Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2019

05.12.2018

Vildagliptin, an Anti-diabetic Drug of the DPP-4 Inhibitor, Induces Vasodilation via Kv Channel and SERCA Pump Activation in Aortic Smooth Muscle

verfasst von: Mi Seon Seo, Hongliang Li, Jin Ryeol An, In Duk Jung, Won-Kyo Jung, Kwon-Soo Ha, Eun-Taek Han, Seok-Ho Hong, Il-Whan Choi, Won Sun Park

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

This study investigated vildagliptin-induced vasodilation and its related mechanisms using phenylephrine induced precontracted rabbit aortic rings. Vildagliptin induced vasodilation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+-activated K+ channel blocker paxilline, ATP-sensitive K+ channel blocker glibenclamide, and inwardly rectifying K+ channel blocker Ba2+ did not affect the vasodilatory effects of vildagliptin. However, application of the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine significantly reduced the vasodilatory effects of vildagliptin. In addition, application of either of two sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, thapsigargin or cyclopiazonic acid, effectively inhibited the vasodilatory effects of vildagliptin. These vasodilatory effects were not affected by pretreatment with adenylyl cyclase, protein kinase A (PKA), guanylyl cyclase, or protein kinase G (PKG) inhibitors, or by removal of the endothelium. From these results, we concluded that vildagliptin induced vasodilation via activation of Kv channels and the SERCA pump. However, other K+ channels, PKA/PKG-related signaling cascades associated with vascular dilation, and the endothelium were not involved in vildagliptin-induced vasodilation.
Literatur
1.
Zurück zum Zitat Ogurtsova, K., da J. D. Fernandes, Huang, Y., et al. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50.CrossRefPubMed Ogurtsova, K., da J. D. Fernandes, Huang, Y., et al. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50.CrossRefPubMed
2.
Zurück zum Zitat Clemens, K. K., Shariff, S., Liu, K., et al. (2015). Trends in antihyperglycemic medication prescriptions and hypoglycemia in older adults: 2002–2013. PLoS ONE, 10, e0137596.CrossRefPubMedPubMedCentral Clemens, K. K., Shariff, S., Liu, K., et al. (2015). Trends in antihyperglycemic medication prescriptions and hypoglycemia in older adults: 2002–2013. PLoS ONE, 10, e0137596.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat McIntosh, C. H., Demuth, H. U., Pospisilik, J. A., et al. (2005). Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regulatory Peptides, 128, 159–165.CrossRefPubMed McIntosh, C. H., Demuth, H. U., Pospisilik, J. A., et al. (2005). Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regulatory Peptides, 128, 159–165.CrossRefPubMed
4.
Zurück zum Zitat van Poppel, P. C., Netea, M. G., Smits, P., et al. (2011). Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care, 34, 2072–2077.CrossRefPubMedPubMedCentral van Poppel, P. C., Netea, M. G., Smits, P., et al. (2011). Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care, 34, 2072–2077.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Nelson, M. T., & Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268(4 Pt 1), C799–C822.CrossRefPubMed Nelson, M. T., & Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268(4 Pt 1), C799–C822.CrossRefPubMed
6.
Zurück zum Zitat Standen, N. B., & Quayle, J. M. (1998). K+ channel modulation in arterial smooth muscle. Acta Physiologica Scandinavica, 164, 549–557.CrossRefPubMed Standen, N. B., & Quayle, J. M. (1998). K+ channel modulation in arterial smooth muscle. Acta Physiologica Scandinavica, 164, 549–557.CrossRefPubMed
7.
Zurück zum Zitat Yuan, X. J. (1995). Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circulation Research, 77, 370–378.CrossRefPubMed Yuan, X. J. (1995). Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circulation Research, 77, 370–378.CrossRefPubMed
8.
Zurück zum Zitat Ko, E. A., Han, J., Jung, I. D., et al. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44, 65–81.CrossRefPubMed Ko, E. A., Han, J., Jung, I. D., et al. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44, 65–81.CrossRefPubMed
9.
Zurück zum Zitat Ko, E. A., Park, W. S., Firth, A. L., et al. (2010). Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. Progress in Biophysics & Molecular Biology, 103, 95–101.CrossRef Ko, E. A., Park, W. S., Firth, A. L., et al. (2010). Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. Progress in Biophysics & Molecular Biology, 103, 95–101.CrossRef
10.
Zurück zum Zitat Wu, K. D., Bungard, D., & Lytton, J. (2001). Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. American Journal of Physiology-Cell Physiology, 280, C843–C851.CrossRefPubMed Wu, K. D., Bungard, D., & Lytton, J. (2001). Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. American Journal of Physiology-Cell Physiology, 280, C843–C851.CrossRefPubMed
11.
Zurück zum Zitat Stott, J. B., Povstyan, O. V., Carr, G., et al. (2015). G-protein βγ subunits are positive regulators of Kv7. 4 and native vascular Kv7 channel activity. Proceedings of the National Academy of Sciences United States of America, 112, 6497–6502.CrossRef Stott, J. B., Povstyan, O. V., Carr, G., et al. (2015). G-protein βγ subunits are positive regulators of Kv7. 4 and native vascular Kv7 channel activity. Proceedings of the National Academy of Sciences United States of America, 112, 6497–6502.CrossRef
12.
Zurück zum Zitat Morrish, N. J., Wang, S. L., Stevens, L. K., et al. (2001). Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia, 44, S14–S21.CrossRef Morrish, N. J., Wang, S. L., Stevens, L. K., et al. (2001). Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia, 44, S14–S21.CrossRef
13.
Zurück zum Zitat Sowers, J. R., Epstein, M., & Frohlich, E. D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension, 37, 1053–1059.CrossRefPubMed Sowers, J. R., Epstein, M., & Frohlich, E. D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension, 37, 1053–1059.CrossRefPubMed
14.
Zurück zum Zitat Nissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New England Journal of Medicine, 356, 2457–2471.CrossRefPubMed Nissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New England Journal of Medicine, 356, 2457–2471.CrossRefPubMed
15.
Zurück zum Zitat Hernandez, A. V., Usmani, A., Rajamanickam, A., et al. (2011). Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: A meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. American Journal of Cardiovascular Drugs, 11, 115–128.CrossRefPubMed Hernandez, A. V., Usmani, A., Rajamanickam, A., et al. (2011). Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: A meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. American Journal of Cardiovascular Drugs, 11, 115–128.CrossRefPubMed
16.
Zurück zum Zitat Zimmerman, B. R. (1997). Sulfonylureas. Endocrinology and Metabolism Clinics of North America, 26, 511–522.CrossRefPubMed Zimmerman, B. R. (1997). Sulfonylureas. Endocrinology and Metabolism Clinics of North America, 26, 511–522.CrossRefPubMed
17.
Zurück zum Zitat Black, C., Donnelly, P., McIntyre, L., et al. (2007). Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 18, CD004654. Black, C., Donnelly, P., McIntyre, L., et al. (2007). Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 18, CD004654.
18.
Zurück zum Zitat McInnes, G., Evans, M., Del Prato, S., et al. (2015). Cardiovascular and heart failure safety profile of vildagliptin: A meta-analysis of 17 000 patients. Diabetes, Obesity and Metabolism, 17, 1085–1092.CrossRefPubMed McInnes, G., Evans, M., Del Prato, S., et al. (2015). Cardiovascular and heart failure safety profile of vildagliptin: A meta-analysis of 17 000 patients. Diabetes, Obesity and Metabolism, 17, 1085–1092.CrossRefPubMed
19.
Zurück zum Zitat Foley, J. E., & Jordan, J. (2010). Weight neutrality with the DPP-4 inhibitor, vildagliptin: Mechanistic basis and clinical experience. Vascular Health and Risk Management, 6, 541–548.CrossRefPubMedPubMedCentral Foley, J. E., & Jordan, J. (2010). Weight neutrality with the DPP-4 inhibitor, vildagliptin: Mechanistic basis and clinical experience. Vascular Health and Risk Management, 6, 541–548.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Dejager, S., Razac, S., Foley, J. E., et al. (2007). Vildagliptin in drug-naive patients with type 2 diabetes: A 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Hormone and Metabolic Research, 39, 218–223.CrossRefPubMed Dejager, S., Razac, S., Foley, J. E., et al. (2007). Vildagliptin in drug-naive patients with type 2 diabetes: A 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Hormone and Metabolic Research, 39, 218–223.CrossRefPubMed
21.
Zurück zum Zitat Mathieu, C., & Degrande, E. (2008). Vildagliptin: A new oral treatment for type 2 diabetes mellitus. Vascular Health and Risk Management, 4, 1349–1360.CrossRefPubMedPubMedCentral Mathieu, C., & Degrande, E. (2008). Vildagliptin: A new oral treatment for type 2 diabetes mellitus. Vascular Health and Risk Management, 4, 1349–1360.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Ahrén, B., Schweizer, A., Dejager, S., et al. (2009). Vildagliptin enhances islet responsiveness to both hyper-and hypoglycemia in patients with type 2 diabetes. Journal Of Clinical Endocrinology And Metabolism, 94, 1236–1243.CrossRefPubMed Ahrén, B., Schweizer, A., Dejager, S., et al. (2009). Vildagliptin enhances islet responsiveness to both hyper-and hypoglycemia in patients with type 2 diabetes. Journal Of Clinical Endocrinology And Metabolism, 94, 1236–1243.CrossRefPubMed
24.
Zurück zum Zitat Xu, C., Lu, Y., Tang, G., et al. (1999). Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. American Journal of Physiology, 277(5 Pt 1), G1055–G1063.PubMed Xu, C., Lu, Y., Tang, G., et al. (1999). Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. American Journal of Physiology, 277(5 Pt 1), G1055–G1063.PubMed
25.
Zurück zum Zitat Yuan, X. J., Wang, J., Juhaszova, M., et al. (1998). Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. American Journal of Physiology, 274(4 Pt 1), L621–L635.PubMed Yuan, X. J., Wang, J., Juhaszova, M., et al. (1998). Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. American Journal of Physiology, 274(4 Pt 1), L621–L635.PubMed
26.
Zurück zum Zitat Belevych, A. E., Beck, R., Tammaro, P., et al. (2002). Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovascular Research, 54, 152–161.CrossRefPubMed Belevych, A. E., Beck, R., Tammaro, P., et al. (2002). Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovascular Research, 54, 152–161.CrossRefPubMed
27.
Zurück zum Zitat Zhou, P., Fu, L., Pan, Z., et al. (2008). Testosterone deprivation by castration impairs expression of voltage-dependent potassium channels in rat aorta. European Journal of Pharmacology, 593, 87–91.CrossRefPubMed Zhou, P., Fu, L., Pan, Z., et al. (2008). Testosterone deprivation by castration impairs expression of voltage-dependent potassium channels in rat aorta. European Journal of Pharmacology, 593, 87–91.CrossRefPubMed
28.
Zurück zum Zitat Lipskaia, L., Hulot, J. S., & Lompré, A. M. (2009). Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflügers Archiv: European Journal of Physiology, 457, 673–685.CrossRefPubMed Lipskaia, L., Hulot, J. S., & Lompré, A. M. (2009). Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflügers Archiv: European Journal of Physiology, 457, 673–685.CrossRefPubMed
29.
Zurück zum Zitat Lim, J. J., Liu, Y. H., Khin, E. S., et al. (2008). Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. American Journal Of Physiology-Cell Physiology, 295, C1261–C1270.CrossRefPubMed Lim, J. J., Liu, Y. H., Khin, E. S., et al. (2008). Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. American Journal Of Physiology-Cell Physiology, 295, C1261–C1270.CrossRefPubMed
30.
Zurück zum Zitat Lincoln, T. M., Dey, N., & Sellak, H. (1985). Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: From the regulation of tone to gene expression. Journal of Applied Physiology, 91, 1421–1430.CrossRef Lincoln, T. M., Dey, N., & Sellak, H. (1985). Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: From the regulation of tone to gene expression. Journal of Applied Physiology, 91, 1421–1430.CrossRef
31.
Zurück zum Zitat Koivumäki, J. T., Takalo, J., Korhonen, T., et al. (2009). Modelling sarcoplasmic reticulum calcium ATPase and its regulation in cardiac myocytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 2181–2202.CrossRef Koivumäki, J. T., Takalo, J., Korhonen, T., et al. (2009). Modelling sarcoplasmic reticulum calcium ATPase and its regulation in cardiac myocytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 2181–2202.CrossRef
32.
Zurück zum Zitat Lüscher, T. F., Bock, H. A., Yang, Z. H., et al. (1991). Endothelium-derived relaxing and contracting factors: Perspectives in nephrology. Kidney International, 39, 575–590.CrossRefPubMed Lüscher, T. F., Bock, H. A., Yang, Z. H., et al. (1991). Endothelium-derived relaxing and contracting factors: Perspectives in nephrology. Kidney International, 39, 575–590.CrossRefPubMed
33.
Zurück zum Zitat Yetik-Anacak, G., & Catravas, J. D. (2006). Nitric oxide and the endothelium: History and impact on cardiovascular disease. Vascular Pharmacology, 45, 268–276.CrossRefPubMed Yetik-Anacak, G., & Catravas, J. D. (2006). Nitric oxide and the endothelium: History and impact on cardiovascular disease. Vascular Pharmacology, 45, 268–276.CrossRefPubMed
34.
Zurück zum Zitat Croxtall, J. D., & Keam, S. J. (2008). Vildagliptin: A review of its use in the management of type 2 diabetes mellitus. Drugs, 68, 2387–2409.CrossRefPubMed Croxtall, J. D., & Keam, S. J. (2008). Vildagliptin: A review of its use in the management of type 2 diabetes mellitus. Drugs, 68, 2387–2409.CrossRefPubMed
35.
Zurück zum Zitat Rosenstock, J., & Fitchet, M. (2008). Vildagliptin: Clinical trials programme in monotherapy and combination therapy for type 2 diabetes. International Journal of Clinical Practice, 159, 15–23.CrossRef Rosenstock, J., & Fitchet, M. (2008). Vildagliptin: Clinical trials programme in monotherapy and combination therapy for type 2 diabetes. International Journal of Clinical Practice, 159, 15–23.CrossRef
36.
Zurück zum Zitat Baetta, R., & Corsini, A. (2001). Pharmacology of dipeptidyl peptidase-4 inhibitors: Similarities and differences. Drugs, 71, 1441–1467.CrossRef Baetta, R., & Corsini, A. (2001). Pharmacology of dipeptidyl peptidase-4 inhibitors: Similarities and differences. Drugs, 71, 1441–1467.CrossRef
37.
Zurück zum Zitat He, Y. L., Wang, Y., Bullock, J. M., et al. (2007). Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. Journal of Clinical Pharmacology, 47, 633–641.CrossRefPubMed He, Y. L., Wang, Y., Bullock, J. M., et al. (2007). Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. Journal of Clinical Pharmacology, 47, 633–641.CrossRefPubMed
Metadaten
Titel
Vildagliptin, an Anti-diabetic Drug of the DPP-4 Inhibitor, Induces Vasodilation via Kv Channel and SERCA Pump Activation in Aortic Smooth Muscle
verfasst von
Mi Seon Seo
Hongliang Li
Jin Ryeol An
In Duk Jung
Won-Kyo Jung
Kwon-Soo Ha
Eun-Taek Han
Seok-Ho Hong
Il-Whan Choi
Won Sun Park
Publikationsdatum
05.12.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9496-5

Weitere Artikel der Ausgabe 3/2019

Cardiovascular Toxicology 3/2019 Zur Ausgabe