Skip to main content
Erschienen in:

03.02.2023

User Feedback on the Use of a Natural Language Processing Application to Screen for Suicide Risk in the Emergency Department

verfasst von: James L. Pease, PhD, Devyn Thompson, MSW, Jennifer Wright-Berryman, PhD, Marci Campbell, BA

Erschienen in: The Journal of Behavioral Health Services & Research | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Suicide is the 10th leading cause of death in the USA and globally. Despite decades of research, the ability to predict who will die by suicide is still no better than 50%. Traditional screening instruments have helped identify risk factors for suicide, but they have not provided accurate predictive power for reducing death rates. Over the past decade, natural language processing (NLP), a form of machine learning (ML), has been used to identify suicide risk by analyzing language data. Recent work has demonstrated the successful integration of a suicide risk screening interview to collect language data for NLP analysis from patients in two emergency departments (ED) of a large healthcare system. Results indicated that ML/NLP models performed well identifying patients that came to the ED for suicide risk. However, little is known about the clinician’s perspective of how a qualitative brief interview suicide risk screening tool to collect language data for NLP integrates into an ED workflow. This report highlights the feedback and observations of patient experiences obtained from clinicians using brief suicide screening interviews. The investigator used an open-ended, narrative interview approach to inquire about the qualitative interview process. Three overarching themes were identified: behavioral health workflow, clinical implications of interview probes, and integration of an application into provider patient experience. Results suggest a brief, qualitative interview method was feasible, person-centered, and useful as a suicide risk detection approach.
Literatur
3.
Zurück zum Zitat Franklin JC, Ribeiro JD, Fox KR, et al. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin 2017; 143(2):187–232. Available at https://doi.org/10.1037/bul0000084. Accessed 19 December, 2022. Franklin JC, Ribeiro JD, Fox KR, et al. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin 2017; 143(2):187–232. Available at https://​doi.​org/​10.​1037/​bul0000084. Accessed 19 December, 2022.
7.
Zurück zum Zitat Beck AT, Steer RA, Kovacs M, et al. Hopelessness and eventual suicide: a 10-year prospective study of patients hospitalized with suicidal ideation. The American journal of psychiatry 1985; 142: 559–563. Available at https://doi:https://doi.org/10.1176/ajp.142.5.559. Accessed 19 December, 2022. Beck AT, Steer RA, Kovacs M, et al. Hopelessness and eventual suicide: a 10-year prospective study of patients hospitalized with suicidal ideation. The American journal of psychiatry 1985; 142: 559–563. Available at https://​doi:https://​doi.​org/​10.​1176/​ajp.​142.​5.​559. Accessed 19 December, 2022.
8.
Zurück zum Zitat Joiner TE. Why People Die by Suicide. Cambridge, MA: First Harvard University Press, 2005. Joiner TE. Why People Die by Suicide. Cambridge, MA: First Harvard University Press, 2005.
11.
12.
Zurück zum Zitat Bernert RA, Hilberg AM, Melia R, et al. Artificial intelligence and suicide prevention: A systematic review of machine learning investigations. International Journal of Environmental Research and Public Health 2020; 17(16): 1–25. Available at https://doi.org/10.3390/ijerph17165929. Accessed 19 December, 2022. Bernert RA, Hilberg AM, Melia R, et al. Artificial intelligence and suicide prevention: A systematic review of machine learning investigations. International Journal of Environmental Research and Public Health 2020; 17(16): 1–25. Available at https://​doi.​org/​10.​3390/​ijerph17165929. Accessed 19 December, 2022.
15.
Zurück zum Zitat Pestian J, Nasrallah H, Matykiewicz P, et al. Suicide note classification using natural language processing: A content analysis. Biomedical Informatics Insights 2010; 3: BII.S4706. Available at https://doi.org/10.4137/BII.S4706. Accessed 19 December, 2022. Pestian J, Nasrallah H, Matykiewicz P, et al. Suicide note classification using natural language processing: A content analysis. Biomedical Informatics Insights 2010; 3: BII.S4706. Available at https://​doi.​org/​10.​4137/​BII.​S4706. Accessed 19 December, 2022.
16.
Zurück zum Zitat Pestian JP, Grupp-Phelan J, Bretonnel Cohen K, et al. A Controlled Trial Using Natural Language Processing to Examine the Language of Suicidal Adolescents in the Emergency Department. Suicide and Life-Threatening Behavior 2016; 46(2):154–159. Available at https://doi.org/10.1111/sltb.12180. Accessed 19 December, 2022. Pestian JP, Grupp-Phelan J, Bretonnel Cohen K, et al. A Controlled Trial Using Natural Language Processing to Examine the Language of Suicidal Adolescents in the Emergency Department. Suicide and Life-Threatening Behavior 2016; 46(2):154–159. Available at https://​doi.​org/​10.​1111/​sltb.​12180. Accessed 19 December, 2022.
17.
Zurück zum Zitat Pestian JP, Sorter M, Connolly B, et al. A machine learning approach to identifying the thought markers of suicidal subjects: A prospective multicenter trial. Suicide and Life-Threatening Behavior 2017; 47(1):112–121. Available at https://doi.org/10.1111/sltb.12312. Accessed 19 December, 2022. Pestian JP, Sorter M, Connolly B, et al. A machine learning approach to identifying the thought markers of suicidal subjects: A prospective multicenter trial. Suicide and Life-Threatening Behavior 2017; 47(1):112–121. Available at https://​doi.​org/​10.​1111/​sltb.​12312. Accessed 19 December, 2022.
18.
Zurück zum Zitat Cohen J, Wright-Berryman J, Rohlfs L, et al. Integration and validation of a natural language processing machine learning suicide risk prediction model based on open-ended interview language in the emergency department. Frontiers of Digital Health 2022; 4:818705. Available at https://doi.org/10.3389/fdgth.2022.818705. Accessed 16 December, 2022. Cohen J, Wright-Berryman J, Rohlfs L, et al. Integration and validation of a natural language processing machine learning suicide risk prediction model based on open-ended interview language in the emergency department. Frontiers of Digital Health 2022; 4:818705. Available at https://​doi.​org/​10.​3389/​fdgth.​2022.​818705. Accessed 16 December, 2022.
21.
Zurück zum Zitat Heyland M, Delaney KR, Shattell M. Steps to achieve universal suicide screening in emergency departments: a call to action. Journal of psychosocial nursing and mental health services 2018; 56(10):21–26. Available at https://doi.org/10.3928/02793695-20180503-03. Accessed 19 December, 2022. Heyland M, Delaney KR, Shattell M. Steps to achieve universal suicide screening in emergency departments: a call to action. Journal of psychosocial nursing and mental health services 2018; 56(10):21–26. Available at https://​doi.​org/​10.​3928/​02793695-20180503-03. Accessed 19 December, 2022.
22.
Zurück zum Zitat Chung TH, Hanley K, Le YC, et al. A validation study of PHQ-9 suicide item with the Columbia Suicide Severity Rating Scale in outpatients with mood disorders at National Network of Depression Centers. Journal of affective disorders 2023;320(1):590–594. Available at https://doi.org/10.1016/j.jad.2022.09.131. Accessed 19 December, 2022. Chung TH, Hanley K, Le YC, et al. A validation study of PHQ-9 suicide item with the Columbia Suicide Severity Rating Scale in outpatients with mood disorders at National Network of Depression Centers. Journal of affective disorders 2023;320(1):590–594. Available at https://​doi.​org/​10.​1016/​j.​jad.​2022.​09.​131. Accessed 19 December, 2022.
23.
Zurück zum Zitat Simpson SA, Goans C, Loh R, et al. Suicidal ideation is insensitive to suicide risk after emergency department discharge: Performance characteristics of the Columbia‐Suicide Severity Rating Scale Screener. Academic Emergency Medicine 2021; 28(6):621–629. Available at https://doi-org.uc.idm.oclc.org/10.1111/acem.14198. Accessed 19 December, 2022. Simpson SA, Goans C, Loh R, et al. Suicidal ideation is insensitive to suicide risk after emergency department discharge: Performance characteristics of the Columbia‐Suicide Severity Rating Scale Screener. Academic Emergency Medicine 2021; 28(6):621–629. Available at https://​doi-org.​uc.​idm.​oclc.​org/​10.​1111/​acem.​14198. Accessed 19 December, 2022.
25.
Zurück zum Zitat Simpson SA, Goans C, Loh R, et al. Suicidal ideation is insensitive to suicide risk after emergency department discharge: Performance characteristics of the Columbia-Suicide Severity Rating Scale Screener. Academic Emergency Medicine. Epub ahead of print 2020. Available at https://doi.org/10.1111/acem.14198. Accessed 12 December, 2022. Simpson SA, Goans C, Loh R, et al. Suicidal ideation is insensitive to suicide risk after emergency department discharge: Performance characteristics of the Columbia-Suicide Severity Rating Scale Screener. Academic Emergency Medicine. Epub ahead of print 2020. Available at https://​doi.​org/​10.​1111/​acem.​14198. Accessed 12 December, 2022.
27.
Zurück zum Zitat Galynker I, Yaseen ZS, Cohen A, et al. Prediction of suicidal behavior in high-risk psychiatric patients using an assessment of acute suicidal state: The suicide crisis inventory. Depression and Anxiety 2017; 34(2):147–158. Available at https://doi.org/10.1002/da.22559. Accessed 19 December, 2022. Galynker I, Yaseen ZS, Cohen A, et al. Prediction of suicidal behavior in high-risk psychiatric patients using an assessment of acute suicidal state: The suicide crisis inventory. Depression and Anxiety 2017; 34(2):147–158. Available at https://​doi.​org/​10.​1002/​da.​22559. Accessed 19 December, 2022.
29.
Zurück zum Zitat Larsen ME, Cummins N, Boonstra TW, et al. The use of technology in suicide prevention. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015; 2015-November: 7316–7319. Available at https://doi.org/10.1109/EMBC.2015.7320081. Accessed 19 December, 2022. Larsen ME, Cummins N, Boonstra TW, et al. The use of technology in suicide prevention. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015; 2015-November: 7316–7319. Available at https://​doi.​org/​10.​1109/​EMBC.​2015.​7320081. Accessed 19 December, 2022.
Metadaten
Titel
User Feedback on the Use of a Natural Language Processing Application to Screen for Suicide Risk in the Emergency Department
verfasst von
James L. Pease, PhD
Devyn Thompson, MSW
Jennifer Wright-Berryman, PhD
Marci Campbell, BA
Publikationsdatum
03.02.2023
Verlag
Springer US
Erschienen in
The Journal of Behavioral Health Services & Research / Ausgabe 4/2023
Print ISSN: 1094-3412
Elektronische ISSN: 1556-3308
DOI
https://doi.org/10.1007/s11414-023-09831-w

Neu im Fachgebiet Psychiatrie

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Starke Menopausensymptome: ein Hinweis auf kognitive Veränderungen?

Stärkere Beschwerden in der Perimenopause sind mit einer reduzierten kognitiven Funktion in den mittleren und späteren Lebensjahren assoziiert. Auch das Verhalten kann sich ändern, wie eine Studie zeigt. Beides steht womöglich für erhöhte Demenzgefährdung.

Obstruktive Schlafapnoe: Das steht abseits von CPAP auf dem Plan

Die obstruktive Schlafapnoe kann durch verschiedene Verfahren behandelt werden wie Lagetherapie und chirurgische Interventionen. Eine medikamentöse Therapie kommt zwar (noch) nicht infrage. Auf dem Pneumologie-Kongress wurden aber erste vielversprechende Ansätze präsentiert. 

Was tun, wenn pneumologische Medikamente Psyche und Blutbild verändern?

Arzneimittel für Patienten mit Mukoviszidose oder pulmonaler arterieller Hypertonie wirken offenbar nicht nur auf die Lunge. Was es in der Praxis zu beachten gilt, wurde beim Pneumologie-Kongress erläutert.

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.