Skip to main content
main-content

05.12.2018 | Computed Tomography

Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning

Zeitschrift:
European Radiology
Autoren:
Urs J. Muehlematter, Manoj Mannil, Anton S. Becker, Kerstin N. Vokinger, Tim Finkenstaedt, Georg Osterhoff, Michael A. Fischer, Roman Guggenberger
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00330-018-5846-8) contains supplementary material, which is available to authorized users.

Abstract

Purpose

To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.

Materials and methods

Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques.

Results

One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67).

Conclusion

TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.

Key Points

• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy.
• Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction.
• This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
ESM 1 (DOCX 20 kb)
330_2018_5846_MOESM1_ESM.docx
Literatur
Über diesen Artikel
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

11.01.2019 | Klinik aktuell | Nachrichten | Onlineartikel

Ein Fünftel mehr Organspender

09.01.2019 | IT für Ärzte | Nachrichten | Onlineartikel

AU-Bescheinigungen via Whatsapp

21.12.2018 | Gesundheitspolitik | Nachrichten | Onlineartikel

„Ärzte zu oft auf dem Golfplatz“

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise