Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2014

Open Access 01.12.2014 | Oral presentation

Use of animal models for exome prioritization of rare disease genes

verfasst von: Damian Smedley, Sebastian Kohler, William Bone, Anika Oellrich, Jules Jacobsen, Kai Wang, Chris Mungall, Nicole Washington, Sebastian Bauer, Dominic Seelow, Peter Krawitz, Cornelius Boerkel, Christian Gilissen, Melissa Haendel, Suzanna E Lewis, Peter N Robinson, Sanger Mouse Genetics Project

Erschienen in: Orphanet Journal of Rare Diseases | Sonderheft 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Over 100 disease-gene associations have been identified by whole-exome sequencing since the first reports in 2010, leading to a revolution in rare disease-gene discovery [1, 2]. However, many cases remain unsolved due to the fact that ~100-1000 loss of function, candidate variants remain after removing those deemed as common, low quality or non-pathogenic. In some cases it may be possible to use multiple affected individuals, linkage data, identity-by-descent inference, identification of de novo heterozygous mutations from trio analysis, or prior knowledge of affected pathways to narrow down to the causative variant [3]. Where this is not possible or successful, one approach is to use phenotype data to evaluate whether a particular candidate variant is likely to result in the patient’s clinical manifestations.
Model organism phenotype data represents a highly pertinent but under-utilised resource for such disease gene discovery. Whilst some 1800 human genes were associated with human phenotype ontology annotations (HPO) at the time of publication, a further 5700 genes have been shown to have phenotype data available from mouse and zebrafish model organism databases [4]. We have previously developed algorithmic approaches to semantically compare disease phenotypes with mouse and zebrafish phenotypes for disease candidate gene identification [58].
We have previously reported that comparisons to mouse phenotype data can dramatically increase the performance of exome analysis prioritization [9]. In the work presented here we combine the comparison of patient phenotypes to known disease as well as mouse and zebrafish phenotypes for each candidate variant in the exome. Where phenotype data is not available for a candidate we use proximity in protein-protein networks to genes with phenotype data to inform on candidacy based on guilt-by-association. The output is combined with measures of variant candidacy such as pathogenicity and allele frequency and synergistically improves performance: the causative variant is identified as the top hit in up to 96% of exomes for known associations and 49% of exomes for previously undescribed associations.
Our software, Exomiser, is openly available to use at our website [http://​www.​sanger.​ac.​uk/​resources/​databases/​exomiser/​query] and for download to perform local analysis. We are currently collaborating with the NIH Undiagnosed Disease Program to achieve diagnosis of problematic cases through exome analysis. In conclusion, our results clearly show the value of collecting comprehensive clinical phenotype data for translational bioinformatics and future work will focus on producing a robust solution for clinical diagnostics.

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG RO 2005/4-1), the Bundesministerium für Bildung und Forschung (BMBF project number 0313911), core infrastructure funding from the Wellcome Trust, NIH 1R24OD011883-01, and by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA: Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet. 2010, 42: 30-35. 10.1038/ng.499.PubMedCentralCrossRefPubMed Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA: Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet. 2010, 42: 30-35. 10.1038/ng.499.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Rabbani B, Mahdieh N, Hosomichi K, Nakaoka H, Inoue I: Next-generation sequencing: Impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet. 2012, 57: 621-632. 10.1038/jhg.2012.91.CrossRefPubMed Rabbani B, Mahdieh N, Hosomichi K, Nakaoka H, Inoue I: Next-generation sequencing: Impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet. 2012, 57: 621-632. 10.1038/jhg.2012.91.CrossRefPubMed
3.
Zurück zum Zitat Robinson PN, Krawitz P, Mundlos S: Strategies for exome and genome sequence data analysis in disease-gene discovery projects. Clin Genet. 2011, 80: 127-132. 10.1111/j.1399-0004.2011.01713.x.CrossRefPubMed Robinson PN, Krawitz P, Mundlos S: Strategies for exome and genome sequence data analysis in disease-gene discovery projects. Clin Genet. 2011, 80: 127-132. 10.1111/j.1399-0004.2011.01713.x.CrossRefPubMed
4.
Zurück zum Zitat Doelken SC, Köhler S, Mungall CJ, Gkoutos GV, Ruef BJ, Smith C, Smedley D, Bauer S, Klopocki E, Schofield PN: Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. Dis Model Mech. 2013, 6: 358-372. 10.1242/dmm.010322.PubMedCentralCrossRefPubMed Doelken SC, Köhler S, Mungall CJ, Gkoutos GV, Ruef BJ, Smith C, Smedley D, Bauer S, Klopocki E, Schofield PN: Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. Dis Model Mech. 2013, 6: 358-372. 10.1242/dmm.010322.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Smedley D, Oellrich A, Köhler S, Ruef B, Sanger Mouse Genetics Project, Westerfield M, Robinson P, Lewis S, Mungall C: PhenoDigm: Analyzing curated annotations to associate animal models with human diseases. Database (Oxford). 2013, bat025 Smedley D, Oellrich A, Köhler S, Ruef B, Sanger Mouse Genetics Project, Westerfield M, Robinson P, Lewis S, Mungall C: PhenoDigm: Analyzing curated annotations to associate animal models with human diseases. Database (Oxford). 2013, bat025
6.
Zurück zum Zitat Chen CK, Mungall CJ, Gkoutos GV, Doelken SC, Köhler S, Ruef BJ, Smith C, Westerfield M, Robinson PN, Lewis SE, Schofield PN, Smedley D: MouseFinder: Candidate disease genes from mouse phenotype data. Hum Mutat. 2012, 33 (5): 858-66. 10.1002/humu.22051.PubMedCentralCrossRefPubMed Chen CK, Mungall CJ, Gkoutos GV, Doelken SC, Köhler S, Ruef BJ, Smith C, Westerfield M, Robinson PN, Lewis SE, Schofield PN, Smedley D: MouseFinder: Candidate disease genes from mouse phenotype data. Hum Mutat. 2012, 33 (5): 858-66. 10.1002/humu.22051.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Mungall CJ, Gkoutos GV, Smith CL, Haendel MA, Lewis SE, Ashburner M: Integrating phenotype ontologies across multiple species. Genome Biol. 2010, 11 (1): R2-10.1186/gb-2010-11-1-r2.PubMedCentralCrossRefPubMed Mungall CJ, Gkoutos GV, Smith CL, Haendel MA, Lewis SE, Ashburner M: Integrating phenotype ontologies across multiple species. Genome Biol. 2010, 11 (1): R2-10.1186/gb-2010-11-1-r2.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE: Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol. 2009, 7 (11): e1000247-10.1371/journal.pbio.1000247.PubMedCentralCrossRefPubMed Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE: Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol. 2009, 7 (11): e1000247-10.1371/journal.pbio.1000247.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Robinson PN, Köhler S, Oellrich A, Sanger Mouse Genetics Project, Wang K, Mungall CJ, Lewis SE, Washington N, Bauer S, Seelow D, Krawitz P, Gilissen C, Haendel M, Smedley D: Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 2014, 24 (2): 340-8. 10.1101/gr.160325.113.PubMedCentralCrossRefPubMed Robinson PN, Köhler S, Oellrich A, Sanger Mouse Genetics Project, Wang K, Mungall CJ, Lewis SE, Washington N, Bauer S, Seelow D, Krawitz P, Gilissen C, Haendel M, Smedley D: Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 2014, 24 (2): 340-8. 10.1101/gr.160325.113.PubMedCentralCrossRefPubMed
Metadaten
Titel
Use of animal models for exome prioritization of rare disease genes
verfasst von
Damian Smedley
Sebastian Kohler
William Bone
Anika Oellrich
Jules Jacobsen
Kai Wang
Chris Mungall
Nicole Washington
Sebastian Bauer
Dominic Seelow
Peter Krawitz
Cornelius Boerkel
Christian Gilissen
Melissa Haendel
Suzanna E Lewis
Peter N Robinson
Sanger Mouse Genetics Project
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe Sonderheft 1/2014
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/1750-1172-9-S1-O19

Weitere Artikel der Sonderheft 1/2014

Orphanet Journal of Rare Diseases 1/2014 Zur Ausgabe