Skip to main content
Erschienen in: Pediatric Cardiology 6/2019

25.06.2019 | Original Article

Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity

verfasst von: Jennifer Smerling, Charles C. Marboe, Jay H. Lefkowitch, Martina Pavlicova, Emile Bacha, Andrew J. Einstein, Yoshifumi Naka, Julie Glickstein, Kanwal M. Farooqi

Erschienen in: Pediatric Cardiology | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

The most common modes of medical education for congenital heart disease (CHD) rely heavily on 2-dimensional imaging. Three-dimensional (3D) printing technology allows for the creation of physical cardiac models that can be used for teaching trainees. 3D printed cardiac models were created for the following lesions: pulmonic stenosis, atrial septal defect, tetralogy of Fallot, d-transposition of the great arteries, coarctation of the aorta, and hypoplastic left heart syndrome. Medical students participated in a workshop consisting of different teaching stations. At the 3D printed station, students completed a pre- and post-intervention survey assessing their knowledge of each cardiac lesion on a Likert scale. Students were asked to rank the educational benefit of each modality. Linear regression was utilized to assess the correlation of the mean increase in knowledge with increasing complexity of CHD based on the Aristotle Basic Complexity Level. 45 medical students attended the CHD workshop. Students’ knowledge significantly improved for every lesion (p < 0.001). A strong positive correlation was found between mean increase in knowledge and increasing complexity of CHD (R2 = 0.73, p < 0.05). The 3D printed models, pathology specimens and spoken explanation were found to be the most helpful modalities. Students “strongly agreed” the 3D printed models made them more confident in explaining congenital cardiac anatomy to others (mean = 4.23, ± 0.69), and that they recommend the use of 3D models for future educational sessions (mean = 4.40, ± 0.69). 3D printed cardiac models should be included in medical student education particularly for lesions that require a complex understanding of spatial relationships.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat van der Linde D et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21):2241–2247CrossRef van der Linde D et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21):2241–2247CrossRef
3.
Zurück zum Zitat Marelli AJ et al (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756PubMedCrossRef Marelli AJ et al (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756PubMedCrossRef
4.
Zurück zum Zitat Hoyek N et al (2009) Enhancement of mental rotation abilities and its effect on anatomy learning. Teach Learn Med 21(3):201–206PubMedCrossRef Hoyek N et al (2009) Enhancement of mental rotation abilities and its effect on anatomy learning. Teach Learn Med 21(3):201–206PubMedCrossRef
5.
Zurück zum Zitat Gerrah R et al (2014) Adjustment of the surgical plan in repair of congenital heart disease: the power of cross-sectional imaging and three-dimensional visualization. Congenit Heart Dis 9(1):E31–E36PubMedCrossRef Gerrah R et al (2014) Adjustment of the surgical plan in repair of congenital heart disease: the power of cross-sectional imaging and three-dimensional visualization. Congenit Heart Dis 9(1):E31–E36PubMedCrossRef
6.
Zurück zum Zitat Riesenkampff E et al (2009) The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg 138(3):571–580PubMedCrossRef Riesenkampff E et al (2009) The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg 138(3):571–580PubMedCrossRef
7.
Zurück zum Zitat Garcia J et al (2018) 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn 4(1):27–40PubMedCrossRef Garcia J et al (2018) 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn 4(1):27–40PubMedCrossRef
8.
Zurück zum Zitat Costello JP et al (2014) Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg 5(3):421–426PubMedCrossRef Costello JP et al (2014) Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg 5(3):421–426PubMedCrossRef
9.
Zurück zum Zitat McMenamin PG et al (2014) The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 7(6):479–486PubMedCrossRef McMenamin PG et al (2014) The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 7(6):479–486PubMedCrossRef
10.
Zurück zum Zitat Lim KH et al (2016) Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ 9(3):213–221PubMedCrossRef Lim KH et al (2016) Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ 9(3):213–221PubMedCrossRef
11.
Zurück zum Zitat Soemantri D, McColl G, Dodds A (2018) Measuring medical students' reflection on their learning: modification and validation of the motivated strategies for learning questionnaire (MSLQ). BMC Med Educ 18(1):274PubMedPubMedCentralCrossRef Soemantri D, McColl G, Dodds A (2018) Measuring medical students' reflection on their learning: modification and validation of the motivated strategies for learning questionnaire (MSLQ). BMC Med Educ 18(1):274PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Sobral DT (2000) An appraisal of medical students' reflection-in-learning. Med Educ 34(3):182–187PubMedCrossRef Sobral DT (2000) An appraisal of medical students' reflection-in-learning. Med Educ 34(3):182–187PubMedCrossRef
13.
Zurück zum Zitat Farooqi KM, Mahmood F (2018) Innovations in preoperative planning: insights into another dimension using 3D printing for cardiac disease. J Cardiothorac Vasc Anesth 32(4):1937–1945PubMedCrossRef Farooqi KM, Mahmood F (2018) Innovations in preoperative planning: insights into another dimension using 3D printing for cardiac disease. J Cardiothorac Vasc Anesth 32(4):1937–1945PubMedCrossRef
14.
15.
Zurück zum Zitat Farooqi KM et al (2016) Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol 37(1):90–98PubMedCrossRef Farooqi KM et al (2016) Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol 37(1):90–98PubMedCrossRef
16.
Zurück zum Zitat Farooqi KM et al (2016) 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail 4(4):301–311PubMedCrossRef Farooqi KM et al (2016) 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail 4(4):301–311PubMedCrossRef
17.
Zurück zum Zitat Farooqi KM et al (2016) Use of a three dimensional printed cardiac model to assess suitability for biventricular repair. World J Pediatr Congenit Heart Surg 7(3):414–416PubMedCrossRef Farooqi KM et al (2016) Use of a three dimensional printed cardiac model to assess suitability for biventricular repair. World J Pediatr Congenit Heart Surg 7(3):414–416PubMedCrossRef
18.
Zurück zum Zitat Olivieri LJ et al (2016) "Just-in-time" simulation training using 3-D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg 7(2):164–168PubMedCrossRef Olivieri LJ et al (2016) "Just-in-time" simulation training using 3-D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg 7(2):164–168PubMedCrossRef
19.
Zurück zum Zitat Loke YH et al (2017) Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. BMC Med Educ 17(1):54PubMedPubMedCentralCrossRef Loke YH et al (2017) Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. BMC Med Educ 17(1):54PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Biglino G et al (2015) 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5(4):e007165PubMedPubMedCentralCrossRef Biglino G et al (2015) 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5(4):e007165PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Lacour-Gayet F et al (2004) The Aristotle score for congenital heart surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 7:185–191PubMedCrossRef Lacour-Gayet F et al (2004) The Aristotle score for congenital heart surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 7:185–191PubMedCrossRef
22.
Zurück zum Zitat Cignoni P, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool, in sixth eurographics Italian chapter conference, Italy, pp 129–136 Cignoni P, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool, in sixth eurographics Italian chapter conference, Italy, pp 129–136
23.
Zurück zum Zitat Su W et al (2018) Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. BMC Med Educ 18(1):178PubMedPubMedCentralCrossRef Su W et al (2018) Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. BMC Med Educ 18(1):178PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat White SC, et al (2018) Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects. Congenit Heart Dis 13(6):1045–1049PubMedCrossRef White SC, et al (2018) Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects. Congenit Heart Dis 13(6):1045–1049PubMedCrossRef
25.
Zurück zum Zitat Costello JP et al (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2):185–190PubMedCrossRef Costello JP et al (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2):185–190PubMedCrossRef
26.
Zurück zum Zitat Jones TW, Seckeler MD (2017) Use of 3D models of vascular rings and slings to improve resident education. Congenit Heart Dis 12(5):578–582PubMedCrossRef Jones TW, Seckeler MD (2017) Use of 3D models of vascular rings and slings to improve resident education. Congenit Heart Dis 12(5):578–582PubMedCrossRef
27.
Zurück zum Zitat Farooqi KM, et al (2015) Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning. Circ Cardiovasc Imaging 8(5):e003043.PubMedCrossRef Farooqi KM, et al (2015) Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning. Circ Cardiovasc Imaging 8(5):e003043.PubMedCrossRef
28.
Zurück zum Zitat Gosnell J et al (2016) Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging 29(6):665–669PubMedPubMedCentralCrossRef Gosnell J et al (2016) Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging 29(6):665–669PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Yoo SJ, van Arsdell GS (2017) 3D printing in surgical management of double outlet right ventricle. Front Pediatr 5:289PubMedCrossRef Yoo SJ, van Arsdell GS (2017) 3D printing in surgical management of double outlet right ventricle. Front Pediatr 5:289PubMedCrossRef
30.
Zurück zum Zitat Bene KL, Bergus G (2014) When learners become teachers: a review of peer teaching in medical student education. Fam Med 46(10):783–787PubMed Bene KL, Bergus G (2014) When learners become teachers: a review of peer teaching in medical student education. Fam Med 46(10):783–787PubMed
Metadaten
Titel
Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity
verfasst von
Jennifer Smerling
Charles C. Marboe
Jay H. Lefkowitch
Martina Pavlicova
Emile Bacha
Andrew J. Einstein
Yoshifumi Naka
Julie Glickstein
Kanwal M. Farooqi
Publikationsdatum
25.06.2019
Verlag
Springer US
Erschienen in
Pediatric Cardiology / Ausgabe 6/2019
Print ISSN: 0172-0643
Elektronische ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-019-02146-8

Weitere Artikel der Ausgabe 6/2019

Pediatric Cardiology 6/2019 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.