Skip to main content
Erschienen in: European Archives of Oto-Rhino-Laryngology 8/2016

01.09.2015 | Otology

Variability of the mental representation of the cochlear anatomy during cochlear implantation

verfasst von: Renato Torres, Guillaume Kazmitcheff, Daniele Bernardeschi, Daniele De Seta, Jean Loup Bensimon, Evelyne Ferrary, Olivier Sterkers, Yann Nguyen

Erschienen in: European Archives of Oto-Rhino-Laryngology | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to assess the mental representation of the insertion axis of surgeons with different degrees of experience, and reproducibility of the insertion axis in repeated measures. A mastoidectomy and a posterior tympanotomy were prepared in five different artificial temporal bones. A cone-beam CT was performed for each temporal bone and the data were registered on a magnetic navigation system. In these five temporal bones, 16 surgeons (3 experts; >50 cochlear implant surgery/year; 7 fellows with few cochlear implant experience, and 6 residents) were asked to determine the optimal insertion axis according to their mental representation. Compared to a planned ideal axis, the insertion axis was better determined by the experts with higher accuracy (axial: 7° ± 1.5°, coronal: 6° ± 1.5°) than fellows (axial: 14° ± 1.7°, coronal: 13° ± 1.7°; p < 0.05), or residents (axial: 15° ± 1.5°; p < 0.001, coronal: 17° ± 1.9°; p < 0.001). This study suggests that mental representation of the cochlea is experience-dependent. A high variation of the insertion axis to the scala tympani can be observed due to the complexity of the temporal bone anatomy and lack of landmarks to determine scala tympani orientation. Navigation systems can be used to evaluate and improve mental representation of the insertion axis to the scala tympani for cochlear implant surgery.
Literatur
1.
Zurück zum Zitat Berrettini S, Forli F, Passetti S (2008) Preservation of residual hearing following cochlear implantation: comparison between three surgical techniques. J Laryngol Otol 122:246–252CrossRefPubMed Berrettini S, Forli F, Passetti S (2008) Preservation of residual hearing following cochlear implantation: comparison between three surgical techniques. J Laryngol Otol 122:246–252CrossRefPubMed
2.
Zurück zum Zitat Helbig S, Van de Heyning P, Kiefer J, Baumann U, Kleine-Punte A, Brockmeier H et al (2011) Combined electric acoustic stimulation with the PULSARCI(100) implant system using the FLEX(EAS) electrode array. Acta Otolaryngol (Stockh) 131:585–595CrossRef Helbig S, Van de Heyning P, Kiefer J, Baumann U, Kleine-Punte A, Brockmeier H et al (2011) Combined electric acoustic stimulation with the PULSARCI(100) implant system using the FLEX(EAS) electrode array. Acta Otolaryngol (Stockh) 131:585–595CrossRef
3.
Zurück zum Zitat Venail F, Mathiolon C, Menjot S, Piron JP, Sicard M, Villemus F et al (2015) Effects of electrode array length on frequency-place mismatch and speech perception with cochlear implants. Audiol Neurotol. 20:102–111CrossRef Venail F, Mathiolon C, Menjot S, Piron JP, Sicard M, Villemus F et al (2015) Effects of electrode array length on frequency-place mismatch and speech perception with cochlear implants. Audiol Neurotol. 20:102–111CrossRef
4.
Zurück zum Zitat Nguyen Y, Mosnier I, Borel S, Ambert-Dahan E, Bouccara D, Bozorg-Grayeli A et al (2013) Evolution of electrode array diameter for hearing preservation in cochlear implantation. Acta Otolaryngol (Stockh) 133:116–122CrossRef Nguyen Y, Mosnier I, Borel S, Ambert-Dahan E, Bouccara D, Bozorg-Grayeli A et al (2013) Evolution of electrode array diameter for hearing preservation in cochlear implantation. Acta Otolaryngol (Stockh) 133:116–122CrossRef
5.
Zurück zum Zitat Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA (2014) Cochleostomy versus round window insertions: influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otol Neurotol 35:613–618CrossRefPubMed Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA (2014) Cochleostomy versus round window insertions: influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otol Neurotol 35:613–618CrossRefPubMed
6.
Zurück zum Zitat Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol 11:27–33CrossRef Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol 11:27–33CrossRef
7.
Zurück zum Zitat Erixon E, Högstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22CrossRefPubMed Erixon E, Högstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22CrossRefPubMed
8.
Zurück zum Zitat Martinez-Monedero R, Niparko JK, Aygun N (2011) Cochlear coiling pattern and orientation differences in cochlear implant candidates. Otol Neurotol 32:1086–1093CrossRefPubMed Martinez-Monedero R, Niparko JK, Aygun N (2011) Cochlear coiling pattern and orientation differences in cochlear implant candidates. Otol Neurotol 32:1086–1093CrossRefPubMed
9.
11.
Zurück zum Zitat Breinbauer HA, Praetorius M (2015) Variability of an ideal insertion vector for cochlear implantation. Otol Neurotol 36:610–617CrossRefPubMed Breinbauer HA, Praetorius M (2015) Variability of an ideal insertion vector for cochlear implantation. Otol Neurotol 36:610–617CrossRefPubMed
12.
Zurück zum Zitat Roosli C, Sim JH, Möckel H, Mokosch M, Probst R (2013) An artificial temporal bone as a training tool for cochlear implantation. Otol Neurotol 34:1048–1051CrossRefPubMed Roosli C, Sim JH, Möckel H, Mokosch M, Probst R (2013) An artificial temporal bone as a training tool for cochlear implantation. Otol Neurotol 34:1048–1051CrossRefPubMed
13.
Zurück zum Zitat Bakhos D, Velut S, Robier A, Alzahrani M, Lescanne E (2010) Three-dimensional modeling of the temporal bone for surgical training. Otol Neurotol 31:328–334CrossRefPubMed Bakhos D, Velut S, Robier A, Alzahrani M, Lescanne E (2010) Three-dimensional modeling of the temporal bone for surgical training. Otol Neurotol 31:328–334CrossRefPubMed
14.
Zurück zum Zitat Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boëx C et al (2010) Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 31:722–730CrossRefPubMedPubMedCentral Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boëx C et al (2010) Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 31:722–730CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Nguyen Y, Miroir M, Vellin J-F, Mazalaigue S, Bensimon J-L, Bernardeschi D et al (2011) Minimally invasive computer-assisted approach for cochlear implantation: a human temporal bone study. Surg Innov 18:259–267CrossRefPubMed Nguyen Y, Miroir M, Vellin J-F, Mazalaigue S, Bensimon J-L, Bernardeschi D et al (2011) Minimally invasive computer-assisted approach for cochlear implantation: a human temporal bone study. Surg Innov 18:259–267CrossRefPubMed
16.
Zurück zum Zitat Bozorg A, Esquia-Medina G, Nguyen Y, Mazalaigue S, Vellin J-F, Lombard B et al (2009) Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol (Stockh) 129:405–410CrossRef Bozorg A, Esquia-Medina G, Nguyen Y, Mazalaigue S, Vellin J-F, Lombard B et al (2009) Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol (Stockh) 129:405–410CrossRef
17.
Zurück zum Zitat Bernardeschi D, Nguyen Y, Villepelet A, Ferrary E, Mazalaigue S, Kalamarides M et al (2013) Use of bone anchoring device in electromagnetic computer-assisted navigation in lateral skull base surgery. Acta Otolaryngol (Stockh) 133:1047–1052CrossRef Bernardeschi D, Nguyen Y, Villepelet A, Ferrary E, Mazalaigue S, Kalamarides M et al (2013) Use of bone anchoring device in electromagnetic computer-assisted navigation in lateral skull base surgery. Acta Otolaryngol (Stockh) 133:1047–1052CrossRef
18.
Zurück zum Zitat Li PMMC, Wang H, Northrop C, Merchant SN, Nadol JB (2007) Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol Neurotol 28:641–648CrossRefPubMedPubMedCentral Li PMMC, Wang H, Northrop C, Merchant SN, Nadol JB (2007) Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol Neurotol 28:641–648CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Franz BK, Clark GM, Bloom DM (1987) Surgical anatomy of the round window with special reference to cochlear implantation. J Laryngol Otol 101:97–102CrossRefPubMed Franz BK, Clark GM, Bloom DM (1987) Surgical anatomy of the round window with special reference to cochlear implantation. J Laryngol Otol 101:97–102CrossRefPubMed
20.
Zurück zum Zitat Basura GJ, Adunka OF, Buchman CA (2010) Scala tympani cochleostomy for cochlear implantation. Oper Tech Otolaryngol-Head Neck Surg 21:218–222CrossRef Basura GJ, Adunka OF, Buchman CA (2010) Scala tympani cochleostomy for cochlear implantation. Oper Tech Otolaryngol-Head Neck Surg 21:218–222CrossRef
21.
Zurück zum Zitat Briggs RJS, Tykocinski M, Xu J, Risi F, Svehla M, Cowan R et al (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiol Neurotol 11:42–48CrossRef Briggs RJS, Tykocinski M, Xu J, Risi F, Svehla M, Cowan R et al (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiol Neurotol 11:42–48CrossRef
22.
Zurück zum Zitat Havenith S, Lammers MJW, Tange RA, Trabalzini F, della Volpe A, van der Heijden GJMG et al (2013) Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 34:667–674CrossRefPubMed Havenith S, Lammers MJW, Tange RA, Trabalzini F, della Volpe A, van der Heijden GJMG et al (2013) Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 34:667–674CrossRefPubMed
23.
Zurück zum Zitat Adunka O, Kiefer J, Unkelbach MH, Radeloff A, Gstoettner W (2005) Evaluating cochlear implant trauma to the scala vestibuli. Clin Otolaryngol 30:121–127CrossRefPubMed Adunka O, Kiefer J, Unkelbach MH, Radeloff A, Gstoettner W (2005) Evaluating cochlear implant trauma to the scala vestibuli. Clin Otolaryngol 30:121–127CrossRefPubMed
24.
Zurück zum Zitat Iseli C, Adunka OF, Buchman CA (2014) Scala tympani cochleostomy survey: a follow-up study. Laryngoscope 124:1928–1931CrossRefPubMed Iseli C, Adunka OF, Buchman CA (2014) Scala tympani cochleostomy survey: a follow-up study. Laryngoscope 124:1928–1931CrossRefPubMed
25.
Zurück zum Zitat Vision Marr D (2010) A computational investigation into the human representation and processing of visual information. MIT Press, Cambridge Vision Marr D (2010) A computational investigation into the human representation and processing of visual information. MIT Press, Cambridge
26.
Zurück zum Zitat Sternberg RJ, Mio JS (2009) Cognitive psychology. Cengage Learning/Wadsworth, Australia Sternberg RJ, Mio JS (2009) Cognitive psychology. Cengage Learning/Wadsworth, Australia
27.
Zurück zum Zitat DesCôteaux JG, Leclère H (1995) Learning surgical technical skills. Can J Surg 38:33–38PubMed DesCôteaux JG, Leclère H (1995) Learning surgical technical skills. Can J Surg 38:33–38PubMed
28.
Zurück zum Zitat Wang RF, Spelke ES (2003) Comparative approaches to human navigation. In: Jeffery KJ (ed) The neurobiology of spatial behaviour, 1st edn. Oxford University Press, Oxford, pp 119–143CrossRef Wang RF, Spelke ES (2003) Comparative approaches to human navigation. In: Jeffery KJ (ed) The neurobiology of spatial behaviour, 1st edn. Oxford University Press, Oxford, pp 119–143CrossRef
29.
Zurück zum Zitat Broadbent HJ, Farran EK, Tolmie A (2014) Egocentric and allocentric navigation strategies in Williams syndrome and typical development. Dev Sci 17:920–934CrossRefPubMed Broadbent HJ, Farran EK, Tolmie A (2014) Egocentric and allocentric navigation strategies in Williams syndrome and typical development. Dev Sci 17:920–934CrossRefPubMed
30.
Zurück zum Zitat Avraamides MN, Loomis JM, Klatzky RL, Golledge RG (2004) Functional equivalence of spatial representations derived from vision and language: evidence from allocentric judgments. J Exp Psychol Learn Mem Cogn 30:804–814CrossRefPubMed Avraamides MN, Loomis JM, Klatzky RL, Golledge RG (2004) Functional equivalence of spatial representations derived from vision and language: evidence from allocentric judgments. J Exp Psychol Learn Mem Cogn 30:804–814CrossRefPubMed
31.
Zurück zum Zitat Ang SY, Lee K (2008) Central executive involvement in children’s spatial memory. Memory 16:918–933CrossRefPubMed Ang SY, Lee K (2008) Central executive involvement in children’s spatial memory. Memory 16:918–933CrossRefPubMed
32.
Zurück zum Zitat Trier P, Noe K, Sørensen MS, Mosegaard J (2008) The visible ear surgery simulator. Stud Health Technol Inform 132:523–525PubMed Trier P, Noe K, Sørensen MS, Mosegaard J (2008) The visible ear surgery simulator. Stud Health Technol Inform 132:523–525PubMed
33.
Zurück zum Zitat Arora A, Khemani S, Tolley N, Singh A, Budge J, Varela D et al (2012) Face and content validation of a virtual reality temporal bone simulator. Otolaryngol-Head Neck Surg 146:497–503CrossRefPubMed Arora A, Khemani S, Tolley N, Singh A, Budge J, Varela D et al (2012) Face and content validation of a virtual reality temporal bone simulator. Otolaryngol-Head Neck Surg 146:497–503CrossRefPubMed
34.
Zurück zum Zitat O’Leary SJ, Hutchins MA, Stevenson DR, Gunn C, Krumpholz A, Kennedy G et al (2008) Validation of a networked virtual reality simulation of temporal bone surgery. Laryngoscope 118:1040–1046CrossRefPubMed O’Leary SJ, Hutchins MA, Stevenson DR, Gunn C, Krumpholz A, Kennedy G et al (2008) Validation of a networked virtual reality simulation of temporal bone surgery. Laryngoscope 118:1040–1046CrossRefPubMed
35.
Zurück zum Zitat Miroir M, Nguyen Y, Kazmitcheff G, Ferrary E, Sterkers O, Bozorg A (2012) Friction force measurement during cochlear implant insertion: application to a force-controlled insertion tool design. Otol Neurotol 33:1092–1100PubMed Miroir M, Nguyen Y, Kazmitcheff G, Ferrary E, Sterkers O, Bozorg A (2012) Friction force measurement during cochlear implant insertion: application to a force-controlled insertion tool design. Otol Neurotol 33:1092–1100PubMed
36.
Zurück zum Zitat Nguyen Y, Miroir M, Kazmitcheff G, Sutter J, Bensidhoum M, Ferrary E et al (2012) Cochlear implant insertion forces in microdissected human cochlea to evaluate a prototype array. Audiol Neurotol 17:290–298CrossRef Nguyen Y, Miroir M, Kazmitcheff G, Sutter J, Bensidhoum M, Ferrary E et al (2012) Cochlear implant insertion forces in microdissected human cochlea to evaluate a prototype array. Audiol Neurotol 17:290–298CrossRef
Metadaten
Titel
Variability of the mental representation of the cochlear anatomy during cochlear implantation
verfasst von
Renato Torres
Guillaume Kazmitcheff
Daniele Bernardeschi
Daniele De Seta
Jean Loup Bensimon
Evelyne Ferrary
Olivier Sterkers
Yann Nguyen
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Oto-Rhino-Laryngology / Ausgabe 8/2016
Print ISSN: 0937-4477
Elektronische ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-015-3763-x

Weitere Artikel der Ausgabe 8/2016

European Archives of Oto-Rhino-Laryngology 8/2016 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.