Skip to main content
Erschienen in: Diabetologia 11/2017

19.07.2017 | Review

Vascular complications in diabetes: old messages, new thoughts

verfasst von: Josephine M. Forbes, Amelia K. Fotheringham

Erschienen in: Diabetologia | Ausgabe 11/2017

Einloggen, um Zugang zu erhalten

Abstract

In parallel with the growing diabetes pandemic, there is an increasing burden of micro- and macrovascular complications, occurring in the majority of patients. The identification of a number of synergistic accelerators of disease, providing therapeutic pathways, has stabilised the incidence of complications in most western nations. However, the primary instigators of diabetic complications and, thus, prevention strategies, remain elusive. This has necessitated a refocus on natural history studies, where tissue and plasma samples are sequentially taken to determine when and how disease initiates. In addition, recent Phase III trials, wherein the pleiotropic effects of compounds were arguably as beneficial as their glucose-lowering capacity in slowing the progression of complications, have identified knowledge gaps. Recently the influence of other widely recognised pathological pathways, such as mitochondrial production of reactive oxygen species, has been challenged, highlighting the need for a diverse and robust global research effort to ascertain viable therapeutic targets. Technological advances, such as -omics, high-resolution imaging and computational modelling, are providing opportunities for strengthening and re-evaluating research findings. Newer areas such as epigenetics, energetics and the increasing scrutiny of our synergistic inhabitants, the microbiota, also offer novel targets as biomarkers. Ultimately, however, this field requires concerted lobbying to support all facets of diabetes research.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Geiss LS, Wang J, Cheng YJ et al (2014) Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. JAMA 312:1218–1226CrossRefPubMed Geiss LS, Wang J, Cheng YJ et al (2014) Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. JAMA 312:1218–1226CrossRefPubMed
3.
Zurück zum Zitat Schultz CJ, Konopelska-Bahu T, Dalton RN et al (1999) Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care 22:495–502CrossRefPubMed Schultz CJ, Konopelska-Bahu T, Dalton RN et al (1999) Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care 22:495–502CrossRefPubMed
4.
Zurück zum Zitat The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRef The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRef
5.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRef UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRef
6.
Zurück zum Zitat Ceriello A (2012) The emerging challenge in diabetes: the “metabolic memory”. Vasc Pharmacol 57:133–138CrossRef Ceriello A (2012) The emerging challenge in diabetes: the “metabolic memory”. Vasc Pharmacol 57:133–138CrossRef
7.
Zurück zum Zitat Chilelli NC, Burlina S, Lapolla A (2013) AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a “glycoxidation-centric” point of view. Nutr Metab Cardiovasc Dis 23:913–919CrossRefPubMed Chilelli NC, Burlina S, Lapolla A (2013) AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a “glycoxidation-centric” point of view. Nutr Metab Cardiovasc Dis 23:913–919CrossRefPubMed
8.
Zurück zum Zitat Gerrits EG, Lutgers HL, Kleefstra N et al (2008) Skin autofluorescence: a tool to identify type 2 diabetic patients at risk for developing microvascular complications. Diabetes Care 31:517–521CrossRefPubMed Gerrits EG, Lutgers HL, Kleefstra N et al (2008) Skin autofluorescence: a tool to identify type 2 diabetic patients at risk for developing microvascular complications. Diabetes Care 31:517–521CrossRefPubMed
9.
Zurück zum Zitat Group AtCCRiDS (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008:2545–2559 Group AtCCRiDS (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008:2545–2559
10.
Zurück zum Zitat Group AC (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008:2560–2572 Group AC (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008:2560–2572
11.
Zurück zum Zitat Zoungas S, Chalmers J, Neal B et al (2014) Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 371:1392–1406CrossRefPubMed Zoungas S, Chalmers J, Neal B et al (2014) Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 371:1392–1406CrossRefPubMed
12.
Zurück zum Zitat Palmer SC, Mavridis D, Navarese E et al (2015) Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 385:2047–2056CrossRefPubMed Palmer SC, Mavridis D, Navarese E et al (2015) Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 385:2047–2056CrossRefPubMed
13.
Zurück zum Zitat Cho YH, Craig ME, Davis EA et al (2015) Cardiac autonomic dysfunction is associated with high-risk albumin-to-creatinine ratio in young adolescents with type 1 diabetes in AdDIT (adolescent type 1 diabetes cardio-renal interventional trial). Diabetes Care 38:676–681CrossRefPubMed Cho YH, Craig ME, Davis EA et al (2015) Cardiac autonomic dysfunction is associated with high-risk albumin-to-creatinine ratio in young adolescents with type 1 diabetes in AdDIT (adolescent type 1 diabetes cardio-renal interventional trial). Diabetes Care 38:676–681CrossRefPubMed
14.
Zurück zum Zitat Maftei O, Pena AS, Sullivan T et al (2014) Early atherosclerosis relates to urinary albumin excretion and cardiovascular risk factors in adolescents with type 1 diabetes: Adolescent type 1 Diabetes cardio-renal Intervention Trial (AdDIT). Diabetes Care 37:3069–3075CrossRefPubMed Maftei O, Pena AS, Sullivan T et al (2014) Early atherosclerosis relates to urinary albumin excretion and cardiovascular risk factors in adolescents with type 1 diabetes: Adolescent type 1 Diabetes cardio-renal Intervention Trial (AdDIT). Diabetes Care 37:3069–3075CrossRefPubMed
15.
Zurück zum Zitat Marcovecchio ML, Woodside J, Jones T et al (2014) Adolescent type 1 diabetes cardio-renal intervention trial (AdDIT): urinary screening and baseline biochemical and cardiovascular assessments. Diabetes Care 37:805–813CrossRefPubMed Marcovecchio ML, Woodside J, Jones T et al (2014) Adolescent type 1 diabetes cardio-renal intervention trial (AdDIT): urinary screening and baseline biochemical and cardiovascular assessments. Diabetes Care 37:805–813CrossRefPubMed
16.
Zurück zum Zitat Mauer M, Zinman B, Gardiner R, et al. (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361 Mauer M, Zinman B, Gardiner R, et al. (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361
17.
Zurück zum Zitat Bergenstal RM (2015) Glycemic variability and diabetes complications: does it matter? Simply put, there are better glycemic markers! Diabetes Care 38:1615–1621CrossRefPubMed Bergenstal RM (2015) Glycemic variability and diabetes complications: does it matter? Simply put, there are better glycemic markers! Diabetes Care 38:1615–1621CrossRefPubMed
19.
Zurück zum Zitat Correia LC, Latado A, Porzsolt F (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:1798PubMed Correia LC, Latado A, Porzsolt F (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:1798PubMed
20.
Zurück zum Zitat Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772CrossRefPubMed Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772CrossRefPubMed
22.
Zurück zum Zitat Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMed Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMed
23.
Zurück zum Zitat Wang Z, Ying Z, Bosy-Westphal A et al (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377CrossRefPubMedPubMedCentral Wang Z, Ying Z, Bosy-Westphal A et al (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Coughlan MT, Nguyen TV, Penfold SA et al (2016) Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin Sci 130:711–720CrossRefPubMed Coughlan MT, Nguyen TV, Penfold SA et al (2016) Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin Sci 130:711–720CrossRefPubMed
25.
Zurück zum Zitat Hallan S, Sharma K (2016) The role of mitochondria in diabetic kidney disease. Curr Diab Rep 16:61CrossRefPubMed Hallan S, Sharma K (2016) The role of mitochondria in diabetic kidney disease. Curr Diab Rep 16:61CrossRefPubMed
26.
Zurück zum Zitat Dugan LL, You YH, Ali SS et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899CrossRefPubMedPubMedCentral Dugan LL, You YH, Ali SS et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Persson MF, Franzen S, Catrina SB et al (2012) Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes. Diabetologia 55:1535–1543CrossRefPubMed Persson MF, Franzen S, Catrina SB et al (2012) Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes. Diabetologia 55:1535–1543CrossRefPubMed
28.
Zurück zum Zitat Sourris KC, Harcourt BE, Tang PH et al (2012) Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med 52:716–723CrossRefPubMed Sourris KC, Harcourt BE, Tang PH et al (2012) Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med 52:716–723CrossRefPubMed
29.
Zurück zum Zitat Chacko BK, Reily C, Srivastava A et al (2010) Prevention of diabetic nephropathy in Ins2+/˗AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochem J 432:9–19CrossRefPubMedPubMedCentral Chacko BK, Reily C, Srivastava A et al (2010) Prevention of diabetic nephropathy in Ins2+/˗AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochem J 432:9–19CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Hou Y, Li S, Wu M et al (2016) Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Ren Physiol 310:F547–F559CrossRef Hou Y, Li S, Wu M et al (2016) Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Ren Physiol 310:F547–F559CrossRef
31.
Zurück zum Zitat Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV (2016) Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 90:997–1011CrossRefPubMed Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV (2016) Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 90:997–1011CrossRefPubMed
32.
Zurück zum Zitat Sas KM, Kayampilly P, Byun J et al (2016) Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 1:e86976CrossRefPubMedPubMedCentral Sas KM, Kayampilly P, Byun J et al (2016) Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 1:e86976CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Stadler K, Goldberg IJ, Susztak K (2015) The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep 15:40CrossRefPubMedPubMedCentral Stadler K, Goldberg IJ, Susztak K (2015) The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep 15:40CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Coughlan MT, Sharma K (2016) Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int 90:272–279CrossRefPubMed Coughlan MT, Sharma K (2016) Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int 90:272–279CrossRefPubMed
35.
Zurück zum Zitat Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454CrossRefPubMed Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454CrossRefPubMed
36.
Zurück zum Zitat The Diabetes Control and Complications Trial Research Group (1997) Clustering of long-term complications in families with diabetes in the Diabetes Control and Complications Trial. Diabetes 46: 1829–1839 The Diabetes Control and Complications Trial Research Group (1997) Clustering of long-term complications in families with diabetes in the Diabetes Control and Complications Trial. Diabetes 46: 1829–1839
37.
Zurück zum Zitat Langefeld CD, Beck SR, Bowden DW, Rich SS, Wagenknecht LE, Freedman BI (2004) Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am J Kidney Dis 43:796–800CrossRefPubMed Langefeld CD, Beck SR, Bowden DW, Rich SS, Wagenknecht LE, Freedman BI (2004) Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am J Kidney Dis 43:796–800CrossRefPubMed
38.
Zurück zum Zitat Hietala K, Forsblom C, Summanen P, Groop P-H, on behalf of the FinnDiane Study Group (2008) Heritability of proliferative diabetic retinopathy. Diabetes 57:2176–2180CrossRefPubMedPubMedCentral Hietala K, Forsblom C, Summanen P, Groop P-H, on behalf of the FinnDiane Study Group (2008) Heritability of proliferative diabetic retinopathy. Diabetes 57:2176–2180CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Ma RCW (2016) Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig 7:139–154CrossRefPubMed Ma RCW (2016) Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig 7:139–154CrossRefPubMed
40.
41.
Zurück zum Zitat Martini S, Nair V, Patel SR et al (2013) From single nucleotide polymorphism to transcriptional mechanism: a model for FRMD3 in diabetic nephropathy. Diabetes 62:2605–2612CrossRefPubMedPubMedCentral Martini S, Nair V, Patel SR et al (2013) From single nucleotide polymorphism to transcriptional mechanism: a model for FRMD3 in diabetic nephropathy. Diabetes 62:2605–2612CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Kato M, Natarajan R (2014) Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530CrossRefPubMed Kato M, Natarajan R (2014) Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530CrossRefPubMed
43.
Zurück zum Zitat Beltrami C, Angelini TG, Emanueli C (2015) Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 89:42–50CrossRefPubMed Beltrami C, Angelini TG, Emanueli C (2015) Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 89:42–50CrossRefPubMed
44.
Zurück zum Zitat Reddy MA, Das S, Zhuo C et al (2016) Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by miR-504. Arterioscler Thromb Vasc Biol 36:864–873CrossRefPubMedPubMedCentral Reddy MA, Das S, Zhuo C et al (2016) Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by miR-504. Arterioscler Thromb Vasc Biol 36:864–873CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Sapienza C, Lee J, Powell J et al (2011) DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6:20–28CrossRefPubMed Sapienza C, Lee J, Powell J et al (2011) DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6:20–28CrossRefPubMed
46.
Zurück zum Zitat Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:1 Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:1
47.
Zurück zum Zitat Brennan EP, Ehrich M, OʼDonovan H et al (2010) DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics 5:396–401CrossRefPubMed Brennan EP, Ehrich M, OʼDonovan H et al (2010) DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics 5:396–401CrossRefPubMed
48.
Zurück zum Zitat Ko Y-A, Mohtat D, Suzuki M et al (2013) Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 14:R108CrossRefPubMedPubMedCentral Ko Y-A, Mohtat D, Suzuki M et al (2013) Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 14:R108CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Estruch R, Ros E, Salas-Salvadó J et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368:1279–1290CrossRefPubMed Estruch R, Ros E, Salas-Salvadó J et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368:1279–1290CrossRefPubMed
50.
Zurück zum Zitat Griffin JL, Wang X, Stanley E (2015) Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet 8:187–191CrossRefPubMedPubMedCentral Griffin JL, Wang X, Stanley E (2015) Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet 8:187–191CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMed Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMed
52.
Zurück zum Zitat Davari S, Talaei SA, Alaei H, Salami M (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience 240:287–296CrossRefPubMed Davari S, Talaei SA, Alaei H, Salami M (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience 240:287–296CrossRefPubMed
Metadaten
Titel
Vascular complications in diabetes: old messages, new thoughts
verfasst von
Josephine M. Forbes
Amelia K. Fotheringham
Publikationsdatum
19.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 11/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4360-x

Weitere Artikel der Ausgabe 11/2017

Diabetologia 11/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.