Skip to main content

16.05.2023 | Research Article

Use of Electron Paramagnetic Resonance (EPR) to Evaluate Redox Status in a Preclinical Model of Acute Lung Injury

verfasst von: Hanan B. Elajaili, Nathan M. Dee, Sergey I. Dikalov, Joseph P. Y. Kao, Eva S. Nozik

Erschienen in: Molecular Imaging and Biology

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness. Our long-term goal is to develop electron paramagnetic resonance (EPR) imaging of lungs in vivo to precisely measure superoxide production in ARDS in real time. As a first step, this requires the development of in vivo EPR methods for quantifying superoxide generation in the lung during injury, and testing if such superoxide measurements can differentiate between susceptible and protected mouse strains.

Procedures

In WT mice, mice lacking total body extracellular superoxide dismutase (EC-SOD) (KO), or mice overexpressing lung EC-SOD (Tg), lung injury was induced with intraperitoneal (IP) lipopolysaccharide (LPS) (10 mg/kg). At 24 h after LPS treatment, mice were injected with the cyclic hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) or 4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (DCP-AM-H) probes to detect, respectively, cellular and mitochondrial ROS – specifically superoxide. Several probe delivery strategies were tested. Lung tissue was collected up to one hour after probe administration and assayed by EPR.

Results

As measured by X-band EPR, cellular and mitochondrial superoxide increased in the lungs of LPS-treated mice compared to control. Lung cellular superoxide was increased in EC-SOD KO mice and decreased in EC-SOD Tg mice compared to WT. We also validated an intratracheal (IT) delivery method, which enhanced the lung signal for both spin probes compared to IP administration.

Conclusions

We have developed protocols for delivering EPR spin probes in vivo, allowing detection of cellular and mitochondrial superoxide in lung injury by EPR. Superoxide measurements by EPR could differentiate mice with and without lung injury, as well as mouse strains with different disease susceptibilities. We expect these protocols to capture real-time superoxide production and enable evaluation of lung EPR imaging as a potential clinical tool for subphenotyping ARDS patients based on redox status.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 39:529–539PubMedPubMedCentralCrossRef Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 39:529–539PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Calfee CS, Delucchi KL, Sinha P et al (2018) Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 6:691–698PubMedPubMedCentralCrossRef Calfee CS, Delucchi KL, Sinha P et al (2018) Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 6:691–698PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS (2018) Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med 44:1859–1869PubMedPubMedCentralCrossRef Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS (2018) Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med 44:1859–1869PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620PubMedPubMedCentralCrossRef Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Chow CW, Herrera Abreu MT, Suzuki T, Downey GP (2003) Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29:427–431PubMedCrossRef Chow CW, Herrera Abreu MT, Suzuki T, Downey GP (2003) Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29:427–431PubMedCrossRef
8.
Zurück zum Zitat Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM (2017) ROS signaling in the pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol 967:105–137PubMedPubMedCentralCrossRef Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM (2017) ROS signaling in the pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol 967:105–137PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Taher A, Lashgari M, Sedighi L, Rahimi-Bashar F, Poorolajal J, Mehrpooya M (2021) A pilot study on intravenous N-Acetylcysteine treatment in patients with mild-to-moderate COVID19-associated acute respiratory distress syndrome. Pharmacol Rep 73:1650–1659PubMedPubMedCentralCrossRef Taher A, Lashgari M, Sedighi L, Rahimi-Bashar F, Poorolajal J, Mehrpooya M (2021) A pilot study on intravenous N-Acetylcysteine treatment in patients with mild-to-moderate COVID19-associated acute respiratory distress syndrome. Pharmacol Rep 73:1650–1659PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Obi J, Pastores SM, Ramanathan LV, Yang J, Halpern NA (2020) Treating sepsis with vitamin C, thiamine, and hydrocortisone: exploring the quest for the magic elixir. J Crit Care 57:231–239PubMedPubMedCentralCrossRef Obi J, Pastores SM, Ramanathan LV, Yang J, Halpern NA (2020) Treating sepsis with vitamin C, thiamine, and hydrocortisone: exploring the quest for the magic elixir. J Crit Care 57:231–239PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Bernard GR, Wheeler AP, Arons MM et al (1997) A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The antioxidant in ARDS study group. Chest 112:164–172PubMedCrossRef Bernard GR, Wheeler AP, Arons MM et al (1997) A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The antioxidant in ARDS study group. Chest 112:164–172PubMedCrossRef
12.
Zurück zum Zitat Dushianthan A, Cusack R, Burgess VA, Grocott MP, Calder PC (2019) Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst Rev 1:Cd012041PubMed Dushianthan A, Cusack R, Burgess VA, Grocott MP, Calder PC (2019) Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst Rev 1:Cd012041PubMed
13.
Zurück zum Zitat Fowler AA 3rd, Truwit JD, Hite RD et al (2019) Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA 322:1261–1270PubMedPubMedCentralCrossRef Fowler AA 3rd, Truwit JD, Hite RD et al (2019) Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA 322:1261–1270PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Langlois PL, D’Aragon F, Hardy G, Manzanares W (2019) Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Nutrition 61:84–92PubMedCrossRef Langlois PL, D’Aragon F, Hardy G, Manzanares W (2019) Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Nutrition 61:84–92PubMedCrossRef
15.
Zurück zum Zitat Mahmoodpoor A, Hamishehkar H, Shadvar K et al (2019) The effect of intravenous selenium on oxidative stress in critically ill patients with acute respiratory distress syndrome. Immunol Invest 48:147–159PubMedCrossRef Mahmoodpoor A, Hamishehkar H, Shadvar K et al (2019) The effect of intravenous selenium on oxidative stress in critically ill patients with acute respiratory distress syndrome. Immunol Invest 48:147–159PubMedCrossRef
16.
Zurück zum Zitat Alonso de Vega JM, Díaz J, Serrano E, Carbonell LF (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30:1782–1786PubMedCrossRef Alonso de Vega JM, Díaz J, Serrano E, Carbonell LF (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30:1782–1786PubMedCrossRef
17.
Zurück zum Zitat Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discovery 20:689–709PubMedCrossRef Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discovery 20:689–709PubMedCrossRef
18.
Zurück zum Zitat Dikalov S, Fink B, Skatchkov M, Bassenge E (1999) Comparison of glyceryl trinitrate-induced with pentaerythrityl tetranitrate-induced in vivo formation of superoxide radicals: effect of vitamin C. Free Radic Biol Med 27:170–176PubMedCrossRef Dikalov S, Fink B, Skatchkov M, Bassenge E (1999) Comparison of glyceryl trinitrate-induced with pentaerythrityl tetranitrate-induced in vivo formation of superoxide radicals: effect of vitamin C. Free Radic Biol Med 27:170–176PubMedCrossRef
19.
Zurück zum Zitat Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA (2018) Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides. Free Radic Res 52:339–350 PubMedCrossRef Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA (2018) Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides. Free Radic Res 52:339–350 PubMedCrossRef
20.
Zurück zum Zitat Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A 92:6264–6268PubMedPubMedCentralCrossRef Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A 92:6264–6268PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Folz RJ, Abushamaa AM, Suliman HB (1999) Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J Clin Invest 103:1055–1066PubMedPubMedCentralCrossRef Folz RJ, Abushamaa AM, Suliman HB (1999) Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J Clin Invest 103:1055–1066PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Elajaili HB, Dee N, Woodcock L et al (2022) Developing EPR Tools for Preclinical Interrogation of Redox Regulation Mechanisms Contributing to Acute Lung Injury. In B50 Diffuse Lung Disease and Acute Lung Injury. American Thoracic Society, pp. A3018-A3018 Elajaili HB, Dee N, Woodcock L et al (2022) Developing EPR Tools for Preclinical Interrogation of Redox Regulation Mechanisms Contributing to Acute Lung Injury. In B50 Diffuse Lung Disease and Acute Lung Injury. American Thoracic Society, pp. A3018-A3018
23.
Zurück zum Zitat Fink B, Dikalov S, Bassenge E (2000) A new approach for extracellular spin trapping of nitroglycerin-induced superoxide radicals both in vitro and in vivo. Free Radical Biol Med 28:121–128CrossRef Fink B, Dikalov S, Bassenge E (2000) A new approach for extracellular spin trapping of nitroglycerin-induced superoxide radicals both in vitro and in vivo. Free Radical Biol Med 28:121–128CrossRef
24.
Zurück zum Zitat Ahmed MN, Zhang Y, Codipilly C et al (2012) Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol Med 18:38–46PubMedCrossRef Ahmed MN, Zhang Y, Codipilly C et al (2012) Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol Med 18:38–46PubMedCrossRef
25.
Zurück zum Zitat Auten RL, O’Reilly MA, Oury TD, Nozik-Grayck E, Whorton MH (2006) Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia. Am J Physiol Lung Cell Mol Physiol 290:L32-40PubMedCrossRef Auten RL, O’Reilly MA, Oury TD, Nozik-Grayck E, Whorton MH (2006) Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia. Am J Physiol Lung Cell Mol Physiol 290:L32-40PubMedCrossRef
26.
Zurück zum Zitat Kang SK, Rabbani ZN, Folz RJ et al (2003) Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 57:1056–1066PubMedCrossRef Kang SK, Rabbani ZN, Folz RJ et al (2003) Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 57:1056–1066PubMedCrossRef
27.
Zurück zum Zitat Nozik-Grayck E, Suliman HB, Majka S et al (2008) Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 295:L422-430PubMedPubMedCentralCrossRef Nozik-Grayck E, Suliman HB, Majka S et al (2008) Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 295:L422-430PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Perveen S, Patel H, Arif A, Younis S, Codipilly CN, Ahmed M (2012) Role of EC-SOD overexpression in preserving pulmonary angiogenesis inhibited by oxidative stress. PLoS One 7:e51945PubMedPubMedCentralCrossRef Perveen S, Patel H, Arif A, Younis S, Codipilly CN, Ahmed M (2012) Role of EC-SOD overexpression in preserving pulmonary angiogenesis inhibited by oxidative stress. PLoS One 7:e51945PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Rabbani ZN, Anscher MS, Folz RJ et al (2005) Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity. BMC Cancer 5:59PubMedPubMedCentralCrossRef Rabbani ZN, Anscher MS, Folz RJ et al (2005) Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity. BMC Cancer 5:59PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Suliman HB, Ryan LK, Bishop L, Folz RJ (2001) Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. Am J Physiol Lung Cell Mol Physiol 280:L69-78PubMedCrossRef Suliman HB, Ryan LK, Bishop L, Folz RJ (2001) Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. Am J Physiol Lung Cell Mol Physiol 280:L69-78PubMedCrossRef
31.
Zurück zum Zitat Zaghloul N, Nasim M, Patel H et al (2012) Overexpression of extracellular superoxide dismutase has a protective role against hyperoxia-induced brain injury in neonatal mice. FEBS J 279:871–881PubMedCrossRef Zaghloul N, Nasim M, Patel H et al (2012) Overexpression of extracellular superoxide dismutase has a protective role against hyperoxia-induced brain injury in neonatal mice. FEBS J 279:871–881PubMedCrossRef
32.
Zurück zum Zitat Suliman HB, Ali M, Piantadosi CA (2004) Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood 104:43–50PubMedCrossRef Suliman HB, Ali M, Piantadosi CA (2004) Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood 104:43–50PubMedCrossRef
33.
Zurück zum Zitat Kliment CR, Suliman HB, Tobolewski JM et al (2009) Extracellular superoxide dismutase regulates cardiac function and fibrosis. J Mol Cell Cardiol 47:730–742PubMedPubMedCentralCrossRef Kliment CR, Suliman HB, Tobolewski JM et al (2009) Extracellular superoxide dismutase regulates cardiac function and fibrosis. J Mol Cell Cardiol 47:730–742PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Lee YS, Cheon IS, Kim BH, Kwon MJ, Lee HW, Kim TY (2013) Loss of extracellular superoxide dismutase induces severe IL-23-mediated skin inflammation in mice. J Invest Dermatol 133:732–741PubMedCrossRef Lee YS, Cheon IS, Kim BH, Kwon MJ, Lee HW, Kim TY (2013) Loss of extracellular superoxide dismutase induces severe IL-23-mediated skin inflammation in mice. J Invest Dermatol 133:732–741PubMedCrossRef
35.
Zurück zum Zitat Manni ML, Tomai LP, Norris CA et al (2011) Extracellular superoxide dismutase in macrophages augments bacterial killing by promoting phagocytosis. Am J Pathol 178:2752–2759PubMedPubMedCentralCrossRef Manni ML, Tomai LP, Norris CA et al (2011) Extracellular superoxide dismutase in macrophages augments bacterial killing by promoting phagocytosis. Am J Pathol 178:2752–2759PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Nozik-Grayck E, Woods C, Taylor JM et al (2014) Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 307:L868-876PubMedPubMedCentralCrossRef Nozik-Grayck E, Woods C, Taylor JM et al (2014) Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 307:L868-876PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Rola R, Zou Y, Huang TT et al (2007) Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 42:1133–1145 (discussion 1131-1132)PubMedPubMedCentralCrossRef Rola R, Zou Y, Huang TT et al (2007) Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 42:1133–1145 (discussion 1131-1132)PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zelko IN, Folz RJ (2010) Extracellular superoxide dismutase attenuates release of pulmonary hyaluronan from the extracellular matrix following bleomycin exposure. FEBS Lett 584:2947–2952PubMedPubMedCentralCrossRef Zelko IN, Folz RJ (2010) Extracellular superoxide dismutase attenuates release of pulmonary hyaluronan from the extracellular matrix following bleomycin exposure. FEBS Lett 584:2947–2952PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Kusuyama J, Alves-Wagner AB, Conlin RH et al (2021) Placental superoxide dismutase 3 mediates benefits of maternal exercise on offspring health. Cell Metab 33:939-956.e938PubMedPubMedCentralCrossRef Kusuyama J, Alves-Wagner AB, Conlin RH et al (2021) Placental superoxide dismutase 3 mediates benefits of maternal exercise on offspring health. Cell Metab 33:939-956.e938PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Yang R, Wei L, Fu QQ, Wang H, You H, Yu HR (2016) SOD3 ameliorates H2O2-induced oxidative damage in SH-SY5Y cells by inhibiting the mitochondrial pathway. Neurochem Res 41:1818–1830PubMedCrossRef Yang R, Wei L, Fu QQ, Wang H, You H, Yu HR (2016) SOD3 ameliorates H2O2-induced oxidative damage in SH-SY5Y cells by inhibiting the mitochondrial pathway. Neurochem Res 41:1818–1830PubMedCrossRef
41.
Zurück zum Zitat Ueda J, Starr ME, Takahashi H et al (2008) Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radical Biol Med 45:897–904CrossRef Ueda J, Starr ME, Takahashi H et al (2008) Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radical Biol Med 45:897–904CrossRef
42.
Zurück zum Zitat Fu C, Dai X, Yang Y, Lin M, Cai Y, Cai S (2017) Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats. Mol Med Rep 15:131–138PubMedCrossRef Fu C, Dai X, Yang Y, Lin M, Cai Y, Cai S (2017) Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats. Mol Med Rep 15:131–138PubMedCrossRef
43.
Zurück zum Zitat Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001PubMedPubMedCentralCrossRef Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Proniewski B, Kij A, Sitek B, Kelley EE, Chlopicki S (2019) Multiorgan development of oxidative and nitrosative stress in LPS-induced endotoxemia in C57Bl/6 mice: DHE-based In Vivo approach. Oxid Med Cell Longev 2019:7838406PubMedPubMedCentralCrossRef Proniewski B, Kij A, Sitek B, Kelley EE, Chlopicki S (2019) Multiorgan development of oxidative and nitrosative stress in LPS-induced endotoxemia in C57Bl/6 mice: DHE-based In Vivo approach. Oxid Med Cell Longev 2019:7838406PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Kozlov AV, Szalay L, Umar F et al (2003) Epr analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radic Biol Med 34:1555–1562PubMedCrossRef Kozlov AV, Szalay L, Umar F et al (2003) Epr analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radic Biol Med 34:1555–1562PubMedCrossRef
46.
Zurück zum Zitat Elajaili H, Hernandez-Lagunas L, Harris P et al (2022) Extracellular superoxide dismutase (EC-SOD) R213G variant reduces mitochondrial ROS and preserves mitochondrial function in bleomycin-induced lung injury: EC-SOD R213G variant and intracellular redox regulation. Adv Redox Res 5:100035CrossRef Elajaili H, Hernandez-Lagunas L, Harris P et al (2022) Extracellular superoxide dismutase (EC-SOD) R213G variant reduces mitochondrial ROS and preserves mitochondrial function in bleomycin-induced lung injury: EC-SOD R213G variant and intracellular redox regulation. Adv Redox Res 5:100035CrossRef
47.
Zurück zum Zitat Halpern HJ, Bowman MK (1991) Low-frequency EPR spectrometers: MHz range. In: Eaton GR, Eaton SS, Ohno K (eds) EPR Imaging and In Vivo EPR. CRC Press, Boca Raton, ch. 6 Halpern HJ, Bowman MK (1991) Low-frequency EPR spectrometers: MHz range. In: Eaton GR, Eaton SS, Ohno K (eds) EPR Imaging and In Vivo EPR. CRC Press, Boca Raton, ch. 6
48.
Zurück zum Zitat Rinard GA, Quine RW, Eaton SS, Eaton GR (2002) Frequency dependence of EPR signal intensity, 250 MHz to 9.1 GHz. J Magn Reson 156:113–121PubMedCrossRef Rinard GA, Quine RW, Eaton SS, Eaton GR (2002) Frequency dependence of EPR signal intensity, 250 MHz to 9.1 GHz. J Magn Reson 156:113–121PubMedCrossRef
Metadaten
Titel
Use of Electron Paramagnetic Resonance (EPR) to Evaluate Redox Status in a Preclinical Model of Acute Lung Injury
verfasst von
Hanan B. Elajaili
Nathan M. Dee
Sergey I. Dikalov
Joseph P. Y. Kao
Eva S. Nozik
Publikationsdatum
16.05.2023
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-023-01826-5

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.