Skip to main content
Erschienen in: BMC Ophthalmology 1/2018

Open Access 01.12.2018 | Research article

Utility of the optical quality analysis system for decision-making in cataract surgery

verfasst von: Jin Sun Hwang, Yoon Pyo Lee, Seok Hyun Bae, Ha Kyoung Kim, Kayoung Yi, Young Joo Shin

Erschienen in: BMC Ophthalmology | Ausgabe 1/2018

Abstract

Background

A cataract is a common cause of vision impairment that requires surgery in older subjects. The Optical Quality Analysis System (OQAS, Visiometrics SL, Terrassa, Spain) assesses the optical quality of the eye in cataract patients. This study shows the role of the optical quality evaluation system for decision-making in cataract surgery. We investigated the clinical utility of the OQAS for decision-making in cataract surgery.

Methods

Sixty-seven eyes from 67 patients undergoing cataract surgery and 109 eyes from 109 control subjects were compared. The best corrected visual acuity (BCVA) was measured. The objective scatter index (OSI), modulation transfer function (MTF), Strehl ratio, predicted visual acuity (PVA) 100%, PVA 20%, and PVA 10% were measured using the OQAS. The sensitivity and specificity of the different parameters were analyzed using the receiver operating characteristic (ROC) curve. The main parameters measured were sensitivity and specificity.

Results

The BCVA, OSI, PVA 100%, PVA 20%, and PVA 10% were higher in the cataract group compared to those in the control group, while the MTF and Strehl ratios were lower (p <  0.001 for all). ROC analysis showed that the OSI had the largest area under the curve and that the sensitivity and specificity of the OSI were 83.9 and 84.6%, respectively, at the optimal cut-off point of 2.35.

Conclusion

The MTF, OSI, Strehl ratio, PVA 100%, PVA 20% and PVA 10% may be useful parameters for preoperative decision-making in cataract surgery. The OSI appears to be the most effective parameter for this purpose.
Abkürzungen
BCVA
best corrected visual acuity
CC
cortical cataract
DP
double-pass
LOCS III
Lens Opacities Classification System III
logMAR
logarithm of the minimum angle of resolution
MTF
modulation transfer function
NC
nuclear cataract
OQAS
Optical Quality Analysis System
OSI
objective scatter index
PSC
posterior subcapsular cataract
PVA
predicted visual acuity
ROC
receiver operating characteristic

Background

Cataracts are a common cause of vision impairment in the older population, affecting the quality of vision and visual acuity and negatively impacting daily activities [13]. Although age-related cataracts progress slowly, cataract surgery is ultimately required [4]. The timing of surgery depends on weighing the benefits of surgery against the risks [5]. Advances in cataract surgery and intraocular lenses have improved surgical outcomes, promoted early visual rehabilitation, and reduced complications [4, 5]. These advances have led healthcare professionals to recommend cataract surgery to patients in early stages of the disease [46]. However, cataract surgery performed on eyes with good preoperative visual acuity has been linked to adverse visual results [5].
Visual functions, including visual acuity, glare and visual difficulties with daily activity, should be considered in the preoperative decision-making process for cataract surgery [7]. An accurate assessment of visual function facilitates the preoperative decision-making process for cataract surgery, resulting in a minimization of visual discomfort for patients. Indeed, the optical quality impairment caused by cataracts has become one of the major indications for cataract surgery [5].
The Lens Opacities Classification System III (LOCS III) is a nuclear opalescence grading system that is used to assess nuclear cataracts and has been shown to be a convenient and effective method in several studies [810]. However, this method is not able to provide information regarding optical quality or assess the visual quality impairment caused by cataracts [11]. The Optical Quality Analysis System (OQAS, Visiometrics, Terrassa, Spain) is based on the double-pass (DP) technique and was developed to evaluate vision quality objectively [12, 13]. The OQAS allows an objective assessment of intraocular scattering [14] and objectively measures the effect of optical aberrations and the loss of ocular transparency on the optical quality of the eye [15]. It provides optical quality parameters, such as the objective scatter index (OSI), modulation transfer function (MTF), Strehl ratio, and predicted visual acuity (PVA). However, a study of the utility of the OQAS for decision-making in cataract surgery has not been reported, and the most appropriate parameter for facilitating the decision-making process for cataract surgery has not been determined. Thus, in the present study, we investigated the usefulness of the OQAS for decision-making in cataract surgery.

Methods

This study was a retrospective cross-sectional observational series. This study was approved by the Institutional Review Board (IRB) of Hallym University Kangnam Sacred Heart Hospital and adhered to the tenets of the Declaration of Helsinki for research involving human subjects. This study received a waiver of informed consent from the IRB of Hallym University Kangnam Sacred Heart Hospital because this study was a retrospective chart review study. The medical charts of patients who planned to undergo cataract surgery at Hallym University’s Kangnam Sacred Heart Hospital between October 1, 2014 and August 31, 2015 and those of the control subjects were retrospectively reviewed. Data from all patients were collected and analyzed. The cataract group included the patients who needed cataract surgery and planned to undergo the procedure because they had a decrease in vision due to the cataracts. They wished to undergo the cataract surgery, had a visual acuity less than 20/30, had any type of cataract greater than grade 2, or had a cataract that affected the patient’s lifestyle. They had normal retinal and corneal findings. The patients in the cataract group discussed the risks and benefits of cataract surgery with the surgeon, and then they decided to undergo the cataract surgery. During the same period, a gender-matched control group was included. The control group consisted of patients who visited the clinic for routine eye examinations, had minimal opacities in the lens, and normal retinal and corneal findings. Patients who had undergone additional intraocular procedures and patients with corneal abnormalities were excluded.
The best corrected visual acuity (BCVA) was assessed using the Hans visual acuity chart and refractive error with an auto kerato-refractometer (KR-8100, Topcon, Tokyo). Cataracts were classified using the LOCS III [8]. For this analysis, each subject was allocated an LOCS III grade based on the single highest score reported in each of the following categories: nuclear cataract (NC; on a scale from I to VI), cortical cataract (CC; on a scale from I to V), and posterior subcapsular cataract (PSC; on a scale from I to V) [810]. Mixed cataract was defined as a combination of any two types of opacity [9, 10].
Using an artificial pupil of 4.0 mm in diameter under mesopic conditions, the optical quality of the eyes was measured using the OQAS, which is an instrument based on the DP technique. The subject was asked to put his or her chin on the chinrest and fix the center of a figure. The examiner aligned the optical axis of the instrument with the subject’s pupil center. During the measurements, spherical errors were corrected by an incorporated optometer in the DP system, while external lenses were used to correct cylindrical errors ≥ − 0.50D [12]. The MTF, OSI, Strehl ratio, PVA 100%, PVA 20%, and PVA 10% were all measured using the OQAS. The MTF curve displays the percentage reduction of retinal image contrast at a variety of resolutions. The OSI quantifies the degree of ocular scattering caused by the loss of transparency in ocular structures, such as corneal haze, cataract, and vitreous opacities [16]. The acuity calculated using the OQAS represented optical characteristics of the eye, including aberrations and ocular scatter [16]. The maximum visual acuity was predicted for objects with 100, 20, and 10% contrast [16].

Statistics

A two-sample t-test was used to compare the patients undergoing cataract surgery to the control subjects. The similarities and differences between cataract classification groups were determined using the Kruskal-Wallis test following the Mann-Whitney U test. Statistical significance was based on two-tailed statistical analyses, and probability values < 0.05 were considered statistically significant. Visual acuity was measured in terms of the logarithm of the minimum angle of resolution (logMAR). Receiver operating characteristic (ROC) analysis was used to calculate test sensitivity and specificity using SPSS 23.0 for Windows (IBM Corp., Chicago, IL). Comparison of the ROC curves was performed using the DeLong method from MedCalc version 11.4.4 statistical software (MedCalc Software, Mariakerke, Belgium).

Results

Data were analyzed from 29 men and 38 women in the cataract group and 33 men and 76 women in the control group (p = 0.079, chi-square test). The mean age was 67.34 ± 8.18 years in the cataract group and 59.45 ± 10.53 years in the control group (p <  0.001, t-test). The mean logMAR visual acuity was 0.48 ± 0.41 in the cataract group and 0.08 ± 0.23 in the control group (p <  0.001, t-test). The lens opacity grade using the LOCS III was 0.31 ± 0.47 for NC, 0.19 ± 0.44 for CC, and 0.00 ± 0.00 for PSC in the control group and 1.75 ± 1.03 for NC, 1.79 ± 1.30 for CC and 0.68 ± 1.17 for PSC in the cataract group (p <  0.001 between cataract group and control group for all, t-test).
Table 1 shows clinical findings for the subjects, including age, gender, and symptoms. There was no difference in gender between the control and cataract groups (p = 0.104, chi-square test). The control group was comprised of 109 eyes, while the cataract group was comprised of 67 eyes (from 67 patients). The BCVA (logMAR) was worse in the cataract group (0.48 ± 0.41) compared to that in the control group (0.08 ± 0.23; p <  0.001). Measurements obtained from the OQAS were compared between the cataract group and the control group (Fig. 1). The MTF was lower in the cataract group (11.38 ± 8.13) compared to that in the control group (22.14 ± 11.17; p <  0.001). The OSI was higher in the cataract group (6.23 ± 3.75) compared to that in the control group (1.75 ± 1.51; p <  0.001). The Strehl ratio was lower in the cataract group (0.08 ± 0.04) compared to that in the control group (0.13 ± 0.07; p <  0.001). The PVA 100% (logMAR) was higher in the cataract group (0.55 ± 0.32) compared to that in the control group (0.19 ± 0.26; p <  0.001). The PVA 20% (logMAR) was also higher in the cataract group (0.62 ± 0.34) compared to that the control group (0.31 ± 0.28; p <  0.001). Finally, the PVA 10% (logMAR) was higher in the cataract group (0.83 ± 0.21) compared to that in the control group (0.53 ± 0.29; p <  0.001).
Table 1
Comparison between control and cataract groups
 
Control group
Cataract group
 
Total
p-value
CC
NC
PSC
Mixed
p-value
N (eyes)
109
67
 
18
20
9
20
 
Age (year)
59.45 ± 10.53
67.34 ± 8.18
<  0.001*
63.39 ± 6.75
66.35 ± 11.34
69.67 ± 8.53
68.15 ± 5.23
<  0.001*
Male: female
33:76
29:38
†0.079
8:10
7:13
4:5
10:10
†0.408
Eye laterality
 Right: left
54:55
34:33
0.877
10:8
12:8
1:8
11:9
0.185
SE (D)
−0.01 ± 1.71
− 0.25 ± 3.28
0.522
0.87 ± 1.52
−1.00 ± 3.00
− 1.514 ± 7.36
0.05 ± 0.92
0.062
BCVA (logMAR)
0.08 ± 0.23
0.48 ± 0.41
<  0.001*
0.43 ± 0.46
0.54 ± 0.43
0.68 ± 0.61
0.44 ± 0.47
<  0.001*
MTF
22.14 ± 11.17
11.38 ± 8.13
<  0.001*
15.17 ± 8.94
9.68 ± 5.39
8.48 ± 6.03
10.98 ± 9.65
<  0.001*
OSI
1.75 ± 1.51
6.23 ± 3.75
<  0.001*
2.99 ± 1.35
7.58 ± 3.38
8.82 ± 4.10
6.61 ± 3.70
<  0.001*
Strehl ratio
0.13 ± 0.07
0.08 ± 0.04
<  0.001*
0.09 ± 0.03
0.08 ± 0.03
0.07 ± 0.027
0.08 ± 0.05
<  0.001*
PVA 100% (logMAR)
0.19 ± 0.26
0.55 ± 0.323
<  0.001*
0.36 ± 0.24
0.61 ± 0.30
0.67 ± 0.31
0.59 ± 0.35
<  0.001*
PVA 20% (logMAR)
0.31 ± 0.28
0.62 ± 0.34
<  0.001*
0.48 ± 0.29
0.72 ± 0.26
0.64 ± 0.42
0.62 ± 0.40
<  0.001*
PVA 10% (logMAR)
0.53 ± 0.29
0.83 ± 0.21
<  0.001*
0.78 ± 0.20
0.86 ± 0.18
0.90 ± 0.17
0.85 ± 0.24
<  0.001*
NC nuclear cataract, CC cortical cataract, PSC posterior subcapsular cataract, SE spherical equivalent, BCVA best corrected visual acuity, MTF modulation transfer function, OSI objective scatter index, PVA predicted visual acuity
*statistically significant using Student’s t-test, † the Pearson chi-square test
Cataracts were classified into 4 types (Table 1). As a percentage of total cataracts studied, 29.9% were NC, 26.9% were CC, 13.4% were PSC, and 29.9% were mixed cataracts. There was no difference in gender between subgroups (p = 0.394, chi-square test). The Kruskal-Wallis analysis of the data grouped according to the cataract type revealed no significant differences in the BCVA, MTF, Strehl ratio, PVA 100%, PVA 20%, and PVA 10% between cataract types, whereas there was a significant difference in the OSI according to cataract type (p <  0.001; Fig. 2). The MTF was lower in the NC, PSC and Mixed groups compared to that in the CC group (p = 0.041, 0.035 and 0.048, respectively, Mann-Whitney U test). The OSI was higher in the NC, PSC and Mixed groups, compared to that in the CC group (p <  0.001, 0.001, and 0.001, respectively). The Strehl ratio was lower in the PSC group compared to that in the CC group (p = 0.046). The PVA 100% was higher in the NC and PSC groups compared to that in the CC group (p = 0.048 and 0.035, respectively). The PVA 20% was higher in the NC group compared to that in the CC group (p = 0.022). No difference in the BCVA and PVA 10% was observed between cataract types.
According to the ROC curve analysis (Fig. 3), the area under the curve (AUC) was 0.900 (0.847–0.953) for the BCVA, 0.805 (0.733–0.876) for the MTF, 0.902 (0.853–0.951) for the OSI, 0.800 (0.727–0.873) for the Strehl ratio, 0.828 (0.761–0.896) for the PVA 100%, 0.749 (0.6669–0.833) for the PVA 20%, and 0.791 (0.720–0.862) for the PVA 10%. Overall, the OSI had the largest AUC. The AUC for the OSI was larger compared to that for the MTF, Strehl ratio, PVA 20% and PVA 10% (p <  0.001 for all, DeLong’s method). The sensitivity and specificity of the OQAS parameters for facilitating preoperative decision-making in cataract surgery are shown in Table 2. The sensitivity and specificity of the OSI at the optimal cut-off point of 2.35 were 83.9 and 84.61%, respectively.
Table 2
Receiver operating characteristic curves for the OSI, PVA100%, PVA20%, PVA10%, MTF and Strehl ratio
 
Cut-off point
Sensitivity
Specificity
J-index
AUC (95% CI)
p-value
BCVA (logMAR)
0.2600
70.6%
95.2%
0.650
0.900 (0.847–0.953)
<  0.001*
MTF
16.15
79.3%
72.1%
0.514
0.805 (0.733–0.876)
<  0.001*
OSI value
2.35
83.9%
84.6%
0.685
0.902 (0.853–0.951)
<  0.001*
Strehl ratio
0.0955
71.0%
78.8%
0.498
0.800 (0.727–0.873)
<  0.001*
PVA100% (logMAR)
0.2600
79.0%
71.7%
0.507
0.828 (0.761–0.896)
<  0.001*
PVA20% (logMAR)
0.4600
64.5%
79.2%
0.437
0.749 (0.666–0.833)
< 0.001*
PVA10% (logMAR)
0.6600
80.6%
62.3%
0.429
0.791 (0.720–0.862)
< 0.001*
AUC area under the curve, 95% CI 95% confidence interval, BCVA best corrected visual acuity, MTF modulation transfer function, OSI objective scatter index, PVA predicted visual acuity
*statistically significant

Discussion

Prior to cataract surgery, an assessment of the patient’s discomfort resulting from the cataract and an objective evaluation of the consequent visual impairment are essential [5]. Optical quality has become an important factor for consideration during decision-making in cataract surgery because it has an effect on the quality of life [4]. The OQAS has been shown to provide robust and fully objective measurements of optical quality; i.e., not depending on subjective decisions [11]. Furthermore, the OQAS has previously been suggested to be helpful when used in combination with standard methods to improve cataract surgery scheduling [11]. This study investigated the usefulness of different optical quality measurements obtained using the OQAS in the preoperative decision-making process for cataract surgery.
In this study, measurements obtained from the OQAS were compared between the cataract group and a control group. The BCVA, PVA 100%, PVA 20%, PVA 10%, and OSI were higher in the cataract group than in the control group (p <  0.001 for all, t-test). In contrast, the MTF and Strehl ratio were lower in the cataract group compared to that in the control group (p <  0.001 for all, Student’s t-test). It is important to note that these parameters were also different among cataract types. According to previous reports, the MTF cut-off frequency and the Strehl ratio decreased, while the OSI increased with aging [17]. The optical quality of a patient’s eyes has been shown to degrade with cataract grade [18]. The MTF was determined from an iTrace and a DP system from the OQAS and differed significantly in a comparison between subjects with early cataract development and normal controls [19]. However, the correlations of the MTF with visual performance were higher for the OQAS system. Thus, the MTF derived from the OQAS has been suggested to be useful as an indicator of visual performance in eyes with cataracts [19]. The OSI, another parameter obtained using the DP system, has been shown to be correlated with the Scheimpflug-measured lens density, subjective lens grading, and cumulative dissipated energy. The measurement of the OSI may improve the preoperative evaluation of nuclear cataracts and help predict phacodynamics in cataract surgery [20].
Using ROC curve analysis, this study found that the AUC was the largest for the OSI. It has previously been reported that several objective measurements obtained using the OQAS, including the MTF cut-off, OSI and Strehl ratio, differ between eyes with cataracts and control eyes [11, 16, 20, 21]. The MTF curve, computed from the point spread function (PSF), displays the percentage reduction of the contrast of the retinal image at various spatial resolutions and represents the combined effects of high-degree optical aberrations and scatter [16]. It is the ability of a lens or ocular structure to transfer the object contrast to the image. It has been suggested that the MTF plots are associated with the subsystems that make up a complete electro-optical or photographic system [22]. The MTF is associated with tear film stability [23] or the type of intraocular lens [24]. The OSI is defined as the ratio between the integrated light intensity in the periphery and that around the central peak of the double-pass image [11]. The OSI reflects the degree of scattering caused by the loss of transparency in the cornea or lens [16]. The OSI gradation relates directly to the extent of visual degradation (forward scatter) [11]. The higher OSI value represents a higher level of intraocular scattering [16]. The OSI has been found to correlate with NC and PSC severity [16, 25]. The Strehl ratio is defined as the ratio of the peak intensity of a measured PSF to that of a perfect optical system [26, 27]. The Strehl ratio expresses the ability of the eye to form a point image on the retina when a point object is seen [28]. It is related to wavefront errors [29], aging [17] and characteristics of the intraocular lens [24].
In this study, the MTF was lower in the NC, PSC and Mixed groups compared to that in the control, and the OSI was higher in the NC, PSC and Mixed groups compared to that in the control and CC groups. Optical quality by OQAS was measured in a pupil diameter of 4 mm [30]. The NC and PSC are located at the center of the lens and disturb visual quality [31]. Thus, central opacity of the lens may have a greater effect on optical quality [30]. A CC may have less effect on optical quality of the lens because a CC affects the periphery of the lens [8, 32]. The PVA 100% and PVA 20% were higher in the NC, PSC and Mixed groups compared to that in the control group. An NC has opacities in the center, which may have an impact on the PVA 100% and PVA 20%.
Although the LOCS III grading system is still an economical and effective way to evaluate the severity of lens opacities, the OSI can be useful to assess the impact of cataracts on a patient’s vision objectively when there is a difference between patient symptoms and ocular examination findings [21]. It is suggested that OSI scores ≥3.0 can be helpful as a possible cut-off for preoperative decision making [21]. In contrast to this previous study, we employed an ROC analysis to determine the cut-off value for the decision-making process in cataract surgery. The use of ROC analysis to evaluate diagnostic tests is widespread [33].
According to the ROC curve analysis, the OSI had the largest AUC. The AUC for the OSI was larger compared to that of the MTF, Strehl ratio, PVA 20%, and PVA 10% (p <  0.001 for all, DeLong’s method). The AUC is an effective tool to assess sensitivity and specificity of diagnostic tests. The AUC summarizes the entire location of the ROC curve rather than depending on a specific operating point [34]. Thus, the OSI is the most accurate test for decision-making in cataract surgery. The Youden index (J-index) is used to determine the optimal cut-off point [35]. In our study, the sensitivity and specificity of the OSI were 83.9 and 84.6%, respectively, at the optimal cut-off point of 2.35. These results provided the rationale that cataract surgery may be postponed in eyes with low OSI scores, whereas cataract surgery is necessary in the eyes with high OSI scores. Visual functions should be considered in the preoperative decision-making process for cataract surgery [7]. The OQAS parameters directly relate with the visual degradation in any type of cataract [11, 13]. Because the cataract observed in a slit lamp examination is not always predictive of the actual visual impact, the OQAS parameters have the advantage of being able to predict the quality of the patient’s vision and provide it to the operator.
One limitation of this study is that the quality of life was not measured even though a discussion occurred between the patients and the doctor in determining the cataract surgery. Further study is necessary to evaluate the quality of life in the decision-making process for cataract surgery. Another limitation was that the control group was younger compared to the age of the cataract group. The change in the OQAS due to aging is mainly associated with a decrease in optical quality secondary to cataract formation or lens changes [36]; cataracts increase with aging [37]. Therefore, the age of the cataract group was higher in the normal group. Another source of optical quality changes due to aging is corneal changes. The high order aberration of the cornea due to aging is increased [38], which can be reflected in the change in optical quality [39]; however, it does not have much effect. In this study, the cornea could not have affected the optical quality because all subjects had normal corneal findings.
In this study, the cataract group consisted of the patients with cataracts requiring cataract surgery. Although the difference in the OQAS between nonsurgical cataracts and cataracts were previously evaluated [40], further study including the patients with early cataract development is needed to increase the clinical significance of the decision-making process.

Conclusion

The MTF, OSI, Strehl ratio, PVA 100%, PVA 20% and PVA 10%, measured by the OQAS may be useful for preoperative decision-making in cataract surgery. Among these, the OSI is the most effective parameter for use in the decision-making process for the determination of the suitability of cataract surgery.

Funding

This study was supported by the National Research Foundation (NRF) grant (NRF-2015R1D1A1A09058505) funded by the Korea government and Hallym University Research Fund.

Availability of data and materials

All data are available upon request.
This study was approved by the Institutional Review Board of Hallym University Medical Center and adhered to the tenets of the Declaration of Helsinki for research involving human subjects. This study received a waiver of informed consent from the IRB of Hallym University Kangnam Sacred Heart Hospital because this study was a retrospective chart review study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Owsley C, McGwin G Jr, Sloane ME, Stalvey BT, Wells J. Timed instrumental activities of daily living tasks: relationship to visual function in older adults. Optom Vis Sci. 2001;78:350–9.CrossRefPubMed Owsley C, McGwin G Jr, Sloane ME, Stalvey BT, Wells J. Timed instrumental activities of daily living tasks: relationship to visual function in older adults. Optom Vis Sci. 2001;78:350–9.CrossRefPubMed
2.
Zurück zum Zitat Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam study. Arch Ophthalmol. 1998;116:653–8.CrossRefPubMed Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam study. Arch Ophthalmol. 1998;116:653–8.CrossRefPubMed
4.
Zurück zum Zitat Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365:599–609.CrossRefPubMed Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365:599–609.CrossRefPubMed
5.
Zurück zum Zitat Lundstrom M, Goh PP, Henry Y, et al. The changing pattern of cataract surgery indications: a 5-year study of 2 cataract surgery databases. Ophthalmology. 2015;122:31–8.CrossRefPubMed Lundstrom M, Goh PP, Henry Y, et al. The changing pattern of cataract surgery indications: a 5-year study of 2 cataract surgery databases. Ophthalmology. 2015;122:31–8.CrossRefPubMed
6.
Zurück zum Zitat Javadi MA, Zarei-Ghanavati S. Cataracts in diabetic patients: a review article. J Ophthalmic Vis Res. 2008;3:52–65.PubMedPubMedCentral Javadi MA, Zarei-Ghanavati S. Cataracts in diabetic patients: a review article. J Ophthalmic Vis Res. 2008;3:52–65.PubMedPubMedCentral
7.
Zurück zum Zitat Schein OD, Katz J, Bass EB, et al. The value of routine preoperative medical testing before cataract surgery. Study of medical testing for cataract surgery. N Engl J Med. 2000;342:168–75.CrossRefPubMed Schein OD, Katz J, Bass EB, et al. The value of routine preoperative medical testing before cataract surgery. Study of medical testing for cataract surgery. N Engl J Med. 2000;342:168–75.CrossRefPubMed
8.
Zurück zum Zitat Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol. 1993;111:831–6.CrossRefPubMed Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol. 1993;111:831–6.CrossRefPubMed
9.
Zurück zum Zitat Pei X, Bao Y, Chen Y, Li X. Correlation of lens density measured using the Pentacam Scheimpflug system with the Lens opacities classification system III grading score and visual acuity in age-related nuclear cataract. Br J Ophthalmol. 2008;92:1471–5.CrossRefPubMed Pei X, Bao Y, Chen Y, Li X. Correlation of lens density measured using the Pentacam Scheimpflug system with the Lens opacities classification system III grading score and visual acuity in age-related nuclear cataract. Br J Ophthalmol. 2008;92:1471–5.CrossRefPubMed
10.
Zurück zum Zitat Grewal DS, Brar GS, Grewal SP. Correlation of nuclear cataract lens density using Scheimpflug images with Lens opacities classification system III and visual function. Ophthalmology. 2009;116:1436–43.CrossRefPubMed Grewal DS, Brar GS, Grewal SP. Correlation of nuclear cataract lens density using Scheimpflug images with Lens opacities classification system III and visual function. Ophthalmology. 2009;116:1436–43.CrossRefPubMed
11.
Zurück zum Zitat Artal P, Benito A, Perez GM, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One. 2011;6:e16823.CrossRefPubMedPubMedCentral Artal P, Benito A, Perez GM, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One. 2011;6:e16823.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tian M, Miao H, Shen Y, Gao J, Mo X, Zhou X. Intra- and intersession repeatability of an optical quality and intraocular scattering measurement system in children. PLoS One. 2015;10:e0142189.CrossRefPubMedPubMedCentral Tian M, Miao H, Shen Y, Gao J, Mo X, Zhou X. Intra- and intersession repeatability of an optical quality and intraocular scattering measurement system in children. PLoS One. 2015;10:e0142189.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Guell JL, Pujol J, Arjona M, Diaz-Douton F, Artal P. Optical quality analysis system; Instrument for objective clinical evaluation of ocular optical quality. J Cataract Refract Surg. 2004;30:1598–9.CrossRefPubMed Guell JL, Pujol J, Arjona M, Diaz-Douton F, Artal P. Optical quality analysis system; Instrument for objective clinical evaluation of ocular optical quality. J Cataract Refract Surg. 2004;30:1598–9.CrossRefPubMed
14.
Zurück zum Zitat Diaz-Douton F, Benito A, Pujol J, Arjona M, Guell JL, Artal P. Comparison of the retinal image quality with a Hartmann-shack wavefront sensor and a double-pass instrument. Invest Ophthalmol Vis Sci. 2006;47:1710–6.CrossRefPubMed Diaz-Douton F, Benito A, Pujol J, Arjona M, Guell JL, Artal P. Comparison of the retinal image quality with a Hartmann-shack wavefront sensor and a double-pass instrument. Invest Ophthalmol Vis Sci. 2006;47:1710–6.CrossRefPubMed
15.
Zurück zum Zitat Kamiya K, Shimizu K, Igarashi A, Kobashi H, Ishii R, Sato N. Clinical evaluation of optical quality and intraocular scattering after posterior chamber phakic intraocular lens implantation. Invest Ophthalmol Vis Sci. 2012;53:3161–6.CrossRefPubMed Kamiya K, Shimizu K, Igarashi A, Kobashi H, Ishii R, Sato N. Clinical evaluation of optical quality and intraocular scattering after posterior chamber phakic intraocular lens implantation. Invest Ophthalmol Vis Sci. 2012;53:3161–6.CrossRefPubMed
16.
Zurück zum Zitat Cabot F, Saad A, McAlinden C, Haddad NM, Grise-Dulac A, Gatinel D. Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system. Am J Ophthalmol. 2013;155:629–35. 35 e1–2CrossRefPubMed Cabot F, Saad A, McAlinden C, Haddad NM, Grise-Dulac A, Gatinel D. Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system. Am J Ophthalmol. 2013;155:629–35. 35 e1–2CrossRefPubMed
17.
Zurück zum Zitat Kamiya K, Umeda K, Kobashi H, Shimizu K, Kawamorita T, Uozato H. Effect of aging on optical quality and intraocular scattering using the double-pass instrument. Curr Eye Res. 2012;37:884–8.CrossRefPubMed Kamiya K, Umeda K, Kobashi H, Shimizu K, Kawamorita T, Uozato H. Effect of aging on optical quality and intraocular scattering using the double-pass instrument. Curr Eye Res. 2012;37:884–8.CrossRefPubMed
18.
Zurück zum Zitat Ortiz D, Alio JL, Ruiz-Colecha J, Oser U. Grading nuclear cataract opacity by densitometry and objective optical analysis. J Cataract Refract Surg. 2008;34:1345–52.CrossRefPubMed Ortiz D, Alio JL, Ruiz-Colecha J, Oser U. Grading nuclear cataract opacity by densitometry and objective optical analysis. J Cataract Refract Surg. 2008;34:1345–52.CrossRefPubMed
19.
Zurück zum Zitat Qiao L, Wan X, Cai X, et al. Comparison of ocular modulation transfer function determined by a ray-tracing aberrometer and a double-pass system in early cataract patients. Chin Med J. 2014;127:3454–8.PubMed Qiao L, Wan X, Cai X, et al. Comparison of ocular modulation transfer function determined by a ray-tracing aberrometer and a double-pass system in early cataract patients. Chin Med J. 2014;127:3454–8.PubMed
20.
Zurück zum Zitat Lim SA, Hwang J, Hwang KY, Chung SH. Objective assessment of nuclear cataract: comparison of double-pass and Scheimpflug systems. J Cataract Refract Surg. 2014;40:716–21.CrossRefPubMed Lim SA, Hwang J, Hwang KY, Chung SH. Objective assessment of nuclear cataract: comparison of double-pass and Scheimpflug systems. J Cataract Refract Surg. 2014;40:716–21.CrossRefPubMed
21.
Zurück zum Zitat Pan AP, Wang QM, Huang F, Huang JH, Bao FJ, Yu AY. Correlation among lens opacities classification system III grading, visual function index-14, pentacam nucleus staging, and objective scatter index for cataract assessment. Am J Ophthalmol. 2015;159:241–7. e2CrossRefPubMed Pan AP, Wang QM, Huang F, Huang JH, Bao FJ, Yu AY. Correlation among lens opacities classification system III grading, visual function index-14, pentacam nucleus staging, and objective scatter index for cataract assessment. Am J Ophthalmol. 2015;159:241–7. e2CrossRefPubMed
22.
Zurück zum Zitat Kawamorita T, Uozato H. Modulation transfer function and pupil size in multifocal and monofocal intraocular lenses in vitro. J Cataract Refract Surg. 2005;31:2379–85.CrossRefPubMed Kawamorita T, Uozato H. Modulation transfer function and pupil size in multifocal and monofocal intraocular lenses in vitro. J Cataract Refract Surg. 2005;31:2379–85.CrossRefPubMed
23.
Zurück zum Zitat Montes-Mico R, Alio JL, Munoz G, Perez-Santonja JJ, Charman WN. Postblink changes in total and corneal ocular aberrations. Ophthalmology. 2004;111:758–67.CrossRefPubMed Montes-Mico R, Alio JL, Munoz G, Perez-Santonja JJ, Charman WN. Postblink changes in total and corneal ocular aberrations. Ophthalmology. 2004;111:758–67.CrossRefPubMed
24.
Zurück zum Zitat Santhiago MR, Wilson SE, Netto MV, et al. Modulation transfer function and optical quality after bilateral implantation of a +3.00 D versus a +4.00 D multifocal intraocular lens. J Cataract Refract Surg. 2012;38:215–20.CrossRefPubMed Santhiago MR, Wilson SE, Netto MV, et al. Modulation transfer function and optical quality after bilateral implantation of a +3.00 D versus a +4.00 D multifocal intraocular lens. J Cataract Refract Surg. 2012;38:215–20.CrossRefPubMed
25.
Zurück zum Zitat Galliot F, Patel SR, Cochener B. Objective scatter index: working toward a new quantification of cataract? J Refract Surg. 2016;32:96–102.CrossRefPubMed Galliot F, Patel SR, Cochener B. Objective scatter index: working toward a new quantification of cataract? J Refract Surg. 2016;32:96–102.CrossRefPubMed
26.
Zurück zum Zitat Jiang B, Liu Y. An analysis on the equivalence of the eye to a system with aberration. Sci Sin B. 1982;25:970–80.PubMed Jiang B, Liu Y. An analysis on the equivalence of the eye to a system with aberration. Sci Sin B. 1982;25:970–80.PubMed
27.
Zurück zum Zitat Bellucci R, Morselli S, Piers P. Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses. J Refract Surg. 2004;20:297–306.PubMed Bellucci R, Morselli S, Piers P. Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses. J Refract Surg. 2004;20:297–306.PubMed
28.
Zurück zum Zitat Semeraro F, Romano MR, Duse S, Costagliola C. Quality of vision in patients implanted with aspherical and spherical intraocular lens: Intraindividual comparison. Indian J Ophthalmol. 2014;62:461–3.CrossRefPubMedPubMedCentral Semeraro F, Romano MR, Duse S, Costagliola C. Quality of vision in patients implanted with aspherical and spherical intraocular lens: Intraindividual comparison. Indian J Ophthalmol. 2014;62:461–3.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Lee K, Ahn JM, Kim EK, Kim TI. Comparison of optical quality parameters and ocular aberrations after wavefront-guided laser in-situ keratomileusis versus wavefront-guided laser epithelial keratomileusis for myopia. Graefes Arch Clin Exp Ophthalmol. 2013;251:2163–9.CrossRefPubMed Lee K, Ahn JM, Kim EK, Kim TI. Comparison of optical quality parameters and ocular aberrations after wavefront-guided laser in-situ keratomileusis versus wavefront-guided laser epithelial keratomileusis for myopia. Graefes Arch Clin Exp Ophthalmol. 2013;251:2163–9.CrossRefPubMed
30.
Zurück zum Zitat Vilaseca M, Romero MJ, Arjona M, et al. Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system. Br J Ophthalmol. 2012;96:1204–10.CrossRefPubMed Vilaseca M, Romero MJ, Arjona M, et al. Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system. Br J Ophthalmol. 2012;96:1204–10.CrossRefPubMed
31.
Zurück zum Zitat Stifter E, Sacu S, Weghaupt H, et al. Reading performance depending on the type of cataract and its predictability on the visual outcome. J Cataract Refract Surg. 2004;30:1259–67.CrossRefPubMed Stifter E, Sacu S, Weghaupt H, et al. Reading performance depending on the type of cataract and its predictability on the visual outcome. J Cataract Refract Surg. 2004;30:1259–67.CrossRefPubMed
32.
Zurück zum Zitat Michael R, Barraquer RI, Willekens B, van Marle J, Vrensen GF. Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress. Vis Res. 2008;48:626–34.CrossRefPubMed Michael R, Barraquer RI, Willekens B, van Marle J, Vrensen GF. Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress. Vis Res. 2008;48:626–34.CrossRefPubMed
33.
Zurück zum Zitat Swets JA. ROC analysis applied to the evaluation of medical imaging techniques. Investig Radiol. 1979;14:109–21.CrossRef Swets JA. ROC analysis applied to the evaluation of medical imaging techniques. Investig Radiol. 1979;14:109–21.CrossRef
34.
Zurück zum Zitat Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4:627–35.PubMedPubMedCentral Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4:627–35.PubMedPubMedCentral
35.
Zurück zum Zitat Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med. 2000;45:23–41.CrossRefPubMed Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med. 2000;45:23–41.CrossRefPubMed
36.
Zurück zum Zitat Martinez-Roda JA, Vilaseca M, Ondategui JC, Aguirre M, Pujol J. Effects of aging on optical quality and visual function. Clin Exp Optom. 2016;99:518–25.CrossRefPubMed Martinez-Roda JA, Vilaseca M, Ondategui JC, Aguirre M, Pujol J. Effects of aging on optical quality and visual function. Clin Exp Optom. 2016;99:518–25.CrossRefPubMed
37.
Zurück zum Zitat Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ. The ageing lens. Ophthalmologica. 2000;214:86–104.CrossRefPubMed Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ. The ageing lens. Ophthalmologica. 2000;214:86–104.CrossRefPubMed
38.
Zurück zum Zitat Amano S, Amano Y, Yamagami S, et al. Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol. 2004;137:988–92.CrossRefPubMed Amano S, Amano Y, Yamagami S, et al. Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol. 2004;137:988–92.CrossRefPubMed
39.
Zurück zum Zitat Mihaltz K, Kovacs I, Weingessel B, Vecsei-Marlovits PV. Ocular Wavefront aberrations and optical quality in diabetic macular edema. Retina. 2016;36:28–36.CrossRefPubMed Mihaltz K, Kovacs I, Weingessel B, Vecsei-Marlovits PV. Ocular Wavefront aberrations and optical quality in diabetic macular edema. Retina. 2016;36:28–36.CrossRefPubMed
40.
Zurück zum Zitat Filgueira CP, Sanchez RF, Colombo EM, Vilaseca M, Pujol J, Issolio LA. Discrimination between surgical and nonsurgical nuclear cataracts based on ROC analysis. Curr Eye Res. 2014;39:1187–93.CrossRefPubMed Filgueira CP, Sanchez RF, Colombo EM, Vilaseca M, Pujol J, Issolio LA. Discrimination between surgical and nonsurgical nuclear cataracts based on ROC analysis. Curr Eye Res. 2014;39:1187–93.CrossRefPubMed
Metadaten
Titel
Utility of the optical quality analysis system for decision-making in cataract surgery
verfasst von
Jin Sun Hwang
Yoon Pyo Lee
Seok Hyun Bae
Ha Kyoung Kim
Kayoung Yi
Young Joo Shin
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2018
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0904-1

Weitere Artikel der Ausgabe 1/2018

BMC Ophthalmology 1/2018 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.