Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2018

Open Access 01.12.2018 | Research article

Vascular endothelial growth factor expression and their action in the synovial membranes of patients with painful knee osteoarthritis

verfasst von: Shotaro Takano, Kentaro Uchida, Gen Inoue, Toshihide Matsumoto, Jun Aikawa, Dai Iwase, Manabu Mukai, Masayuki Miyagi, Masashi Takaso

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2018

Abstract

Background

Research suggests that vascular endothelial growth factor (VEGF) levels in the synovial fluid of knee osteoarthritis (KOA) patients are positively correlated with KOA severity. The relationship between synovial VEGF levels and pain in human KOA patients is not fully understood, and the role of VEGF in the pain pathway remains unclear.

Methods

We harvested synovial membrane (SM) from 102 patients with radiographic evidence of KOA (unilateral Kellgren/Lawrence [K/L] grade 2–4) during total knee arthroplasty. Patients scored their pain on a 0 to 10 cm visual analog scale (VAS). VEGF levels in the SM of KOA patients with strong/severe (VAS ≥ 6) and mild/moderate pain (VAS < 6) were compared. Correlations between VAS and VEGF mRNA expression were investigated. To investigate a possible mechanism for VEGF-induced pain, the distribution of VEGF and the neuropeptide apelin was determined by immunohistochemical analyses. To investigate the role of VEGF in regulating apelin expression, SM cells were exposed to VEGF.

Results

VEGF expression in the VAS ≥ 6 group was significantly greater than expression in the VAS < 6 group. Expression levels of VEGF were also positively correlated with VAS. VEGF-positive cells were identified in the lining of the SM. Expression of apelin mRNA and protein were significantly elevated in SM cells treated with exogenous VEGF compared to those treated with vehicle.

Conclusion

Synovial VEGF may be involved in pain pathways in KOA and its action may be mediated by apelin.
Abkürzungen
BCA
Bicinchoninic acid
BMI
Body mass index
CGRP
Calcitonin gene-related peptide
K/L
Kellgren/Lawrence
KOA
Knee osteoarthritis
NGF
Nerve growth factor
NSAIDs
Nonsteroidal anti-inflammatory drugs
OA
Osteoarthritis
PVDF
Polyvinylidene fluoride
SE
Standard error
SF
Synovial fluid
SM
Synovial membrane
SMCs
Synovial membrane cells
VAS
Visual analog scale
VEGF
Vascular endothelial growth factor

Background

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability worldwide. This disability is largely due to pain, a major symptom of the condition. Pain contributes to functional limitations and reduces quality of life [14]. Largely because of pain, lower extremity OA is well recognized as the leading cause of mobility impairment in older adults [5]. Pharmacologic treatment options for OA are centered around the relief of pain and support for functional improvement in patients. Nevertheless, the efficacy of treatments such as nonsteroidal anti-inflammatory drugs (NSAIDs) can be limited, and can cause significant adverse effects such as cardiorenal and gastrointestinal toxicity [6, 7]. It is therefore important to establish the mechanisms underlying OA pain to aid in drug development for OA treatment.
Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis, and also a contributor to inflammation. VEGF in OA patients has been found to be elevated in the synovial membrane (SM) [811], subchondral bone [1214], synovial fluid (SF) [1518], serum [1619], and articular cartilage [2028]. In particular, VEGF is strongly expressed in synovial lining cells in OA patients [29]. Intraarticular injection of anti-VEGF antibody reduced synovial inflammation in a rabbit OA model [30]. Several studies have suggested that SF and plasma VEGF concentrations in OA patients correlate with OA severity [16, 17]. In addition, recent studies have reported that VEGF contributes to pain in a rodent neuropathic pain model [3134] and cancer pain model [35]. The exact relationship between VEGF expression in SM and pain in human KOA patients is not fully understood.
Recent studies have suggested that several neuropeptides, such as calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF), in the SM are involved in the OA pain pathway [3639]. Apelin is a recognized member of the adipose-secreted cytokine family and is initially secreted as a pre-propeptide of 77 amino acid residues, which is then cleaved into a number of active forms [40]. The apelin signaling pathway was shown to play a major role in the development of the functional vascular network [41] and apelin expression was elevated in endothelial cell culture following VEGF stimulation [42]. Several studies also showed that apelin can regulate peripheral pain sensitivity mediated by apelin receptors (APJ) and GABAA receptors [21, 43]. Hu et al. reported that apelin concentration in SF is increased in OA patients [44]. These observations led us to investigate the role of VEGF in regulating apelin in SM and its contribution to the OA pain pathway.
We investigated the relationship between VEGF expression in SM and pain in knee osteoarthritis (KOA) patients. In addition, we investigated whether VEGF regulates apelin expression in the SM.

Methods

Patients

This study was approved by the Institutional Review Board for Clinical Research and Treatment in Kitasato University (approval No. B13–113). Sample size was determined with a power analysis for an alpha of 0.05 and power of 0.80 using G*POWER3. Patients scored their pain on a 0 to 10 cm visual analog scale (VAS). Power analysis showed that 44 SM samples of patients with VAS < 6 and 58 SM samples of patients with VAS ≥ 6 were required to identify a difference in VEGF expression between the two groups. SM samples were harvested from 102 patients undergoing total knee arthroplasty. The study enrolled 22 men and 80 women (age 46–89 years, mean ± standard error (SE) = 73.2 ± 0.8 years; body mass index (BMI) range 18.4–36.7, mean ± SE = 26.0 ± 0.4 kg/m2) with radiographic evidence of KOA (unilateral Kellgren/Lawrence [K/L] grades 2 (3/102, 2.9%), 3 (36/102, 35.3%) and 4 (63/102, 61.8%)). All patients provided informed consent for participation in this study 1 day before surgery. SM samples were harvested intraoperatively from the suprapatellar pouch of each operated knee and immediately stored frozen in liquid nitrogen at − 80 °C until required for extraction of RNA. SM samples obtained from six patients were used for cell culture. The remaining samples were fixed in 4% paraformaldehyde phosphate-buffered solution (Nacalai Tesque, Kyoto, Japan) for 72 h for use in histological analysis.

Quantitative polymerase chain reaction (qPCR) analysis

Extraction of total RNA from SM and cultured SM cells and cDNA synthesis was conducted as reported previously [45]. PCR primer pair sequences for use in qPCR analysis were: VEGF-Forward (5′- TTGCCTTGCTGCTCTACCTC-3′) and VEGF-Reverse (5′- AGCTGCGCTGATAGACATCC-3′) for VEGF amplification (product size: 117 bp); apelin-Forward (5′- GAATCTGCGGCTCTGCGT-3′) and apelin-Reverse (5′- CATCAGGGACCCTCCACACA-3′) for apelin amplification (product size: 76 bp); and GAPDH-Forward (5′-TGTTGCCATCAATGACCCCTT-3′) and GAPDH-Reverse (5′-CTCCACGACGTACTCAGCG-3′) for GAPDH amplification (product size: 223 bp). Specificity of the qPCR products was evaluated using melting curve analysis. Relative mRNA expression levels of VEGF and apelin were evaluated using qPCR (CFX-96®, Bio-Rad, Richmond CA, USA). Expression levels of VEGF and apelin mRNA were normalized to the expression of the housekeeping gene, GAPDH.
Expression levels of VEGF mRNA were compared between the strong/severe (VAS ≥ 6) and mild/moderate pain (VAS < 6) groups (Table 1), using VAS = 6 as a cutoff based on previous reports [39, 46, 47]. The correlation between VAS levels and VEGF mRNA expression was also determined. Relative VEGF expression was calculated based on the mean of all samples of the VAS < 6 group.
Table 1
Characteristics of patients in VAS < 6 and VAS ≥ 6 groups
Characteristic
VAS < 6 (n = 44)
VAS ≥ 6 (n = 58)
Age (y)
74.2 ± 1.1
72.3 ± 1.2
Male/Female, n
12/32
10/48
BMI (kg/m2)
25.5 ± 0.6
26.3 ± 0.6
Number of patients with Kellgren/Lawrence grade 2, 3, 4
3, 14, 27
0, 22, 36
VAS (cm)
3.7 ± 0.2
8.4 ± 0.2
Data are mean ± standard error unless otherwise indicated
BMI body mass index, VAS visual analogue pain scale
To investigate the relationship between VEGF and K/L grades, the 102 knee OA patients were divided into three groups based on their K/L grade (2, 3, or 4). The clinical characteristics of patients in each of these groups are shown in Table 2. Relative VEGF expression was calculated based on the mean of all samples of the K/L2 group.
Table 2
Clinical characteristics of patients (K/L 2, 3 and 4)
Characteristic
K/L2 (n = 3)
K/L3 (n = 36)
K/L4 (n = 63)
Age (y)
72.0 ± 2.6
72.0 ± 4.2
73.9 ± 8.4
Male/Female, n
1/2
9/27
12/51
BMI (kg/m2)
25.8 ± 3.4
26.4 ± 4.3
25.7 ± 4.1
VAS (cm)
3.7 ± 2.5
6.9 ± 2.6
6.2 ± 2.6
Data are mean ± standard error unless otherwise indicated
BMI body mass index, VAS visual analogue pain scale, K/L Kellgren/Lawrence grade

Immunohistochemistry

Following fixation, SM samples were embedded in paraffin, sectioned at 3 μm thickness, then deparaffinized (Clear Plus®, FALMA, Tokyo, Japan) and pretreated with sodium citrate buffer (pH 6.0) containing 0.1% polyoxyethylene sorbitan monolaurate (Nacalai Tesque, Kyoto, Japan) at 98 °C for 20 min for antigen retrieval. The sections were subsequently washed three times with phosphate-buffered saline for 5 min and incubated with rabbit polyclonal anti-VEGF antibody (1:100 dilution; Santa Cruz Biotechnology Inc., Santa Cruz CA, USA) and mouse monoclonal anti-apelin antibody (1:100 dilution; Santa Cruz Biotechnology) for 4 h at 4 °C. The sections were additionally incubated with Alexa 488 Fluor®-conjugated goat anti-rabbit IgG antibody (1:100 dilution; Thermo Fisher Scientific, Waltham MA, USA) and Alexa 594 Fluor®-conjugated goat anti-mouse IgG antibody (1:100 dilution; Thermo Fisher Scientific) for 1 h at room temperature. The distribution of fluorescence in SM sections was analyzed using a fluorescence microscope (Axiovert 200®, Zeiss, Jena, Germany).

Synovial membrane cell culture

Synovial membrane cells (SMCs) were isolated from 500 mg SM using 40 mL of a 1 mg/mL collagenase solution. The SMCs were incubated in α-minimal essential media (α-MEM; Nacalai Tesque) containing 10% fetal bovine serum in six-well plates. After 1 week, the SMCs were incubated with vehicle (serum free α-MEM) or 10 or 100 ng/mL human recombinant VGEF (Biolegend, San Diego CA, USA) for 24 h. Subsequently, total mRNA and protein were extracted and used in western blotting and qPCR analysis. Relative expression was calculated based on the mean of all samples of the vehicle-treated group.

Western blotting for apelin

To investigate the regulation of apelin by VEGF, SMCs harvested from six patients were stimulated with 1 ng/mL or 10 ng/mL VEGF for 24 h. Using methodology described elsewhere [48], SMCs were lysed in radioimmunoprecipitation buffer (Thermo Fisher Scientific) containing a protease inhibitor cocktail (Sigma-Aldrich, St. Louis MO, USA). Protein concentration was determined for each cell extract using a bicinchoninic acid (BCA) assay (Thermo Fisher Scientific). A total of 30 μg of each protein was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretically transferred to polyvinyl difluoride membranes. These membranes were then blocked with polyvinylidene fluoride (PVDF) blocking reagent (DS Pharma Biomedical, Suita, Japan) for 1 h and incubated overnight at 4 °C with mouse monoclonal primary antibody against apelin (1:200 dilution; Santa Cruz Biotechnology Inc.). The membranes were washed with Tris-buffered saline containing 0.05% Tween and then incubated with horseradish peroxidase-conjugated anti mouse IgG (1:1000 dilution; GE Healthcare, Piscataway NJ, USA). Apelin proteins were visualized by chemiluminescence using an enhanced chemiluminescence detection system (GE Healthcare) and exposure of the membranes to x-ray film. Bands were quantified by densitometric scanning using ImageJ software (NIH, Bethesda MD, USA). Densitometry levels of apelin proteins were normalized against that of β-actin.

Statistical analysis

Differences in VEGF expression between the VAS < 6 and VAS ≥ 6 groups were compared using the Mann-Whitney U-test. Differences in VEGF expression among K/L2, 3 and 4 subjects were compared using the Kruskal-Wallis test. Tukey’s multiple comparisons test was used to compare vehicle control and VEGF-treated cells. The relationship between VEGF expression and VAS was evaluated using Spearman’s correlation coefficient. All statistical analyses were conducted using SPSS software (v. 19.0; SPSS, Chicago IL, USA), with a P value < 0.05 considered statistically significant for all analyses.

Results

Relationship between VEGF expression and VAS

The VAS ≥ 6 and VAS < 6 groups did not differ with regard to patient age, male/female ratio, BMI, or KL 2/3/4 ratio (Table 1). qPCR analysis showed that VEGF expression in the SM was significantly higher in the VAS ≥ 6 group than the VAS < 6 group (Fig. 1a, P < 0.05). VEGF levels were also positively correlated with VAS (Fig. 1b, ρ = 0.346, P < 0.05).

Relationship between VEGF expression and K/L grades

The three K/L grade groups did not differ with regard to patient age, male/female ratio, BMI, or VAS (Table 2). There was no difference in synovial VEGF expression among the K/L2, 3 and 4 groups (Fig. 2).

Distribution of VEGF and apelin in the SMs of KOA patients

Immunohistochemical analysis was conducted to investigate the distribution of VEGF and apelin in the SMs of KOA patients (Fig. 3). Immunostaining showed that VEGF and apelin protein were both expressed in the synovial lining layers (Fig. 3).

Effects of VEGF on apelin expression in SMCs

qPCR analysis showed that the expression of apelin mRNA increased significantly in SMCs following 10 and 100 ng/mL VEGF stimulation (1.73-fold and 1.69-fold, respectively, P < 0.05; Fig. 4). Western blotting analysis showed that the expression of apelin was significantly increased in SMCs in the presence of exogenously added 10 and 100 ng/mL VEGF (1.85-fold and 1.56-fold, respectively, P < 0.05; Fig. 5a and b).

Discussion

In the SM of KOA patients, VEGF mRNA expression in the VAS ≥ 6 group was significantly higher than that in the VAS < 6 group. VEGF and apelin were both expressed in the synovial lining layers and VEGF stimulated apelin mRNA and protein expression in SM cell culture. Together, these findings indicate that VEGF expression in SM may be involved in knee pain via apelin in KOA patients.
Several studies have reported that VEGF may contribute to chronic pain conditions [31, 32, 49]. Injection of VEGF in spinal cord-injured rats causes mechanical allodynia [49]. VEGF neutralization in rat chronic constriction injury (CCI) models attenuates chronic pain behavior by reducing the VEGF receptor expression level in dorsal root ganglia to inhibit neuropathic pain signaling [32]. Perineural injection of a VEGF inhibitor inhibited tactile allodynia and thermal hyperalgesia caused by partial sciatic nerve ligation [31]. Here, KOA patients who experienced severe/strong pain showed increased VEGF expression levels in SM. These findings suggest that synovial VEGF seems to play an important role in the pain pathway associated with KOA.
Several studies have reported that VEGF regulates apelin expression in vitro and in vivo [42, 50, 51]. VEGF stimulates apelin mRNA in human umbilical venous endothelial cells in vitro [50]. Local injection of bevacizumab, an anti-VEGF antibody, inhibits apelin expression in monkeys with occlusion of the central retinal vein [51]. Apelin-APJ systems are located in the central and peripheral nervous systems [52, 53]. In the central nervous system, apelin and its receptors have been detected in pain-associated regions. Previous studies have reported that intrathecal injection of apelin-13 (the isoform that binds most strongly to the APJ) induces hyperalgesia [21], and when “intrathecal administration of ML221, an APJ blocker, was used, this transiently reduced CCI-induced pain hypersensitivity” [43]. In addition, higher apelin concentrations in serum and SF were found in OA patients compared to non-OA patients [44]. Here, VEGF stimulated apelin mRNA and protein expression in SMCs, suggesting that further investigation of a direct link between apelin and pain may explain the mechanism underlying VEGF-induced OA pain.
A number of limitations of this study warrant mention. First, the absence of a non-KOA control patient population reduces the certainty of our results. Additional evaluations aimed at confirming whether VEGF levels are raised in the SMs of KOA patients compared to non-KOA patients are needed. Second, whether SMCs extracted from OA knees will behave the same as SMCs from healthy knees when treated with VEGF remains to be determined. Third, although our findings support the idea that altered VEGF levels in SMs are associated with KOA pain, whether a direct causative link exists between VEGF and apelin remains to be clarified. Finally, the relationship between apelin and pain in SMs was not determined.

Conclusions

Elevated VEGF expression in SMs was associated with an increase in pain in KOA patients with severe/strong pain. VEGF may regulate apelin expression in SMCs. The present findings suggest that altering the regulation of VEGF and apelin expression in SMs may represent a promising and suitable pharmaceutical strategy for the management of KOA pain.

Acknowledgements

We thank Ms. Yuko Onuki for her assistance with real time PCR analysis. We thank Libby Cone, MD, MA, and Heidi Tran, PhD, from DMC Corp. (dmed.​co.​jp) for editing drafts of this manuscript.

Funding

This investigation was supported in part by a Kitasato University Research Grant for Young Researchers, Grant of Japan Orthopaedics and Traumatology Research Foundation, Inc. No. 373, JSPS KAKENHI Grant No. 18K09119, and research grants from the Parents’ Association of Kitasato University School of Medicine.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article. The raw data can be requested from the corresponding author.
This study was approved by the Ethics Review Board of Kitasato University (reference number: KMEO B13-113). Written consent to participate was obtained from the all participants for the harvesting of their synovial tissue for use in this study.
Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ayis S, Dieppe P. The natural history of disability and its determinants in adults with lower limb musculoskeletal pain. J Rheumatol. 2009;36(3):583–91.CrossRefPubMed Ayis S, Dieppe P. The natural history of disability and its determinants in adults with lower limb musculoskeletal pain. J Rheumatol. 2009;36(3):583–91.CrossRefPubMed
2.
Zurück zum Zitat Dominick KL, Ahern FM, Gold CH, Heller DA. Health-related quality of life and health service use among older adults with osteoarthritis. Arthritis Rheum. 2004;51(3):326–31.CrossRefPubMed Dominick KL, Ahern FM, Gold CH, Heller DA. Health-related quality of life and health service use among older adults with osteoarthritis. Arthritis Rheum. 2004;51(3):326–31.CrossRefPubMed
3.
4.
5.
Zurück zum Zitat Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, Kelly-Hayes M, Wolf PA, Kreger BE, Kannel WB. The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am J Public Health. 1994;84(3):351–8.CrossRefPubMedPubMedCentral Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, Kelly-Hayes M, Wolf PA, Kreger BE, Kannel WB. The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am J Public Health. 1994;84(3):351–8.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Johnsen SP, Larsson H, Tarone RE, McLaughlin JK, Norgard B, Friis S, Sorensen HT. Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study. Arch Intern Med. 2005;165(9):978–84.CrossRefPubMed Johnsen SP, Larsson H, Tarone RE, McLaughlin JK, Norgard B, Friis S, Sorensen HT. Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study. Arch Intern Med. 2005;165(9):978–84.CrossRefPubMed
7.
Zurück zum Zitat Whelton A. Renal and related cardiovascular effects of conventional and COX-2-specific NSAIDs and non-NSAID analgesics. Am J Ther. 2000;7(2):63–74.CrossRefPubMed Whelton A. Renal and related cardiovascular effects of conventional and COX-2-specific NSAIDs and non-NSAID analgesics. Am J Ther. 2000;7(2):63–74.CrossRefPubMed
8.
Zurück zum Zitat Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, Harris AL, Koukourakis MI. Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2003;5(4):R193–201.CrossRefPubMedPubMedCentral Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, Harris AL, Koukourakis MI. Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2003;5(4):R193–201.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, Walsh DA. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48(8):2173–7.CrossRefPubMed Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, Walsh DA. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48(8):2173–7.CrossRefPubMed
10.
Zurück zum Zitat Jackson JR, Minton JA, Ho ML, Wei N, Winkler JD. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol. 1997;24(7):1253–9.PubMed Jackson JR, Minton JA, Ho ML, Wei N, Winkler JD. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol. 1997;24(7):1253–9.PubMed
11.
Zurück zum Zitat Lambert C, Mathy-Hartert M, Dubuc JE, Montell E, Verges J, Munaut C, Noel A, Henrotin Y. Characterization of synovial angiogenesis in osteoarthritis patients and its modulation by chondroitin sulfate. Arthritis Res Ther. 2012;14(2):R58.CrossRefPubMedPubMedCentral Lambert C, Mathy-Hartert M, Dubuc JE, Montell E, Verges J, Munaut C, Noel A, Henrotin Y. Characterization of synovial angiogenesis in osteoarthritis patients and its modulation by chondroitin sulfate. Arthritis Res Ther. 2012;14(2):R58.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Corrado A, Neve A, Cantatore FP. Expression of vascular endothelial growth factor in normal, osteoarthritic and osteoporotic osteoblasts. Clin Exp Med. 2013;13(1):81–4.CrossRefPubMed Corrado A, Neve A, Cantatore FP. Expression of vascular endothelial growth factor in normal, osteoarthritic and osteoporotic osteoblasts. Clin Exp Med. 2013;13(1):81–4.CrossRefPubMed
13.
Zurück zum Zitat Huh JE, Seo DM, Baek YH, Choi DY, Park DS, Lee JD. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts. Int Immunopharmacol. 2010;10(4):500–7.CrossRefPubMed Huh JE, Seo DM, Baek YH, Choi DY, Park DS, Lee JD. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts. Int Immunopharmacol. 2010;10(4):500–7.CrossRefPubMed
14.
Zurück zum Zitat Neve A, Cantatore FP, Corrado A, Gaudio A, Ruggieri S, Ribatti D. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regul Pept. 2013;184:81–4.CrossRefPubMed Neve A, Cantatore FP, Corrado A, Gaudio A, Ruggieri S, Ribatti D. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regul Pept. 2013;184:81–4.CrossRefPubMed
15.
Zurück zum Zitat Fay J, Varoga D, Wruck CJ, Kurz B, Goldring MB, Pufe T. Reactive oxygen species induce expression of vascular endothelial growth factor in chondrocytes and human articular cartilage explants. Arthritis Res Ther. 2006;8(6):R189.CrossRefPubMedPubMedCentral Fay J, Varoga D, Wruck CJ, Kurz B, Goldring MB, Pufe T. Reactive oxygen species induce expression of vascular endothelial growth factor in chondrocytes and human articular cartilage explants. Arthritis Res Ther. 2006;8(6):R189.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Mabey T, Honsawek S, Saetan N, Poovorawan Y, Tanavalee A, Yuktanandana P. Angiogenic cytokine expression profiles in plasma and synovial fluid of primary knee osteoarthritis. Int Orthop. 2014;38(9):1885–92.CrossRefPubMed Mabey T, Honsawek S, Saetan N, Poovorawan Y, Tanavalee A, Yuktanandana P. Angiogenic cytokine expression profiles in plasma and synovial fluid of primary knee osteoarthritis. Int Orthop. 2014;38(9):1885–92.CrossRefPubMed
17.
Zurück zum Zitat Saetan N, Honsawek S, Tanavalee A, Yuktanandana P, Meknavin S, Ngarmukos S, Tanpowpong T, Parkpian V. Relationship of plasma and synovial fluid vascular endothelial growth factor with radiographic severity in primary knee osteoarthritis. Int Orthop. 2014;38(5):1099–104.CrossRefPubMed Saetan N, Honsawek S, Tanavalee A, Yuktanandana P, Meknavin S, Ngarmukos S, Tanpowpong T, Parkpian V. Relationship of plasma and synovial fluid vascular endothelial growth factor with radiographic severity in primary knee osteoarthritis. Int Orthop. 2014;38(5):1099–104.CrossRefPubMed
18.
Zurück zum Zitat Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, Lindstrom TM, Hwang I, Boyer KA, Andriacchi TP, Robinson WH. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis Res Ther. 2012;14(1):R7.CrossRefPubMedPubMedCentral Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, Lindstrom TM, Hwang I, Boyer KA, Andriacchi TP, Robinson WH. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis Res Ther. 2012;14(1):R7.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Ballara S, Taylor PC, Reusch P, Marme D, Feldmann M, Maini RN, Paleolog EM. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 2001;44(9):2055–64.CrossRefPubMed Ballara S, Taylor PC, Reusch P, Marme D, Feldmann M, Maini RN, Paleolog EM. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 2001;44(9):2055–64.CrossRefPubMed
20.
Zurück zum Zitat Cui RR, Mao DA, Yi L, Wang C, Zhang XX, Xie H, Wu XP, Liao XB, Zhou H, Meng JC, Yuan LQ, Liao EY. Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids. 2010;39(5):1193–200.CrossRefPubMed Cui RR, Mao DA, Yi L, Wang C, Zhang XX, Xie H, Wu XP, Liao XB, Zhou H, Meng JC, Yuan LQ, Liao EY. Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids. 2010;39(5):1193–200.CrossRefPubMed
21.
Zurück zum Zitat Lv S, Yang YJ, Hong S, Wang N, Qin Y, Li W, Chen Q. Intrathecal apelin-13 produced different actions in formalin test and tail-flick test in mice. Protein Pept Lett. 2013;20(8):926–31.CrossRefPubMed Lv S, Yang YJ, Hong S, Wang N, Qin Y, Li W, Chen Q. Intrathecal apelin-13 produced different actions in formalin test and tail-flick test in mice. Protein Pept Lett. 2013;20(8):926–31.CrossRefPubMed
22.
Zurück zum Zitat Lv SY, Qin YJ, Wang NB, Yang YJ, Chen Q. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model. Peptides. 2012;37(1):165–70.CrossRefPubMed Lv SY, Qin YJ, Wang NB, Yang YJ, Chen Q. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model. Peptides. 2012;37(1):165–70.CrossRefPubMed
23.
Zurück zum Zitat Perjes A, Skoumal R, Tenhunen O, Konyi A, Simon M, Horvath IG, Kerkela R, Ruskoaho H, Szokodi I. Apelin increases cardiac contractility via protein kinase Cepsilon- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One. 2014;9(4):e93473.CrossRefPubMedPubMedCentral Perjes A, Skoumal R, Tenhunen O, Konyi A, Simon M, Horvath IG, Kerkela R, Ruskoaho H, Szokodi I. Apelin increases cardiac contractility via protein kinase Cepsilon- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One. 2014;9(4):e93473.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Reaux A, Gallatz K, Palkovits M, Llorens-Cortes C. Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience. 2002;113(3):653–62.CrossRefPubMed Reaux A, Gallatz K, Palkovits M, Llorens-Cortes C. Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience. 2002;113(3):653–62.CrossRefPubMed
25.
Zurück zum Zitat Reaux A, De MN, Skultetyova I, Lenkei Z, El MS, Gallatz K, Corvol P, Palkovits M, Llorens-Cortes C. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085–96.CrossRefPubMed Reaux A, De MN, Skultetyova I, Lenkei Z, El MS, Gallatz K, Corvol P, Palkovits M, Llorens-Cortes C. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085–96.CrossRefPubMed
26.
Zurück zum Zitat Smith TP, Schlenz AM, Schatz JC, Maitra R, Sweitzer SM. Modulation of pain in pediatric sickle cell disease: understanding the balance between endothelin mediated vasoconstriction and apelin mediated vasodilation. Blood Cells Mol Dis. 2015;54(2):155–9.CrossRefPubMed Smith TP, Schlenz AM, Schatz JC, Maitra R, Sweitzer SM. Modulation of pain in pediatric sickle cell disease: understanding the balance between endothelin mediated vasoconstriction and apelin mediated vasodilation. Blood Cells Mol Dis. 2015;54(2):155–9.CrossRefPubMed
27.
Zurück zum Zitat Than A, Cheng Y, Foh LC, Leow MK, Lim SC, Chuah YJ, Kang Y, Chen P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol. 2012;362(1–2):227–41.CrossRefPubMed Than A, Cheng Y, Foh LC, Leow MK, Lim SC, Chuah YJ, Kang Y, Chen P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol. 2012;362(1–2):227–41.CrossRefPubMed
28.
Zurück zum Zitat Xu N, Wang H, Fan L, Chen Q. Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides. 2009;30(6):1153–7.CrossRefPubMed Xu N, Wang H, Fan L, Chen Q. Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides. 2009;30(6):1153–7.CrossRefPubMed
29.
Zurück zum Zitat Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken RA, Gatter KC, Harris AL, Koukourakis IM, Koukourakis MI. The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J Pathol. 2001;194(1):101–8.CrossRefPubMed Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken RA, Gatter KC, Harris AL, Koukourakis IM, Koukourakis MI. The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J Pathol. 2001;194(1):101–8.CrossRefPubMed
30.
Zurück zum Zitat Nagai T, Sato M, Kobayashi M, Yokoyama M, Tani Y, Mochida J. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis. Arthritis Res Ther. 2014;16(5):427.CrossRefPubMedPubMedCentral Nagai T, Sato M, Kobayashi M, Yokoyama M, Tani Y, Mochida J. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis. Arthritis Res Ther. 2014;16(5):427.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kiguchi N, Kobayashi Y, Kadowaki Y, Fukazawa Y, Saika F, Kishioka S. Vascular endothelial growth factor signaling in injured nerves underlies peripheral sensitization in neuropathic pain. J Neurochem. 2014;129(1):169–78.CrossRefPubMed Kiguchi N, Kobayashi Y, Kadowaki Y, Fukazawa Y, Saika F, Kishioka S. Vascular endothelial growth factor signaling in injured nerves underlies peripheral sensitization in neuropathic pain. J Neurochem. 2014;129(1):169–78.CrossRefPubMed
32.
Zurück zum Zitat Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S. VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X(2)(/)(3) receptor of primary sensory neurons. Brain Res Bull. 2010;83(5):284–91.CrossRefPubMed Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S. VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X(2)(/)(3) receptor of primary sensory neurons. Brain Res Bull. 2010;83(5):284–91.CrossRefPubMed
33.
Zurück zum Zitat Liu S, Xu C, Li G, Liu H, Xie J, Tu G, Peng H, Qiu S, Liang S. Vatalanib decrease the positive interaction of VEGF receptor-2 and P2X2/3 receptor in chronic constriction injury rats. Neurochem Int. 2012;60(6):565–72.CrossRefPubMed Liu S, Xu C, Li G, Liu H, Xie J, Tu G, Peng H, Qiu S, Liang S. Vatalanib decrease the positive interaction of VEGF receptor-2 and P2X2/3 receptor in chronic constriction injury rats. Neurochem Int. 2012;60(6):565–72.CrossRefPubMed
34.
Zurück zum Zitat Malykhina AP, Lei Q, Erickson CS, Epstein ML, Saban MR, Davis CA, Saban R. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity. BMC Physiol. 2012;12:15.CrossRefPubMedPubMedCentral Malykhina AP, Lei Q, Erickson CS, Epstein ML, Saban MR, Davis CA, Saban R. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity. BMC Physiol. 2012;12:15.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Selvaraj D, Gangadharan V, Michalski CW, Kurejova M, Stosser S, Srivastava K, Schweizerhof M, Waltenberger J, Ferrara N, Heppenstall P, Shibuya M, Augustin HG, Kuner R. A functional role for VEGFR1 expressed in peripheral sensory neurons in Cancer pain. Cancer Cell. 2015;27(6):780–96.CrossRefPubMedPubMedCentral Selvaraj D, Gangadharan V, Michalski CW, Kurejova M, Stosser S, Srivastava K, Schweizerhof M, Waltenberger J, Ferrara N, Heppenstall P, Shibuya M, Augustin HG, Kuner R. A functional role for VEGFR1 expressed in peripheral sensory neurons in Cancer pain. Cancer Cell. 2015;27(6):780–96.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Takano S, Uchida K, Miyagi M, Inoue G, Fujimaki H, Aikawa J, Iwase D, Minatani A, Iwabuchi K, Takaso M. Nerve growth factor regulation by TNF-alpha and IL-1beta in synovial macrophages and fibroblasts in osteoarthritic mice. J Immunol Res. 2016;2016:5706359.CrossRefPubMedPubMedCentral Takano S, Uchida K, Miyagi M, Inoue G, Fujimaki H, Aikawa J, Iwase D, Minatani A, Iwabuchi K, Takaso M. Nerve growth factor regulation by TNF-alpha and IL-1beta in synovial macrophages and fibroblasts in osteoarthritic mice. J Immunol Res. 2016;2016:5706359.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Takano S, Uchida K, Miyagi M, Inoue G, Aikawa J, Fujimaki H, Minatani A, Sato M, Iwabuchi K, Takaso M. Synovial macrophage-derived IL-1beta regulates the calcitonin receptor in osteoarthritic mice. Clin Exp Immunol. 2016;183(1):143–9.CrossRefPubMed Takano S, Uchida K, Miyagi M, Inoue G, Aikawa J, Fujimaki H, Minatani A, Sato M, Iwabuchi K, Takaso M. Synovial macrophage-derived IL-1beta regulates the calcitonin receptor in osteoarthritic mice. Clin Exp Immunol. 2016;183(1):143–9.CrossRefPubMed
38.
Zurück zum Zitat Takano S, Uchida K, Inoue G, Miyagi M, Aikawa J, Iwase D, Iwabuchi K, Matsumoto T, Satoh M, Mukai M, Minatani A, Takaso M. Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin Exp Immunol. 2017;190:235–43.CrossRefPubMed Takano S, Uchida K, Inoue G, Miyagi M, Aikawa J, Iwase D, Iwabuchi K, Matsumoto T, Satoh M, Mukai M, Minatani A, Takaso M. Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin Exp Immunol. 2017;190:235–43.CrossRefPubMed
39.
Zurück zum Zitat Takano S, Uchida K, Inoue G, Minatani A, Miyagi M, Aikawa J, Iwase D, Onuma K, Mukai M, Takaso M. Increase and regulation of synovial calcitonin gene-related peptide expression in patients with painful knee osteoarthritis. J Pain Res. 2017;10:1099–104.CrossRefPubMedPubMedCentral Takano S, Uchida K, Inoue G, Minatani A, Miyagi M, Aikawa J, Iwase D, Onuma K, Mukai M, Takaso M. Increase and regulation of synovial calcitonin gene-related peptide expression in patients with painful knee osteoarthritis. J Pain Res. 2017;10:1099–104.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471–6.CrossRefPubMed Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471–6.CrossRefPubMed
41.
Zurück zum Zitat Kunduzova O, Alet N, esque-Touchard N, Millet L, Castan-Laurell I, Muller C, Dray C, Schaeffer P, Herault JP, Savi P, Bono F, Valet P. Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J. 2008;22(12):4146–53.CrossRefPubMed Kunduzova O, Alet N, esque-Touchard N, Millet L, Castan-Laurell I, Muller C, Dray C, Schaeffer P, Herault JP, Savi P, Bono F, Valet P. Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J. 2008;22(12):4146–53.CrossRefPubMed
43.
Zurück zum Zitat Xiong Q, He W, Wang H, Zhou J, Zhang Y, He J, Yang C, Zhang B. Effect of the spinal apelinAPJ system on the pathogenesis of chronic constriction injuryinduced neuropathic pain in rats. Mol Med Rep. 2017;16:1223–31.CrossRefPubMedPubMedCentral Xiong Q, He W, Wang H, Zhou J, Zhang Y, He J, Yang C, Zhang B. Effect of the spinal apelinAPJ system on the pathogenesis of chronic constriction injuryinduced neuropathic pain in rats. Mol Med Rep. 2017;16:1223–31.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Hu PF, Tang JL, Chen WP, Bao JP, Wu LD. Increased apelin serum levels and expression in human chondrocytes in osteoarthritic patients. Int Orthop. 2011;35(9):1421–6.CrossRefPubMed Hu PF, Tang JL, Chen WP, Bao JP, Wu LD. Increased apelin serum levels and expression in human chondrocytes in osteoarthritic patients. Int Orthop. 2011;35(9):1421–6.CrossRefPubMed
45.
Zurück zum Zitat Minatani A, Uchida K, Inoue G, Takano S, Aikawa J, Miyagi M, Fujimaki H, Iwase D, Onuma K, Matsumoto T, Takaso M. Activation of calcitonin gene-related peptide signaling through the prostaglandin E2-EP1/EP2/EP4 receptor pathway in synovium of knee osteoarthritis patients. J Orthop Surg Res. 2016;11(1):117.CrossRefPubMedPubMedCentral Minatani A, Uchida K, Inoue G, Takano S, Aikawa J, Miyagi M, Fujimaki H, Iwase D, Onuma K, Matsumoto T, Takaso M. Activation of calcitonin gene-related peptide signaling through the prostaglandin E2-EP1/EP2/EP4 receptor pathway in synovium of knee osteoarthritis patients. J Orthop Surg Res. 2016;11(1):117.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72(1–2):95–7.CrossRefPubMed Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72(1–2):95–7.CrossRefPubMed
47.
Zurück zum Zitat rendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-Nielsen T. Sensitization in patients with painful knee osteoarthritis. Pain. 2010;149(3):573–81.CrossRef rendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-Nielsen T. Sensitization in patients with painful knee osteoarthritis. Pain. 2010;149(3):573–81.CrossRef
48.
Zurück zum Zitat Uchida K, Takano S, Matsumoto T, Nagura N, Inoue G, Itakura M, Miyagi M, Aikawa J, Iwase D, Minatani A, Fujimaki H, Takaso M. Transforming growth factor activating kinase 1 regulates extracellular matrix degrading enzymes and pain-related molecule expression following tumor necrosis factor-alpha stimulation of synovial cells: an in vitro study. BMC Musculoskelet Disord. 2017;18(1):283.CrossRefPubMedPubMedCentral Uchida K, Takano S, Matsumoto T, Nagura N, Inoue G, Itakura M, Miyagi M, Aikawa J, Iwase D, Minatani A, Fujimaki H, Takaso M. Transforming growth factor activating kinase 1 regulates extracellular matrix degrading enzymes and pain-related molecule expression following tumor necrosis factor-alpha stimulation of synovial cells: an in vitro study. BMC Musculoskelet Disord. 2017;18(1):283.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Nesic O, Sundberg LM, Herrera JJ, Mokkapati VU, Lee J, Narayana PA. Vascular endothelial growth factor and spinal cord injury pain. J Neurotrauma. 2010;27(10):1793–803.CrossRefPubMedPubMedCentral Nesic O, Sundberg LM, Herrera JJ, Mokkapati VU, Lee J, Narayana PA. Vascular endothelial growth factor and spinal cord injury pain. J Neurotrauma. 2010;27(10):1793–803.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A. Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun. 2004;325(2):395–400.CrossRefPubMed Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A. Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun. 2004;325(2):395–400.CrossRefPubMed
51.
Zurück zum Zitat Zhao T, Lu Q, Tao Y, Liang XY, Wang K, Jiang YR. Effects of apelin and vascular endothelial growth factor on central retinal vein occlusion in monkey eyes intravitreally injected with bevacizumab: a preliminary study. Mol Vis. 2011;17:1044–55.PubMedPubMedCentral Zhao T, Lu Q, Tao Y, Liang XY, Wang K, Jiang YR. Effects of apelin and vascular endothelial growth factor on central retinal vein occlusion in monkey eyes intravitreally injected with bevacizumab: a preliminary study. Mol Vis. 2011;17:1044–55.PubMedPubMedCentral
52.
Zurück zum Zitat Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M. Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta. 2001;1538(2–3):162–71.CrossRefPubMed Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M. Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta. 2001;1538(2–3):162–71.CrossRefPubMed
53.
Zurück zum Zitat Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, Herrity NC, Murdock P, Darker JG. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem. 2003;84(5):1162–72.CrossRefPubMed Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, Herrity NC, Murdock P, Darker JG. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem. 2003;84(5):1162–72.CrossRefPubMed
Metadaten
Titel
Vascular endothelial growth factor expression and their action in the synovial membranes of patients with painful knee osteoarthritis
verfasst von
Shotaro Takano
Kentaro Uchida
Gen Inoue
Toshihide Matsumoto
Jun Aikawa
Dai Iwase
Manabu Mukai
Masayuki Miyagi
Masashi Takaso
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2018
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2127-2

Weitere Artikel der Ausgabe 1/2018

BMC Musculoskeletal Disorders 1/2018 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.