Skip to main content
Erschienen in: Angiogenesis 3/2016

01.04.2016 | Original Paper

VEGF receptor-2-specific signaling mediated by VEGF-E induces hemangioma-like lesions in normal and in malignant tissue

verfasst von: Ernesta Fagiani, Pascal Lorentz, Ruben Bill, Kirusigan Pavotbawan, Lucie Kopfstein, Gerhard Christofori

Erschienen in: Angiogenesis | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Viral VEGF-E (ovVEGF-E), a homolog of VEGF-A, was discovered in the genome of Orf virus. Together with VEGF-A, B, C, D, placental growth factor (PlGF) and snake venom VEGF (svVEGF), ovVEGF-E is a member of the VEGF family of potent angiogenesis factors with a bioactivity similar to VEGF-A: it induces proliferation, migration and sprouting of cultured vascular endothelial cells and proliferative lesions in the skin of sheep, goat and man that are characterized by massive capillary proliferation and dilation. These biological functions are mediated exclusively via its interaction with VEGF receptor-2 (VEGFR-2). Here, we have generated transgenic mice specifically expressing ovVEGF-E in β-cells of the endocrine pancreas (Rip1VEGF-E; RVE). RVE mice show an increase in number and size of the islets of Langerhans and a distorted organization of insulin and glucagon-expressing cells. Islet endothelial cells of RVE mice hyper-proliferate and form increased numbers of functional blood vessels. In addition, the formation of disorganized lymphatic vessels and increased immune cell infiltration is observed. Upon crossing RVE single-transgenic mice with Rip1Tag2 (RT2) transgenic mice, a well-studied model of pancreatic β-cell carcinogenesis, double-transgenic mice (RT2;RVE) display hyper-proliferation of endothelial cells resulting in the formation of hemangioma-like lesions. In addition, RT2;RVE mice exhibit activated lymphangiogenesis at the tumor periphery and increased neutrophil and macrophage tumor infiltration and micro-metastasis to lymph nodes and lungs. These phenotypes markedly differ from the phenotypes observed with the transgenic expression of the other VEGF family members in β-cells of normal mice and of RT2 mice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
5.
Zurück zum Zitat Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. doi:10.1038/380435a0 CrossRefPubMed Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. doi:10.​1038/​380435a0 CrossRefPubMed
6.
Zurück zum Zitat Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi:10.1038/380439a0 CrossRefPubMed Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi:10.​1038/​380439a0 CrossRefPubMed
7.
10.
Zurück zum Zitat Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66. doi:10.1038/376062a0 CrossRefPubMed Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66. doi:10.​1038/​376062a0 CrossRefPubMed
11.
Zurück zum Zitat Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95(16):9349–9354CrossRefPubMedPubMedCentral Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95(16):9349–9354CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70. doi:10.1038/376066a0 CrossRefPubMed Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70. doi:10.​1038/​376066a0 CrossRefPubMed
13.
Zurück zum Zitat Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J, Ema H, Fong GH, Shibuya M (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 28(4):658–664. doi:10.1161/ATVBAHA.107.150433 CrossRefPubMed Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J, Ema H, Fong GH, Shibuya M (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 28(4):658–664. doi:10.​1161/​ATVBAHA.​107.​150433 CrossRefPubMed
17.
Zurück zum Zitat Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8(12):942–956. doi:10.1038/nrc2524 CrossRefPubMed Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8(12):942–956. doi:10.​1038/​nrc2524 CrossRefPubMed
18.
Zurück zum Zitat Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, VandenDriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583. doi:10.1038/87904 CrossRefPubMed Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, VandenDriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583. doi:10.​1038/​87904 CrossRefPubMed
19.
Zurück zum Zitat Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475. doi:10.1016/j.cell.2007.08.038 CrossRefPubMed Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475. doi:10.​1016/​j.​cell.​2007.​08.​038 CrossRefPubMed
20.
Zurück zum Zitat Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla- Herttuala S (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6):845–856. doi:10.1161/CIRCULATIONAHA.108.816454 CrossRefPubMed Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla- Herttuala S (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6):845–856. doi:10.​1161/​CIRCULATIONAHA.​108.​816454 CrossRefPubMed
21.
Zurück zum Zitat Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. doi:10.1038/nature08945 CrossRefPubMed Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. doi:10.​1038/​nature08945 CrossRefPubMed
22.
Zurück zum Zitat Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL, Fox SB (2001) VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 193(3):325–332. doi:10.1002/path.814 CrossRefPubMed Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL, Fox SB (2001) VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 193(3):325–332. doi:10.​1002/​path.​814 CrossRefPubMed
23.
Zurück zum Zitat Gunningham SP, Currie MJ, Han C, Turner K, Scott PA, Robinson BA, Harris AL, Fox SB (2001) Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 61(7):3206–3211PubMed Gunningham SP, Currie MJ, Han C, Turner K, Scott PA, Robinson BA, Harris AL, Fox SB (2001) Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 61(7):3206–3211PubMed
24.
Zurück zum Zitat Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, Fox SB (2003) The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200(2):183–194. doi:10.1002/path.1339 CrossRefPubMed Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, Fox SB (2003) The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200(2):183–194. doi:10.​1002/​path.​1339 CrossRefPubMed
25.
Zurück zum Zitat Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network f ormation. Nature 454(7204):656–660. doi:10.1038/nature07083 CrossRefPubMed Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network f ormation. Nature 454(7204):656–660. doi:10.​1038/​nature07083 CrossRefPubMed
27.
Zurück zum Zitat Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80. doi:10.1038/ni1013 CrossRefPubMed Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80. doi:10.​1038/​ni1013 CrossRefPubMed
29.
Zurück zum Zitat Kurahara H, Takao S, Maemura K, Shinchi H, Natsugoe S, Aikou T (2004) Impact of vascular endothelial growth factor-C and -D expression in human pancreatic cancer: its relationship to lymph node metastasis. Clin Cancer Res 10(24):8413–8420. doi:10.1158/1078-0432.CCR-04-0379 CrossRefPubMed Kurahara H, Takao S, Maemura K, Shinchi H, Natsugoe S, Aikou T (2004) Impact of vascular endothelial growth factor-C and -D expression in human pancreatic cancer: its relationship to lymph node metastasis. Clin Cancer Res 10(24):8413–8420. doi:10.​1158/​1078-0432.​CCR-04-0379 CrossRefPubMed
30.
Zurück zum Zitat Jiang HG, Gao M, Tang WP, Li FH, Cai QZ (2005) Expression and significance of VEGF, VEGF-C, and VEGF-D in papillary thyroid carcinoma. Ai Zheng 24(9):1136–1139PubMed Jiang HG, Gao M, Tang WP, Li FH, Cai QZ (2005) Expression and significance of VEGF, VEGF-C, and VEGF-D in papillary thyroid carcinoma. Ai Zheng 24(9):1136–1139PubMed
31.
Zurück zum Zitat Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68(1):84–92PubMedPubMedCentral Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68(1):84–92PubMedPubMedCentral
32.
Zurück zum Zitat Haig DM, Mercer AA (1998) Ovine diseases. Orf Vet Res 29(3–4):311–326PubMed Haig DM, Mercer AA (1998) Ovine diseases. Orf Vet Res 29(3–4):311–326PubMed
33.
Zurück zum Zitat Rziha HJ, Henkel M, Cottone R, Meyer M, Dehio C, Buttner M (1999) Parapoxviruses: potential alternative vectors for directing the immune response in permissive and non- permissive hosts. J Biotechnol 73(2–3):235–242CrossRefPubMed Rziha HJ, Henkel M, Cottone R, Meyer M, Dehio C, Buttner M (1999) Parapoxviruses: potential alternative vectors for directing the immune response in permissive and non- permissive hosts. J Biotechnol 73(2–3):235–242CrossRefPubMed
34.
Zurück zum Zitat Tan ST, Blake GB, Chambers S (1991) Recurrent orf in an immunocompromised host. Br J Plast Surg 44(6):465–467CrossRefPubMed Tan ST, Blake GB, Chambers S (1991) Recurrent orf in an immunocompromised host. Br J Plast Surg 44(6):465–467CrossRefPubMed
35.
Zurück zum Zitat Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18(2):363–374. doi:10.1093/emboj/18.2.363 CrossRefPubMedPubMedCentral Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18(2):363–374. doi:10.​1093/​emboj/​18.​2.​363 CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273(47):31273–31282CrossRefPubMed Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273(47):31273–31282CrossRefPubMed
37.
Zurück zum Zitat Wise LM, Veikkola T, Mercer AA, Savory LJ, Fleming SB, Caesar C, Vitali A, Makinen T, Alitalo K, Stacker SA (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 96(6):3071–3076CrossRefPubMedPubMedCentral Wise LM, Veikkola T, Mercer AA, Savory LJ, Fleming SB, Caesar C, Vitali A, Makinen T, Alitalo K, Stacker SA (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 96(6):3071–3076CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP- 1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J Off Publ Fed Am Soc Exp Biol 22(8):3078–3086. doi:10.1096/fj.08-107219 Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP- 1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J Off Publ Fed Am Soc Exp Biol 22(8):3078–3086. doi:10.​1096/​fj.​08-107219
39.
40.
Zurück zum Zitat Kiba A, Sagara H, Hara T, Shibuya M (2003) VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Commun 301(2):371–377CrossRefPubMed Kiba A, Sagara H, Hara T, Shibuya M (2003) VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Commun 301(2):371–377CrossRefPubMed
41.
Zurück zum Zitat Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122CrossRefPubMed Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122CrossRefPubMed
42.
Zurück zum Zitat Labosky PA, Barlow DP, Hogan BL (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182:157–168 discussion 168–178 PubMed Labosky PA, Barlow DP, Hogan BL (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182:157–168 discussion 168–178 PubMed
43.
Zurück zum Zitat Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169PubMed Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169PubMed
44.
Zurück zum Zitat Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G (2002) Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 62(2):603–608PubMed Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G (2002) Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 62(2):603–608PubMed
46.
Zurück zum Zitat Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812CrossRefPubMed Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812CrossRefPubMed
47.
48.
Zurück zum Zitat Ohzato H, Gotoh M, Monden M, Dono K, Kanai T, Mori T (1991) Improvement in islet yield from a cold-preserved pancreas by pancreatic ductal collagenase distention at the time of harvesting. Transplantation 51(3):566–570CrossRefPubMed Ohzato H, Gotoh M, Monden M, Dono K, Kanai T, Mori T (1991) Improvement in islet yield from a cold-preserved pancreas by pancreatic ductal collagenase distention at the time of harvesting. Transplantation 51(3):566–570CrossRefPubMed
50.
Zurück zum Zitat Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC, Lord DJ, Mitchel S, Powell J, Prendiville J, Vikkula M, Board I, Scientific C (2015) Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 136(1):e203–e214. doi:10.1542/peds.2014-3673 CrossRefPubMed Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC, Lord DJ, Mitchel S, Powell J, Prendiville J, Vikkula M, Board I, Scientific C (2015) Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 136(1):e203–e214. doi:10.​1542/​peds.​2014-3673 CrossRefPubMed
52.
Zurück zum Zitat Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY (2003) Platelet- derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162(4):1083–1093. doi:10.1016/S0002-9440(10)63905-3 CrossRefPubMedPubMedCentral Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY (2003) Platelet- derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162(4):1083–1093. doi:10.​1016/​S0002-9440(10)63905-3 CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846CrossRefPubMed Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846CrossRefPubMed
54.
Zurück zum Zitat Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90(16):7533–7537CrossRefPubMedPubMedCentral Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90(16):7533–7537CrossRefPubMedPubMedCentral
55.
57.
Zurück zum Zitat Bates DO, Harper SJ (2002) Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 39(4–5):225–237CrossRef Bates DO, Harper SJ (2002) Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 39(4–5):225–237CrossRef
58.
Zurück zum Zitat Wise LM, Ueda N, Dryden NH, Fleming SB, Caesar C, Roufail S, Achen MG, Stacker SA, Mercer AA (2003) Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. J Biol Chem 278(39):38004–38014. doi:10.1074/jbc.M301194200 CrossRefPubMed Wise LM, Ueda N, Dryden NH, Fleming SB, Caesar C, Roufail S, Achen MG, Stacker SA, Mercer AA (2003) Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. J Biol Chem 278(39):38004–38014. doi:10.​1074/​jbc.​M301194200 CrossRefPubMed
59.
Zurück zum Zitat Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22):7758–7768CrossRefPubMedPubMedCentral Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22):7758–7768CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64(23):8630–8638. doi:10.1158/0008-5472.CAN-04-2523 CrossRefPubMed Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64(23):8630–8638. doi:10.​1158/​0008-5472.​CAN-04-2523 CrossRefPubMed
61.
Zurück zum Zitat Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682. doi:10.1093/emboj/20.4.672 CrossRefPubMedPubMedCentral Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682. doi:10.​1093/​emboj/​20.​4.​672 CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189. doi:10.1016/j.cell.2005.10.036 CrossRefPubMed Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189. doi:10.​1016/​j.​cell.​2005.​10.​036 CrossRefPubMed
68.
Zurück zum Zitat Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14(11):1236–1246. doi:10.1038/nm.1877 CrossRefPubMedPubMedCentral Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14(11):1236–1246. doi:10.​1038/​nm.​1877 CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K (2004) PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104(10):3198–3204. doi:10.1182/blood-2004-04-1485 CrossRefPubMed Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K (2004) PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104(10):3198–3204. doi:10.​1182/​blood-2004-04-1485 CrossRefPubMed
71.
Zurück zum Zitat Schomber T, Kopfstein L, Djonov V, Albrecht I, Baeriswyl V, Strittmatter K, Christofori G (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67(22):10840–10848. doi:10.1158/0008-5472.CAN-07-1034 CrossRefPubMed Schomber T, Kopfstein L, Djonov V, Albrecht I, Baeriswyl V, Strittmatter K, Christofori G (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67(22):10840–10848. doi:10.​1158/​0008-5472.​CAN-07-1034 CrossRefPubMed
72.
Zurück zum Zitat Albrecht I, Kopfstein L, Strittmatter K, Schomber T, Falkevall A, Hagberg CE, Lorentz P, Jeltsch M, Alitalo K, Eriksson U, Christofori G, Pietras K (2010) Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS One 5(11):e14109. doi:10.1371/journal.pone.0014109 CrossRefPubMedPubMedCentral Albrecht I, Kopfstein L, Strittmatter K, Schomber T, Falkevall A, Hagberg CE, Lorentz P, Jeltsch M, Alitalo K, Eriksson U, Christofori G, Pietras K (2010) Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS One 5(11):e14109. doi:10.​1371/​journal.​pone.​0014109 CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Marcellini M, De Luca N, Riccioni T, Ciucci A, Orecchia A, Lacal PM, Ruffini F, Pesce M, Cianfarani F, Zambruno G, Orlandi A, Failla CM (2006) Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am J Pathol 169(2):643–654. doi:10.2353/ajpath.2006.051041 CrossRefPubMedPubMedCentral Marcellini M, De Luca N, Riccioni T, Ciucci A, Orecchia A, Lacal PM, Ruffini F, Pesce M, Cianfarani F, Zambruno G, Orlandi A, Failla CM (2006) Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am J Pathol 169(2):643–654. doi:10.​2353/​ajpath.​2006.​051041 CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274(45):32127–32136CrossRefPubMed Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274(45):32127–32136CrossRefPubMed
75.
Zurück zum Zitat Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949CrossRefPubMed Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949CrossRefPubMed
76.
Zurück zum Zitat Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570CrossRefPubMedPubMedCentral Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412CrossRefPubMed Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412CrossRefPubMed
78.
Zurück zum Zitat Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM (2004) Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun 324(2):909–915. doi:10.1016/j.bbrc.2004.08.237 CrossRefPubMed Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM (2004) Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun 324(2):909–915. doi:10.​1016/​j.​bbrc.​2004.​08.​237 CrossRefPubMed
79.
Zurück zum Zitat Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Soderberg O, Anisimov A, Kholova I, Pytowski B, Baldwin M, Yla-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29(8):1377–1388. doi:10.1038/emboj.2010.30 CrossRefPubMedPubMedCentral Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Soderberg O, Anisimov A, Kholova I, Pytowski B, Baldwin M, Yla-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29(8):1377–1388. doi:10.​1038/​emboj.​2010.​30 CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, non redundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1(2):193–202CrossRefPubMed Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, non redundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1(2):193–202CrossRefPubMed
81.
Zurück zum Zitat Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, Witte L, Zhu Z (2005) A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 4(3):427–434. doi:10.1158/1535-7163.MCT-04-0261 PubMed Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, Witte L, Zhu Z (2005) A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 4(3):427–434. doi:10.​1158/​1535-7163.​MCT-04-0261 PubMed
82.
Zurück zum Zitat Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC, Swartz MA (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97(1):14–21. doi:10.1093/jnci/dji003 CrossRefPubMed Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC, Swartz MA (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97(1):14–21. doi:10.​1093/​jnci/​dji003 CrossRefPubMed
83.
Zurück zum Zitat Orleth A, Mamot C, Rochlitz C, Ritschard R, Alitalo K, Christofori G, Wicki A (2016) Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Target 24(1):80–89. doi:10.3109/1061186X.2015.1056189 PubMed Orleth A, Mamot C, Rochlitz C, Ritschard R, Alitalo K, Christofori G, Wicki A (2016) Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Target 24(1):80–89. doi:10.​3109/​1061186X.​2015.​1056189 PubMed
Metadaten
Titel
VEGF receptor-2-specific signaling mediated by VEGF-E induces hemangioma-like lesions in normal and in malignant tissue
verfasst von
Ernesta Fagiani
Pascal Lorentz
Ruben Bill
Kirusigan Pavotbawan
Lucie Kopfstein
Gerhard Christofori
Publikationsdatum
01.04.2016
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 3/2016
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9508-7

Weitere Artikel der Ausgabe 3/2016

Angiogenesis 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.