–291.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 2014, 5: 298–308.PubMedPubMedCentralCrossRef Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 2014, 5: 298–308.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry 2012, 169: 1092–1099.PubMedCrossRef Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry 2012, 169: 1092–1099.PubMedCrossRef
110.
Zurück zum Zitat Roiz-Santiañez R, Suarez-Pinilla P, Crespo-Facorro B. Brain structural effects of antipsychotic treatment in schizophrenia: A systematic review. Curr Neuropharmacol 2015, 13: 422–434.PubMedPubMedCentralCrossRef Roiz-Santiañez R, Suarez-Pinilla P, Crespo-Facorro B. Brain structural effects of antipsychotic treatment in schizophrenia: A systematic review. Curr Neuropharmacol 2015, 13: 422–434.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): A randomised, double-blind, placebo-controlled trial. Lancet Psychiatry 2018, 5: 885–894.PubMedPubMedCentralCrossRef Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): A randomised, double-blind, placebo-controlled trial. Lancet Psychiatry 2018, 5: 885–894.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Voineskos AN, Mulsant BH, Dickie EW, Neufeld NH, Rothschild AJ, Whyte EM, et al. Effects of antipsychotic medication on brain structure in patients with major depressive disorder and psychotic features: Neuroimaging findings in the context of a randomized placebo-controlled clinical trial. JAMA Psychiatry 2020, 77: 674–683.PubMedCrossRef Voineskos AN, Mulsant BH, Dickie EW, Neufeld NH, Rothschild AJ, Whyte EM, et al. Effects of antipsychotic medication on brain structure in patients with major depressive disorder and psychotic features: Neuroimaging findings in the context of a randomized placebo-controlled clinical trial. JAMA Psychiatry 2020, 77: 674–683.PubMedCrossRef
113.
Zurück zum Zitat Woodward ML, Gicas KM, Warburton DE, White RF, Rauscher A, Leonova O, et al. Hippocampal volume and vasculature before and after exercise in treatment-resistant schizophrenia. Schizophr Res 2018, 202: 158–165.PubMedCrossRef Woodward ML, Gicas KM, Warburton DE, White RF, Rauscher A, Leonova O, et al. Hippocampal volume and vasculature before and after exercise in treatment-resistant schizophrenia. Schizophr Res 2018, 202: 158–165.PubMedCrossRef
114.
Zurück zum Zitat Morimoto T, Matsuda Y, Matsuoka K, Yasuno F, Ikebuchi E, Kameda H, et al. Computer-assisted cognitive remediation therapy increases hippocampal volume in patients with schizophrenia: A randomized controlled trial. BMC Psychiatry 2018, 18: 83.PubMedPubMedCentralCrossRef Morimoto T, Matsuda Y, Matsuoka K, Yasuno F, Ikebuchi E, Kameda H, et al. Computer-assisted cognitive remediation therapy increases hippocampal volume in patients with schizophrenia: A randomized controlled trial. BMC Psychiatry 2018, 18: 83.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Yang M, He H, Duan M, Chen X, Chang X, Lai Y, et al. The effects of music intervention on functional connectivity strength of the brain in schizophrenia. Neural Plast 2018, 2018: 2821832.PubMedPubMedCentralCrossRef Yang M, He H, Duan M, Chen X, Chang X, Lai Y, et al. The effects of music intervention on functional connectivity strength of the brain in schizophrenia. Neural Plast 2018, 2018: 2821832.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Consortium IS, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460: 748–752.CrossRef Consortium IS, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460: 748–752.CrossRef
117.
Zurück zum Zitat Chen Q, Ursini G, Romer AL, Knodt AR, Mezeivtch K, Xiao E, et al. Schizophrenia polygenic risk score predicts mnemonic hippocampal activity. Brain 2018, 141: 1218–1228.PubMedPubMedCentralCrossRef Chen Q, Ursini G, Romer AL, Knodt AR, Mezeivtch K, Xiao E, et al. Schizophrenia polygenic risk score predicts mnemonic hippocampal activity. Brain 2018, 141: 1218–1228.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Neilson E, Bois C, Gibson J, Duff B, Watson A, Roberts N, et al. Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res 2017, 184: 128–136.PubMedCrossRef Neilson E, Bois C, Gibson J, Duff B, Watson A, Roberts N, et al. Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res 2017, 184: 128–136.PubMedCrossRef
119.
Zurück zum Zitat Kauppi K, Westlye LT, Tesli M, Bettella F, Brandt CL, Mattingsdal M, et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 2015, 41: 736–743.PubMedCrossRef Kauppi K, Westlye LT, Tesli M, Bettella F, Brandt CL, Mattingsdal M, et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 2015, 41: 736–743.PubMedCrossRef
120.
Zurück zum Zitat Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J, Moberget T, et al. Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry 2019, 76: 739–748.PubMedPubMedCentralCrossRef Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J, Moberget T, et al. Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry 2019, 76: 739–748.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Stauffer EM, Bethlehem RAI, Warrier V, Murray GK, Romero-Garcia R, Seidlitz J, et al. Grey and white matter microstructure is associated with polygenic risk for schizophrenia. Mol Psychiatry 2021, 26: 7709–7718.PubMedPubMedCentralCrossRef Stauffer EM, Bethlehem RAI, Warrier V, Murray GK, Romero-Garcia R, Seidlitz J, et al. Grey and white matter microstructure is associated with polygenic risk for schizophrenia. Mol Psychiatry 2021, 26: 7709–7718.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Qi S, Sui J, Pearlson G, Bustillo J, Perrone-Bizzozero NI, Kochunov P, et al. Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal network. Nat Commun 2022, 13: 4929.PubMedPubMedCentralCrossRef Qi S, Sui J, Pearlson G, Bustillo J, Perrone-Bizzozero NI, Kochunov P, et al. Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal network. Nat Commun 2022, 13: 4929.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Liu B, Zhang X, Cui Y, Qin W, Tao Y, Li J, et al. Polygenic risk for schizophrenia influences cortical gyrification in 2 independent general populations. Schizophr Bull 2017, 43: 673–680.PubMed Liu B, Zhang X, Cui Y, Qin W, Tao Y, Li J, et al. Polygenic risk for schizophrenia influences cortical gyrification in 2 independent general populations. Schizophr Bull 2017, 43: 673–680.PubMed
124.
Zurück zum Zitat Liu S, Li A, Liu Y, Li J, Wang M, Sun Y, et al. MIR137 polygenic risk is associated with schizophrenia and affects functional connectivity of the dorsolateral prefrontal cortex. Psychol Med 2020, 50: 1510–1518.PubMedCrossRef Liu S, Li A, Liu Y, Li J, Wang M, Sun Y, et al. MIR137 polygenic risk is associated with schizophrenia and affects functional connectivity of the dorsolateral prefrontal cortex. Psychol Med 2020, 50: 1510–1518.PubMedCrossRef
125.
Zurück zum Zitat Liu S, Li A, Liu Y, Yan H, Wang M, Sun Y, et al. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. Br J Psychiatry 2020, 216: 267–274.PubMedCrossRef Liu S, Li A, Liu Y, Yan H, Wang M, Sun Y, et al. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. Br J Psychiatry 2020, 216: 267–274.PubMedCrossRef
126.
Zurück zum Zitat Cao H, Zhou H, Cannon TD. Functional connectome-wide associations of schizophrenia polygenic risk. Mol Psychiatry 2021, 26: 2553–2561.PubMedCrossRef Cao H, Zhou H, Cannon TD. Functional connectome-wide associations of schizophrenia polygenic risk. Mol Psychiatry 2021, 26: 2553–2561.PubMedCrossRef
127.
Zurück zum Zitat Franke B, Stein JL, Ripke S, Anttila V, Hibar DP, van Hulzen KJE, et al. Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nat Neurosci 2016, 19: 420–431.PubMedPubMedCentralCrossRef Franke B, Stein JL, Ripke S, Anttila V, Hibar DP, van Hulzen KJE, et al. Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nat Neurosci 2016, 19: 420–431.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Caseras X, Tansey KE, Foley S, Linden D. Association between genetic risk scoring for schizophrenia and bipolar disorder with regional subcortical volumes. Transl Psychiatry 2015, 5: e692.PubMedPubMedCentralCrossRef Caseras X, Tansey KE, Foley S, Linden D. Association between genetic risk scoring for schizophrenia and bipolar disorder with regional subcortical volumes. Transl Psychiatry 2015, 5: e692.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Grama S, Willcocks I, Hubert JJ, Pardiñas AF, Legge SE, Bracher-Smith M, et al. Polygenic risk for schizophrenia and subcortical brain anatomy in the UK Biobank cohort. Transl Psychiatry 2020, 10: 309.PubMedPubMedCentralCrossRef Grama S, Willcocks I, Hubert JJ, Pardiñas AF, Legge SE, Bracher-Smith M, et al. Polygenic risk for schizophrenia and subcortical brain anatomy in the UK Biobank cohort. Transl Psychiatry 2020, 10: 309.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat van der Merwe C, Passchier R, Mufford M, Ramesar R, Dalvie S, Stein DJ. Polygenic risk for schizophrenia and associated brain structural changes: A systematic review. Compr Psychiatry 2019, 88: 77–82.PubMedCrossRef van der Merwe C, Passchier R, Mufford M, Ramesar R, Dalvie S, Stein DJ. Polygenic risk for schizophrenia and associated brain structural changes: A systematic review. Compr Psychiatry 2019, 88: 77–82.PubMedCrossRef
131.
Zurück zum Zitat Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37: 658–665.PubMedPubMedCentralCrossRef Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37: 658–665.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Davey Smith G, Hemani G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 2014, 23: R89–R98.PubMedPubMedCentralCrossRef Davey Smith G, Hemani G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 2014, 23: R89–R98.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Price AL, Weale ME, Patterson N, Myers SR, Need AC, Shianna KV, et al. Long-range LD can confound genome scans in admixed populations. Am J Hum Genet 2008, 83: 132–135.PubMedPubMedCentralCrossRef Price AL, Weale ME, Patterson N, Myers SR, Need AC, Shianna KV, et al. Long-range LD can confound genome scans in admixed populations. Am J Hum Genet 2008, 83: 132–135.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 2018, 27: R195–R208.PubMedPubMedCentralCrossRef Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 2018, 27: R195–R208.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium EI. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol 2015, 44: 484–495.CrossRef Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium EI. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol 2015, 44: 484–495.CrossRef
136.
Zurück zum Zitat Wendt FR, Pathak GA, Lencz T, Krystal JH, Gelernter J, Polimanti R. Multivariate genome-wide analysis of education, socioeconomic status and brain phenome. Nat Hum Behav 2021, 5: 482–496.PubMedCrossRef Wendt FR, Pathak GA, Lencz T, Krystal JH, Gelernter J, Polimanti R. Multivariate genome-wide analysis of education, socioeconomic status and brain phenome. Nat Hum Behav 2021, 5: 482–496.PubMedCrossRef
137.
Zurück zum Zitat Luby J, Belden A, Botteron K, Marrus N, Harms MP, Babb C, et al. The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatr 2013, 167: 1135–1142.PubMedPubMedCentralCrossRef Luby J, Belden A, Botteron K, Marrus N, Harms MP, Babb C, et al. The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatr 2013, 167: 1135–1142.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat MacKey AP, Finn AS, Leonard JA, Jacoby-Senghor DS, West MR, Gabrieli CFO, et al. Neuroanatomical correlates of the income-achievement gap. Psychol Sci 2015, 26: 925–933.PubMedCrossRef MacKey AP, Finn AS, Leonard JA, Jacoby-Senghor DS, West MR, Gabrieli CFO, et al. Neuroanatomical correlates of the income-achievement gap. Psychol Sci 2015, 26: 925–933.PubMedCrossRef
139.
Zurück zum Zitat Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci 2015, 18: 773–778.PubMedPubMedCentralCrossRef Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci 2015, 18: 773–778.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Walters RK, Polimanti R, Johnson EC, McClintick JN, Adams MJ, Adkins AE, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci 2018, 21: 1656–1669.PubMedPubMedCentralCrossRef Walters RK, Polimanti R, Johnson EC, McClintick JN, Adams MJ, Adkins AE, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci 2018, 21: 1656–1669.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Hjorthøj C, Østergaard MLD, Benros ME, Toftdahl NG, Erlangsen A, Andersen JT, et al. Association between alcohol and substance use disorders and all-cause and cause-specific mortality in schizophrenia, bipolar disorder, and unipolar depression: A nationwide, prospective, register-based study. Lancet Psychiatry 2015, 2: 801–808.PubMedCrossRef Hjorthøj C, Østergaard MLD, Benros ME, Toftdahl NG, Erlangsen A, Andersen JT, et al. Association between alcohol and substance use disorders and all-cause and cause-specific mortality in schizophrenia, bipolar disorder, and unipolar depression: A nationwide, prospective, register-based study. Lancet Psychiatry 2015, 2: 801–808.PubMedCrossRef
142.
Zurück zum Zitat Li L, Yu H, Liu Y, Meng YJ, Li XJ, Zhang C, et al. Lower regional grey matter in alcohol use disorders: Evidence from a voxel-based meta-analysis. BMC Psychiatry 2021, 21: 247.PubMedPubMedCentralCrossRef Li L, Yu H, Liu Y, Meng YJ, Li XJ, Zhang C, et al. Lower regional grey matter in alcohol use disorders: Evidence from a voxel-based meta-analysis. BMC Psychiatry 2021, 21: 247.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Jones SA, Nagel BJ. Altered frontostriatal white matter microstructure is associated with familial alcoholism and future binge drinking in adolescence. Neuropsychopharmacology 2019, 44: 1076–1083.PubMedPubMedCentralCrossRef Jones SA, Nagel BJ. Altered frontostriatal white matter microstructure is associated with familial alcoholism and future binge drinking in adolescence. Neuropsychopharmacology 2019, 44: 1076–1083.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Zahr NM, Pitel AL, Chanraud S, Sullivan EV. Contributions of studies on alcohol use disorders to understanding cerebellar function. Neuropsychol Rev 2010, 20: 280–289.PubMedPubMedCentralCrossRef Zahr NM, Pitel AL, Chanraud S, Sullivan EV. Contributions of studies on alcohol use disorders to understanding cerebellar function. Neuropsychol Rev 2010, 20: 280–289.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Gurillo P, Jauhar S, Murray RM, MacCabe JH. Does tobacco use cause psychosis? Systematic review meta-analysis. Lancet Psychiatr 2015, 2: 718–725.CrossRef Gurillo P, Jauhar S, Murray RM, MacCabe JH. Does tobacco use cause psychosis? Systematic review meta-analysis. Lancet Psychiatr 2015, 2: 718–725.CrossRef
146.
Zurück zum Zitat Schneider CE, White T, Hass J, Geisler D, Wallace SR, Roessner V, et al. Smoking status as a potential confounder in the study of brain structure in schizophrenia. J Psychiatr Res 2014, 50: 84–91.PubMedCrossRef Schneider CE, White T, Hass J, Geisler D, Wallace SR, Roessner V, et al. Smoking status as a potential confounder in the study of brain structure in schizophrenia. J Psychiatr Res 2014, 50: 84–91.PubMedCrossRef
147.
Zurück zum Zitat Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am J Epidemiol 2013, 178: 1177–1184.PubMedPubMedCentralCrossRef Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am J Epidemiol 2013, 178: 1177–1184.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362: k601.PubMedPubMedCentralCrossRef Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362: k601.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Guo J, Yu K, Dong SS, Yao S, Rong Y, Wu H, et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat Neurosci 2022, 25: 1519–1527.PubMedCrossRef Guo J, Yu K, Dong SS, Yao S, Rong Y, Wu H, et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat Neurosci 2022, 25: 1519–1527.PubMedCrossRef
150.
Zurück zum Zitat Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: A Mendelian randomization study. JAMA Psychiatry 2022, 79: 498–507.PubMedPubMedCentralCrossRef Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: A Mendelian randomization study. JAMA Psychiatry 2022, 79: 498–507.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 2015, 47: 1236–1241.PubMedPubMedCentralCrossRef Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 2015, 47: 1236–1241.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Xiao Y, Yan Z, Zhao Y, Tao B, Sun H, Li F, et al. Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI. Schizophr Res 2019, 214: 11–17.PubMedCrossRef Xiao Y, Yan Z, Zhao Y, Tao B, Sun H, Li F, et al. Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI. Schizophr Res 2019, 214: 11–17.PubMedCrossRef
153.
Zurück zum Zitat Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry 2020, 10: 278.PubMedPubMedCentralCrossRef Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry 2020, 10: 278.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Guo Y, Qiu J, Lu W. Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci 2020, 10: 562.PubMedPubMedCentralCrossRef Guo Y, Qiu J, Lu W. Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci 2020, 10: 562.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Koutsouleris N, Riecher-Rössler A, Meisenzahl EM, Smieskova R, Studerus E, Kambeitz-Ilankovic L, et al. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophr Bull 2015, 41: 471–482.PubMedCrossRef Koutsouleris N, Riecher-Rössler A, Meisenzahl EM, Smieskova R, Studerus E, Kambeitz-Ilankovic L, et al. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophr Bull 2015, 41: 471–482.PubMedCrossRef
156.
Zurück zum Zitat Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, et al. Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: A multimodal MRI study. Front Neurosci 2021, 15: 697168.PubMedPubMedCentralCrossRef Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, et al. Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: A multimodal MRI study. Front Neurosci 2021, 15: 697168.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Ardekani BA, Tabesh A, Sevy S, Robinson DG, Bilder RM, Szeszko PR. Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 2011, 32: 1–9.PubMedCrossRef Ardekani BA, Tabesh A, Sevy S, Robinson DG, Bilder RM, Szeszko PR. Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 2011, 32: 1–9.PubMedCrossRef
158.
Zurück zum Zitat Zhu Y, Nakatani H, Yassin W, Maikusa N, Okada N, Kunimatsu A, et al. Application of a machine learning algorithm for structural brain images in chronic schizophrenia to earlier clinical stages of psychosis and autism spectrum disorder: A multiprotocol imaging dataset study. Schizophr Bull 2022, 48: 563–574.PubMedPubMedCentralCrossRef Zhu Y, Nakatani H, Yassin W, Maikusa N, Okada N, Kunimatsu A, et al. Application of a machine learning algorithm for structural brain images in chronic schizophrenia to earlier clinical stages of psychosis and autism spectrum disorder: A multiprotocol imaging dataset study. Schizophr Bull 2022, 48: 563–574.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry 2015, 72: 678–686.PubMedCrossRef Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry 2015, 72: 678–686.PubMedCrossRef
160.
Zurück zum Zitat Cao B, Cho RY, Chen D, Xiu M, Wang L, Soares JC, et al. Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity. Mol Psychiatry 2020, 25: 906–913.PubMedCrossRef Cao B, Cho RY, Chen D, Xiu M, Wang L, Soares JC, et al. Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity. Mol Psychiatry 2020, 25: 906–913.PubMedCrossRef
161.
Zurück zum Zitat Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, et al. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res 2019, 214: 3–10.PubMedCrossRef Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, et al. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res 2019, 214: 3–10.PubMedCrossRef
162.
Zurück zum Zitat Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in schizophrenia. Neuroimaging Clin N Am 2020, 30: 73–83.PubMedCrossRef Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in schizophrenia. Neuroimaging Clin N Am 2020, 30: 73–83.PubMedCrossRef
163.
Zurück zum Zitat Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, et al. Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis Markers 2021, 2021: 9963824.PubMedPubMedCentralCrossRef Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, et al. Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis Markers 2021, 2021: 9963824.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Kambeitz J, Kambeitz-Ilankovic L, Leucht S, Wood S, Davatzikos C, Malchow B, et al. Detecting neuroimaging biomarkers for schizophrenia: A meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology 2015, 40: 1742–1751.PubMedPubMedCentralCrossRef Kambeitz J, Kambeitz-Ilankovic L, Leucht S, Wood S, Davatzikos C, Malchow B, et al. Detecting neuroimaging biomarkers for schizophrenia: A meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology 2015, 40: 1742–1751.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatry 2021, 178: 509–521.PubMedPubMedCentralCrossRef Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatry 2021, 178: 509–521.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Goldsmith DR, Crooks CL, Walker EF, Cotes RO. An update on promising biomarkers in schizophrenia. Focus (Am Psychiatr Publ) 2018, 16: 153–163.PubMed Goldsmith DR, Crooks CL, Walker EF, Cotes RO. An update on promising biomarkers in schizophrenia. Focus (Am Psychiatr Publ) 2018, 16: 153–163.PubMed
167.
Zurück zum Zitat Sarpal DK, Argyelan M, Robinson DG, Szeszko PR, Karlsgodt KH, John M, et al. Baseline striatal functional connectivity as a predictor of response to antipsychotic drug treatment. Am J Psychiatry 2016, 173: 69–77.PubMedCrossRef Sarpal DK, Argyelan M, Robinson DG, Szeszko PR, Karlsgodt KH, John M, et al. Baseline striatal functional connectivity as a predictor of response to antipsychotic drug treatment. Am J Psychiatry 2016, 173: 69–77.PubMedCrossRef
168.
Zurück zum Zitat Blessing EM, Murty VP, Zeng B, Wang J, Davachi L, Goff DC. Anterior hippocampal-cortical functional connectivity distinguishes antipsychotic Naïve first-episode psychosis patients from controls and may predict response to second-generation antipsychotic treatment. Schizophr Bull 2020, 46: 680–689.PubMedCrossRef Blessing EM, Murty VP, Zeng B, Wang J, Davachi L, Goff DC. Anterior hippocampal-cortical functional connectivity distinguishes antipsychotic Naïve first-episode psychosis patients from controls and may predict response to second-generation antipsychotic treatment. Schizophr Bull 2020, 46: 680–689.PubMedCrossRef
169.
Zurück zum Zitat Svancer P, Spaniel F. Brain ventricular volume changes in schizophrenia. A narrative review. Neurosci Lett 2021, 759: 136065.PubMedCrossRef Svancer P, Spaniel F. Brain ventricular volume changes in schizophrenia. A narrative review. Neurosci Lett 2021, 759: 136065.PubMedCrossRef
170.
Zurück zum Zitat Ebdrup BH, Glenthøj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, et al. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 2010, 35: 95–104.PubMedPubMedCentralCrossRef Ebdrup BH, Glenthøj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, et al. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 2010, 35: 95–104.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022, 47: 292–308.PubMedCrossRef Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022, 47: 292–308.PubMedCrossRef
172.
Zurück zum Zitat Jiang JB, Cao Y, An NY, Yang Q, Cui LB. Magnetic resonance imaging-based connectomics in first-episode schizophrenia: From preclinical study to clinical translation. Front Psychiatry 2020, 11: 565056.PubMedPubMedCentralCrossRef Jiang JB, Cao Y, An NY, Yang Q, Cui LB. Magnetic resonance imaging-based connectomics in first-episode schizophrenia: From preclinical study to clinical translation. Front Psychiatry 2020, 11: 565056.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020, 10: 100.PubMedPubMedCentralCrossRef Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020, 10: 100.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Kochunov P, Thompson PM, Hong LE. Toward high reproducibility and accountable heterogeneity in schizophrenia research. JAMA Psychiatry 2019, 76: 680.PubMedPubMedCentralCrossRef Kochunov P, Thompson PM, Hong LE. Toward high reproducibility and accountable heterogeneity in schizophrenia research. JAMA Psychiatry 2019, 76: 680.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry 2016, 21: 1460–1466.PubMedPubMedCentralCrossRef Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry 2016, 21: 1460–1466.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Koutsouleris N, Dwyer DB, Degenhardt F, Maj C, Urquijo-Castro MF, Sanfelici R, et al. Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry 2021, 78: 195–209.PubMedCrossRef Koutsouleris N, Dwyer DB, Degenhardt F, Maj C, Urquijo-Castro MF, Sanfelici R, et al. Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry 2021, 78: 195–209.PubMedCrossRef
177.
Zurück zum Zitat Bodnar M, Harvey PO, Malla AK, Joober R, Lepage M. The parahippocampal gyrus as a neural marker of early remission in first-episode psychosis: A voxel-based morphometry study. Clin Schizophr Relat Psychoses 2011, 4: 217–228.PubMedCrossRef Bodnar M, Harvey PO, Malla AK, Joober R, Lepage M. The parahippocampal gyrus as a neural marker of early remission in first-episode psychosis: A voxel-based morphometry study. Clin Schizophr Relat Psychoses 2011, 4: 217–228.PubMedCrossRef
178.
Zurück zum Zitat Takayanagi Y, Sasabayashi D, Takahashi T, Furuichi A, Kido M, Nishikawa Y, et al. Reduced cortical thickness in schizophrenia and schizotypal disorder. Schizophr Bull 2020, 46: 387–394.PubMed Takayanagi Y, Sasabayashi D, Takahashi T, Furuichi A, Kido M, Nishikawa Y, et al. Reduced cortical thickness in schizophrenia and schizotypal disorder. Schizophr Bull 2020, 46: 387–394.PubMed
179.
Zurück zum Zitat Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S, et al. Prefrontal cortex, negative symptoms, and schizophrenia: An MRI study. Psychiatry Res 2001, 108: 65–78.PubMedPubMedCentralCrossRef Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S, et al. Prefrontal cortex, negative symptoms, and schizophrenia: An MRI study. Psychiatry Res 2001, 108: 65–78.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Kyriakopoulos M, Dima D, Roiser JP, Corrigall R, Barker GJ, Frangou S. Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 2012, 51: 911-920.e2.PubMedCrossRef Kyriakopoulos M, Dima D, Roiser JP, Corrigall R, Barker GJ, Frangou S. Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 2012, 51: 911-920.e2.PubMedCrossRef
181.
Zurück zum Zitat Stoyanov D, Aryutova K, Kandilarova S, Paunova R, Arabadzhiev Z, Todeva-Radneva A, et al. Diagnostic task specific activations in functional MRI and aberrant connectivity of Insula with middle frontal gyrus can inform the differential diagnosis of psychosis. Diagnostics 2021, 11: 95.PubMedPubMedCentralCrossRef Stoyanov D, Aryutova K, Kandilarova S, Paunova R, Arabadzhiev Z, Todeva-Radneva A, et al. Diagnostic task specific activations in functional MRI and aberrant connectivity of Insula with middle frontal gyrus can inform the differential diagnosis of psychosis. Diagnostics 2021, 11: 95.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Nielsen MØ, Rostrup E, Wulff S, Glenthøj B, Ebdrup BH. Striatal reward activity and antipsychotic-associated weight change in patients with schizophrenia undergoing initial treatment. JAMA Psychiatry 2016, 73: 121–128.PubMedCrossRef Nielsen MØ, Rostrup E, Wulff S, Glenthøj B, Ebdrup BH. Striatal reward activity and antipsychotic-associated weight change in patients with schizophrenia undergoing initial treatment. JAMA Psychiatry 2016, 73: 121–128.PubMedCrossRef
183.
Zurück zum Zitat Homan P, Argyelan M, Fales CL, Barber AD, DeRosse P, Szeszko PR, et al. Striatal volume and functional connectivity correlate with weight gain in early-phase psychosis. Neuropsychopharmacology 2019, 44: 1948–1954.PubMedPubMedCentralCrossRef Homan P, Argyelan M, Fales CL, Barber AD, DeRosse P, Szeszko PR, et al. Striatal volume and functional connectivity correlate with weight gain in early-phase psychosis. Neuropsychopharmacology 2019, 44: 1948–1954.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Harvey PD. Mood symptoms, cognition, and everyday functioning: In major depression, bipolar disorder, and schizophrenia. Innov Clin Neurosci 2011, 8: 14–18.PubMedPubMedCentral Harvey PD. Mood symptoms, cognition, and everyday functioning: In major depression, bipolar disorder, and schizophrenia. Innov Clin Neurosci 2011, 8: 14–18.PubMedPubMedCentral
185.
Zurück zum Zitat Duff BJ, MacRitchie KAN, Moorhead TWJ, Lawrie SM, Blackwood DHR. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: A systematic review. Schizophr Res 2013, 147: 1–13.PubMedCrossRef Duff BJ, MacRitchie KAN, Moorhead TWJ, Lawrie SM, Blackwood DHR. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: A systematic review. Schizophr Res 2013, 147: 1–13.PubMedCrossRef
186.
Zurück zum Zitat Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011, 68: 675–690. Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011, 68: 675–690.
187.
Zurück zum Zitat Schmaal L, Pozzi E, Ho TC, van Velzen LS, Veer IM, Opel N, et al. ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry 2020, 10: 172.PubMedPubMedCentralCrossRef Schmaal L, Pozzi E, Ho TC, van Velzen LS, Veer IM, Opel N, et al. ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry 2020, 10: 172.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Ho NF, Chong PLH, Lee DR, Chew QH, Chen G, Sim K. The amygdala in schizophrenia and bipolar disorder: A synthesis of structural MRI, diffusion tensor imaging, and resting-state functional connectivity findings. Harv Rev Psychiatry 2019, 27: 150–164.PubMedCrossRef Ho NF, Chong PLH, Lee DR, Chew QH, Chen G, Sim K. The amygdala in schizophrenia and bipolar disorder: A synthesis of structural MRI, diffusion tensor imaging, and resting-state functional connectivity findings. Harv Rev Psychiatry 2019, 27: 150–164.PubMedCrossRef
189.
Zurück zum Zitat Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, Johannesson M, et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 2020, 582: 84–88.PubMedPubMedCentralCrossRef Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, Johannesson M, et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 2020, 582: 84–88.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-an overview. JAMA. Psychiatry 2020, 77: 201–210. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-an overview. JAMA. Psychiatry 2020, 77: 201–210.
192.
Zurück zum Zitat van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS. Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol Psychiatry 2016, 80: 293–301.PubMedCrossRef van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS. Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol Psychiatry 2016, 80: 293–301.PubMedCrossRef
193.
Zurück zum Zitat Price AJ, Jaffe AE, Weinberger DR. Cortical cellular diversity and development in schizophrenia. Mol Psychiatry 2021, 26: 203–217.PubMedCrossRef Price AJ, Jaffe AE, Weinberger DR. Cortical cellular diversity and development in schizophrenia. Mol Psychiatry 2021, 26: 203–217.PubMedCrossRef
194.
Zurück zum Zitat Wang M, Yan H, Tian X, Yue W, Liu Y, Fan L, et al. Neuroimaging and multiomics reveal cross-scale circuit abnormalities in schizophrenia. Nat Ment Health 2023, 1: 633–654.CrossRef Wang M, Yan H, Tian X, Yue W, Liu Y, Fan L, et al. Neuroimaging and multiomics reveal cross-scale circuit abnormalities in schizophrenia. Nat Ment Health 2023, 1: 633–654.CrossRef
195.
Zurück zum Zitat Whiting D, Gulati G, Geddes JR, Fazel S. Association of schizophrenia spectrum disorders and violence perpetration in adults and adolescents from 15 countries: A systematic review and meta-analysis. JAMA Psychiatry 2022, 79: 120–132.PubMedCrossRef Whiting D, Gulati G, Geddes JR, Fazel S. Association of schizophrenia spectrum disorders and violence perpetration in adults and adolescents from 15 countries: A systematic review and meta-analysis. JAMA Psychiatry 2022, 79: 120–132.PubMedCrossRef
196.
Zurück zum Zitat Olfson M, Stroup TS, Huang C, Wall MM, Crystal S, Gerhard T. Suicide risk in medicare patients with schizophrenia across the life span. JAMA Psychiatry 2021, 78: 876–885.PubMedCrossRef Olfson M, Stroup TS, Huang C, Wall MM, Crystal S, Gerhard T. Suicide risk in medicare patients with schizophrenia across the life span. JAMA Psychiatry 2021, 78: 876–885.PubMedCrossRef
197.
Zurück zum Zitat Widmayer S, Borgwardt S, Lang UE, Stieglitz RD, Huber CG. Functional neuroimaging correlates of aggression in psychosis: A systematic review with recommendations for future research. Front Psychiatry 2018, 9: 777.PubMedCrossRef Widmayer S, Borgwardt S, Lang UE, Stieglitz RD, Huber CG. Functional neuroimaging correlates of aggression in psychosis: A systematic review with recommendations for future research. Front Psychiatry 2018, 9: 777.PubMedCrossRef
Metadaten
Titel
Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives
verfasst von
Jing Guo
Changyi He
Huimiao Song
Huiwu Gao
Shi Yao
Shan-Shan Dong
Tie-Lin Yang
Publikationsdatum
04.05.2024
Verlag
Springer Nature Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 9/2024
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-024-01214-1

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Neuartige Antikörpertherapie bremst MS über zwei Jahre hinweg

Eine Therapie mit dem C40-Ligand-Blocker Frexalimab kann MS-Schübe und neue MRT-Läsionen über zwei Jahre hinweg verhindern. Dafür spricht die Auswertung einer offen fortgeführten Phase-2-Studie.

Positive Phase IIb-Studie zu mRNA-gestützter CAR-T bei Myasthenia gravis

Eine auf das B-Zell-Reifungsantigen gerichtete mRNA-basierte CAR-T-Zell-Therapie wurde jetzt in einer ersten Phase IIb-Studie zur Behandlung der generalisierten Myasthenia gravis mit Placebo verglichen.

Therapiestopp bei älteren MS-Kranken kann sich lohnen

Eine Analyse aus Kanada bestätigt: Setzen ältere MS-Kranke die Behandlung mit Basistherapeutika ab, müssen sie kaum mit neuen Schüben und MRT-Auffälligkeiten rechnen.

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.