Skip to main content
Erschienen in: Radiological Physics and Technology 1/2019

21.02.2019

Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis

verfasst von: Parinaz Mehnati, Reza Malekzadeh, Mohammad Yousefi Sooteh

Erschienen in: Radiological Physics and Technology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

The study aimed to assess the effect of bismuth (Bi) shielding on dose reduction and image quality in computed tomography (CT) through a literature review. A search was conducted in the following databases: Web of Science, PubMed, Google Scholar, and Scopus. Studies that reported estimated dose reduction with bismuth shielding during imaging of the eye, thyroid, and breast were included, and a meta-regression analysis was used to examine the influence of the CT scanner type on the dose reduction. The studies included a total of 237 patients and 34 pediatric and adult anthropomorphic phantoms for whom the radiation dose was reported. Bismuth shielding was recommended in 88.89% of the studies based on the maintenance of appropriate image quality under shielding. Noise associated with Bi shielding was 7.5%, 263%, and 23.5% for the eye, thyroid, and breast, respectively. The fixed-effects pooled estimate of dose reduction was 34% (95% CI: 13–55; p < 0.001) for the eye, 37% (95% CI 14–61; p < 0.001) for the thyroid, and 36% (95% CI 36–55; p < 0.001) for the breast. The image quality, usage of foams, CT scanner type, beam energies, and backscatter radiation were important factors that directly affected the efficacy of Bi shielding to reduce the radiation dose at the superficial radiosensitive organs.
Literatur
1.
Zurück zum Zitat Mehnati P, Ghavami M, Heidari H. Reducing radiation doses in female breast and lung during CT examinations of thorax: A new technique in two scanners. J Biomed Phy Eng. 2017;7(3):217. Mehnati P, Ghavami M, Heidari H. Reducing radiation doses in female breast and lung during CT examinations of thorax: A new technique in two scanners. J Biomed Phy Eng. 2017;7(3):217.
2.
Zurück zum Zitat Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.CrossRef Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.CrossRef
3.
Zurück zum Zitat Mehnati P, Sooteh MY, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomedicine. 2018;5(4):222–26. Mehnati P, Sooteh MY, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomedicine. 2018;5(4):222–26.
4.
Zurück zum Zitat Funama Y, Awai K, Hatemura M, et al. Automatic tube current modulation technique for multidetector CT: is it effective with a 64-detector CT? Radiol Phys Technol. 2008;1(1):33–7.CrossRefPubMed Funama Y, Awai K, Hatemura M, et al. Automatic tube current modulation technique for multidetector CT: is it effective with a 64-detector CT? Radiol Phys Technol. 2008;1(1):33–7.CrossRefPubMed
5.
Zurück zum Zitat Morris P, Perkins A. Diagnostic imaging. The Lancet. 2012;379(9825):1525–33.CrossRef Morris P, Perkins A. Diagnostic imaging. The Lancet. 2012;379(9825):1525–33.CrossRef
7.
Zurück zum Zitat Muhogora W, Ahmed N, Alsuwaidi J, et al. Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiat Prot Dosim. 2010;140(1):49–58.CrossRef Muhogora W, Ahmed N, Alsuwaidi J, et al. Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiat Prot Dosim. 2010;140(1):49–58.CrossRef
8.
Zurück zum Zitat Broder J, Warshauer DM. Increasing utilization of computed tomography in the adult emergency department, 2000–2005. Emerg radiol. 2006;13(1):25–30.CrossRefPubMed Broder J, Warshauer DM. Increasing utilization of computed tomography in the adult emergency department, 2000–2005. Emerg radiol. 2006;13(1):25–30.CrossRefPubMed
9.
Zurück zum Zitat Broder J, Fordham LA, Warshauer DM. Increasing utilization of computed tomography in the pediatric emergency department, 2000–2006. Emerg radiol. 2007;14(4):227–32.CrossRefPubMed Broder J, Fordham LA, Warshauer DM. Increasing utilization of computed tomography in the pediatric emergency department, 2000–2006. Emerg radiol. 2007;14(4):227–32.CrossRefPubMed
10.
Zurück zum Zitat Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.CrossRefPubMedPubMedCentral Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Saravanakumar A, Vaideki K, Govindarajan K, et al. Assessment of regional pediatric computed tomography dose indices in Tamil Nadu. J Med Phys. 2017;42(1):48.CrossRefPubMedPubMedCentral Saravanakumar A, Vaideki K, Govindarajan K, et al. Assessment of regional pediatric computed tomography dose indices in Tamil Nadu. J Med Phys. 2017;42(1):48.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. The Breast. 2016;28:136–44.CrossRefPubMed Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. The Breast. 2016;28:136–44.CrossRefPubMed
13.
Zurück zum Zitat Alizadeh Riabi H, Mehnati P, Mesbahi A. Evaluation of mean glandular dose in a full-field digital mammography unit in Tabriz, Iran. Radiat Prot Dosim. 2010;142(2–4):222–27.CrossRef Alizadeh Riabi H, Mehnati P, Mesbahi A. Evaluation of mean glandular dose in a full-field digital mammography unit in Tabriz, Iran. Radiat Prot Dosim. 2010;142(2–4):222–27.CrossRef
14.
Zurück zum Zitat Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J cancer. 2013;49(6):1374–403.CrossRefPubMed Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J cancer. 2013;49(6):1374–403.CrossRefPubMed
15.
Zurück zum Zitat DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62.CrossRefPubMed DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62.CrossRefPubMed
16.
Zurück zum Zitat McCrohan JL, Patterson JF, Gagne R, et al. Average radiation doses in a standard head examination for 250 CT systems. Radiology. 1987;163(1):263–68.CrossRefPubMed McCrohan JL, Patterson JF, Gagne R, et al. Average radiation doses in a standard head examination for 250 CT systems. Radiology. 1987;163(1):263–68.CrossRefPubMed
17.
Zurück zum Zitat Seidenfuss A, Mayr A, Schmid M, et al. Dose reduction of the female breast in chest CT. AJR Am J Roentgenol. 2014;202(5):W447–W52.CrossRefPubMed Seidenfuss A, Mayr A, Schmid M, et al. Dose reduction of the female breast in chest CT. AJR Am J Roentgenol. 2014;202(5):W447–W52.CrossRefPubMed
18.
Zurück zum Zitat Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.PubMed Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.PubMed
19.
Zurück zum Zitat Hopper KD, King SH, Lobell M, et al. The breast: in-plane X-ray protection during diagnostic thoracic CT–shielding with bismuth radioprotective garments. Radiology. 1997;205(3):853–58.CrossRefPubMed Hopper KD, King SH, Lobell M, et al. The breast: in-plane X-ray protection during diagnostic thoracic CT–shielding with bismuth radioprotective garments. Radiology. 1997;205(3):853–58.CrossRefPubMed
20.
Zurück zum Zitat Hopper KD ed Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Seminars in Ultrasound, CT and MRI; 2002: Elsevier. Hopper KD ed Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Seminars in Ultrasound, CT and MRI; 2002: Elsevier.
21.
Zurück zum Zitat Mehnati P, Sooteh MY, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2018; 5:4. Mehnati P, Sooteh MY, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2018; 5:4.
22.
Zurück zum Zitat Spampinato S, Gueli AM, Milone P, et al. Dosimetric changes with computed tomography automatic tube-current modulation techniques. Radiol Phys Technol. 2018;11(2):184–91.CrossRefPubMed Spampinato S, Gueli AM, Milone P, et al. Dosimetric changes with computed tomography automatic tube-current modulation techniques. Radiol Phys Technol. 2018;11(2):184–91.CrossRefPubMed
23.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–69.CrossRef Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–69.CrossRef
24.
Zurück zum Zitat Hopper KD, Neuman JD, King SH, et al. Radioprotection to the eye during CT scanning. AJNR Am J Neuroradiol. 2001;22(6):1194–98.PubMed Hopper KD, Neuman JD, King SH, et al. Radioprotection to the eye during CT scanning. AJNR Am J Neuroradiol. 2001;22(6):1194–98.PubMed
25.
Zurück zum Zitat Colombo P, Pedroli G, Nicoloso M, et al. Evaluation of the efficacy of a bismuth shield during CT examinations. Radiol Med (Torino). 2004;108(5–6):560–68. Colombo P, Pedroli G, Nicoloso M, et al. Evaluation of the efficacy of a bismuth shield during CT examinations. Radiol Med (Torino). 2004;108(5–6):560–68.
26.
Zurück zum Zitat McLaughlin D, Mooney R. Dose reduction to radiosensitive tissues in CT. Do commercially available shields meet the users’ needs? Clin Radiol. 2004;59(5):446–50.CrossRefPubMed McLaughlin D, Mooney R. Dose reduction to radiosensitive tissues in CT. Do commercially available shields meet the users’ needs? Clin Radiol. 2004;59(5):446–50.CrossRefPubMed
27.
Zurück zum Zitat Mukundan S Jr, Wang PI, Frush DP, et al. MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. AJR Am J Roentgenol. 2007;188(6):1648–50.CrossRefPubMed Mukundan S Jr, Wang PI, Frush DP, et al. MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. AJR Am J Roentgenol. 2007;188(6):1648–50.CrossRefPubMed
28.
Zurück zum Zitat Coursey C, Frush DP, Yoshizumi T, et al. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol. 2008;190(1):W54–61.CrossRefPubMed Coursey C, Frush DP, Yoshizumi T, et al. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol. 2008;190(1):W54–61.CrossRefPubMed
29.
Zurück zum Zitat Lee K, Lee W, Lee J, et al. Dose reduction and image quality assessment in MDCT using AEC (D-DOM & Z-DOM) and in-plane bismuth shielding. Radiat Prot Dosim. 2010;141(2):162–67.CrossRef Lee K, Lee W, Lee J, et al. Dose reduction and image quality assessment in MDCT using AEC (D-DOM & Z-DOM) and in-plane bismuth shielding. Radiat Prot Dosim. 2010;141(2):162–67.CrossRef
30.
Zurück zum Zitat Chang K-H, Lee W, Choo D-M, et al. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations. Radiat Prot Dosim. 2009;138(4):382–88.CrossRef Chang K-H, Lee W, Choo D-M, et al. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations. Radiat Prot Dosim. 2009;138(4):382–88.CrossRef
31.
Zurück zum Zitat Raissaki M, Perisinakis K, Damilakis J, et al. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol. 2010;40(11):1748–54.CrossRefPubMed Raissaki M, Perisinakis K, Damilakis J, et al. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol. 2010;40(11):1748–54.CrossRefPubMed
32.
Zurück zum Zitat Gbelcová L, Nikodemova D, Horvathova M. Dose reduction using bismuth shielding during paediatric CT examinations in Slovakia. Radiat Prot Dosim. 2011;147(1–2):160–63.CrossRef Gbelcová L, Nikodemova D, Horvathova M. Dose reduction using bismuth shielding during paediatric CT examinations in Slovakia. Radiat Prot Dosim. 2011;147(1–2):160–63.CrossRef
33.
Zurück zum Zitat Wang J, Duan X, Christner JA, et al. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology. 2012;262(1):191–98.CrossRefPubMed Wang J, Duan X, Christner JA, et al. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology. 2012;262(1):191–98.CrossRefPubMed
34.
Zurück zum Zitat Huggett J, Mukonoweshuro W, Loader R. A phantom-based evaluation of three commercially available patient organ shields for computed tomography X-ray examinations in diagnostic radiology. Radiat Prot Dosim. 2012;155(2):161–68.CrossRef Huggett J, Mukonoweshuro W, Loader R. A phantom-based evaluation of three commercially available patient organ shields for computed tomography X-ray examinations in diagnostic radiology. Radiat Prot Dosim. 2012;155(2):161–68.CrossRef
35.
Zurück zum Zitat Ciarmatori A, Nocetti L, Mistretta G, et al. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding. Australas Phys Eng Sci Med. 2016;39(2):583–89.CrossRefPubMed Ciarmatori A, Nocetti L, Mistretta G, et al. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding. Australas Phys Eng Sci Med. 2016;39(2):583–89.CrossRefPubMed
36.
Zurück zum Zitat Lambert JW, Gould RG. Evaluation of a net dose-reducing organ-based tube current modulation technique: comparison with standard dose and bismuth-shielded acquisitions. AJR Am J Roentgenol. 2016;206(6):1233–40.CrossRefPubMed Lambert JW, Gould RG. Evaluation of a net dose-reducing organ-based tube current modulation technique: comparison with standard dose and bismuth-shielded acquisitions. AJR Am J Roentgenol. 2016;206(6):1233–40.CrossRefPubMed
38.
Zurück zum Zitat Matsutomo N, Fukunaga M, Onishi H, et al. Corneal dose reduction using a bismuth-coated latex shield over the eyes during brain SPECT/CT. J Nucl Med Technol. 2017;45(3):214–18.CrossRefPubMed Matsutomo N, Fukunaga M, Onishi H, et al. Corneal dose reduction using a bismuth-coated latex shield over the eyes during brain SPECT/CT. J Nucl Med Technol. 2017;45(3):214–18.CrossRefPubMed
39.
Zurück zum Zitat Heaney D, Norvill C. A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Australas Phys Eng Sci Med. 2006;29(2):172–78.CrossRefPubMed Heaney D, Norvill C. A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Australas Phys Eng Sci Med. 2006;29(2):172–78.CrossRefPubMed
40.
Zurück zum Zitat Hohl C, Wildberger J, Süß C, et al. Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol. 2006;47(6):562–67.CrossRefPubMed Hohl C, Wildberger J, Süß C, et al. Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol. 2006;47(6):562–67.CrossRefPubMed
41.
Zurück zum Zitat Mendes M, Costa F, Figueira C, et al. Assessment of patient dose reduction by bismuth shielding in CT using measurements, GEANT4 and MCNPX simulations. Radiat Prot Dosim. 2015;165(1–4):175–81.CrossRef Mendes M, Costa F, Figueira C, et al. Assessment of patient dose reduction by bismuth shielding in CT using measurements, GEANT4 and MCNPX simulations. Radiat Prot Dosim. 2015;165(1–4):175–81.CrossRef
42.
Zurück zum Zitat Kim C-G. The development of bismuth shielding to protect the thyroid gland in radiations environment. Indian J Sci Technol. 2016;9:25. Kim C-G. The development of bismuth shielding to protect the thyroid gland in radiations environment. Indian J Sci Technol. 2016;9:25.
43.
Zurück zum Zitat Alonso TC, Mourão AP, Santana PC, et al. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding. Appl Radiat Isot. 2016;117:55–7.CrossRefPubMed Alonso TC, Mourão AP, Santana PC, et al. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding. Appl Radiat Isot. 2016;117:55–7.CrossRefPubMed
44.
Zurück zum Zitat Inkoom S, Papadakis AE, Raissaki M, et al. Paediatric neck multidetector computed tomography: the effect of bismuth shielding on thyroid dose and image quality. Radiat Prot Dosim. 2016;173(4):361–73. Inkoom S, Papadakis AE, Raissaki M, et al. Paediatric neck multidetector computed tomography: the effect of bismuth shielding on thyroid dose and image quality. Radiat Prot Dosim. 2016;173(4):361–73.
45.
Zurück zum Zitat Kim S, Yoshizumi TT, Frush DP, et al. Dosimetric characterisation of bismuth shields in CT: measurements and Monte Carlo simulations. Radiat Prot Dosim. 2009;133(2):105–10.CrossRef Kim S, Yoshizumi TT, Frush DP, et al. Dosimetric characterisation of bismuth shields in CT: measurements and Monte Carlo simulations. Radiat Prot Dosim. 2009;133(2):105–10.CrossRef
46.
Zurück zum Zitat Fricke BL, Donnelly LF, Frush DP, et al. In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR Am J Roentgenol. 2003;180(2):407–11.CrossRefPubMed Fricke BL, Donnelly LF, Frush DP, et al. In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR Am J Roentgenol. 2003;180(2):407–11.CrossRefPubMed
47.
Zurück zum Zitat Yilmaz MH, Yaşar D, Albayram S, et al. Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol. 2007;61(1):139–43.CrossRefPubMed Yilmaz MH, Yaşar D, Albayram S, et al. Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol. 2007;61(1):139–43.CrossRefPubMed
48.
Zurück zum Zitat Vollmar SV, Kalender WA. Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol. 2008;18(8):1674–82.CrossRefPubMed Vollmar SV, Kalender WA. Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol. 2008;18(8):1674–82.CrossRefPubMed
49.
Zurück zum Zitat Abadi S, Mehrez H, Ursani A, et al. Direct quantification of breast dose during coronary CT angiography and evaluation of dose reduction strategies. AJR Am J Roentgenol. 2011;196(2):W152-W58.CrossRef Abadi S, Mehrez H, Ursani A, et al. Direct quantification of breast dose during coronary CT angiography and evaluation of dose reduction strategies. AJR Am J Roentgenol. 2011;196(2):W152-W58.CrossRef
50.
Zurück zum Zitat Einstein AJ, Elliston CD, Groves DW, et al. Effect of bismuth breast shielding on radiation dose and image quality in coronary CT angiography. J Nucl Cardiol. 2012;19(1):100–08.CrossRefPubMed Einstein AJ, Elliston CD, Groves DW, et al. Effect of bismuth breast shielding on radiation dose and image quality in coronary CT angiography. J Nucl Cardiol. 2012;19(1):100–08.CrossRefPubMed
51.
Zurück zum Zitat Midgley S, Einsiedel P, Langenberg F, et al. Assessment of patient dose and image quality for cardiac CT with breast shields. Radiat Prot Dosim. 2012;151(3):463–68.CrossRef Midgley S, Einsiedel P, Langenberg F, et al. Assessment of patient dose and image quality for cardiac CT with breast shields. Radiat Prot Dosim. 2012;151(3):463–68.CrossRef
52.
Zurück zum Zitat Tappouni R, Mathers B. Scan quality and entrance skin dose in thoracic CT: a comparison between bismuth breast shield and posteriorly centered partial CT scans. ISRN radiology. 2012 (2013). Tappouni R, Mathers B. Scan quality and entrance skin dose in thoracic CT: a comparison between bismuth breast shield and posteriorly centered partial CT scans. ISRN radiology. 2012 (2013).
53.
Zurück zum Zitat Foley SJ, McEntee MF, Rainford LA. An evaluation of in-plane shields during thoracic CT. Radiat Prot Dosim. 2013;155(4):439–50.CrossRef Foley SJ, McEntee MF, Rainford LA. An evaluation of in-plane shields during thoracic CT. Radiat Prot Dosim. 2013;155(4):439–50.CrossRef
54.
Zurück zum Zitat Kim YK, Sung YM, Choi JH, et al. Reduced radiation exposure of the female breast during low-dose chest CT using organ-based tube current modulation and a bismuth shield: comparison of image quality and radiation dose. AJR Am J Roentgenol. 2013;200(3):537–44.CrossRefPubMed Kim YK, Sung YM, Choi JH, et al. Reduced radiation exposure of the female breast during low-dose chest CT using organ-based tube current modulation and a bismuth shield: comparison of image quality and radiation dose. AJR Am J Roentgenol. 2013;200(3):537–44.CrossRefPubMed
55.
Zurück zum Zitat Colletti PM, Micheli OA, Lee KH. To shield or not to shield: application of bismuth breast shields. AJR Am J Roentgenol. 2013;200(3):503–07.CrossRefPubMed Colletti PM, Micheli OA, Lee KH. To shield or not to shield: application of bismuth breast shields. AJR Am J Roentgenol. 2013;200(3):503–07.CrossRefPubMed
56.
Zurück zum Zitat Hulten E, Devine P, Welch T, et al. Comparison of coronary CT angiography image quality with and without breast shields. AJR Am J Roentgenol. 2013;200(3):529–36.CrossRefPubMed Hulten E, Devine P, Welch T, et al. Comparison of coronary CT angiography image quality with and without breast shields. AJR Am J Roentgenol. 2013;200(3):529–36.CrossRefPubMed
57.
Zurück zum Zitat Servaes S, Zhu X. The effects of bismuth breast shields in conjunction with automatic tube current modulation in CT imaging. Pediatr Radiol. 2013;43(10):1287–94.CrossRefPubMed Servaes S, Zhu X. The effects of bismuth breast shields in conjunction with automatic tube current modulation in CT imaging. Pediatr Radiol. 2013;43(10):1287–94.CrossRefPubMed
58.
Zurück zum Zitat Karami V, Zabihzadeh M, Shams N, et al. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield. Int J Pediatr. 2017;5:6. Karami V, Zabihzadeh M, Shams N, et al. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield. Int J Pediatr. 2017;5:6.
59.
Zurück zum Zitat Mehnati P, Arash M, Akhlaghi P. Bismuth-silicon and bismuth-polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.PubMedPubMedCentral Mehnati P, Arash M, Akhlaghi P. Bismuth-silicon and bismuth-polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.PubMedPubMedCentral
60.
Zurück zum Zitat Kalra MK, Rizzo SM, Novelline RA. Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg radiol. 2005;11(5):267–74.CrossRefPubMed Kalra MK, Rizzo SM, Novelline RA. Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg radiol. 2005;11(5):267–74.CrossRefPubMed
61.
Zurück zum Zitat McCollough CH, Wang J, Berland LL. Bismuth shields for CT dose reduction: do they help or hurt? JACR. 2011;8(12):878–79. McCollough CH, Wang J, Berland LL. Bismuth shields for CT dose reduction: do they help or hurt? JACR. 2011;8(12):878–79.
62.
Zurück zum Zitat Geleijns J, Wang J, McCollough C. The use of breast shielding for dose reduction in pediatric CT: arguments against the proposition. Pediatr Radiol. 2010;40(11):1744–47.CrossRefPubMed Geleijns J, Wang J, McCollough C. The use of breast shielding for dose reduction in pediatric CT: arguments against the proposition. Pediatr Radiol. 2010;40(11):1744–47.CrossRefPubMed
64.
Zurück zum Zitat Kim S, Frush DP, Yoshizumi TT. Bismuth shielding in CT: support for use in children. Pediatr Radiol. 2010;40(11):1739–43.CrossRefPubMed Kim S, Frush DP, Yoshizumi TT. Bismuth shielding in CT: support for use in children. Pediatr Radiol. 2010;40(11):1739–43.CrossRefPubMed
Metadaten
Titel
Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis
verfasst von
Parinaz Mehnati
Reza Malekzadeh
Mohammad Yousefi Sooteh
Publikationsdatum
21.02.2019
Verlag
Springer Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 1/2019
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00500-2

Weitere Artikel der Ausgabe 1/2019

Radiological Physics and Technology 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.