Skip to main content
Erschienen in: EcoHealth 4/2017

13.10.2017 | Original Contribution

Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats

Erschienen in: EcoHealth | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Blomberg S., Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–45.CrossRefPubMed Blomberg S., Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–45.CrossRefPubMed
Zurück zum Zitat Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910.CrossRef Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910.CrossRef
Zurück zum Zitat Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York
Zurück zum Zitat Daszak P, Plowright RK, Epstein JH, et al (2006) The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In: Disease ecology: Community Structure and Pathogen Dynamics, pp 186–201 Daszak P, Plowright RK, Epstein JH, et al (2006) The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In: Disease ecology: Community Structure and Pathogen Dynamics, pp 186–201
Zurück zum Zitat Hamede RK, Bashford J, McCallum H, Jones M (2009) Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol Lett 12:1147–1157. doi:10.1111/j.1461-0248.2009.01370.x CrossRefPubMed Hamede RK, Bashford J, McCallum H, Jones M (2009) Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol Lett 12:1147–1157. doi:10.​1111/​j.​1461-0248.​2009.​01370.​x CrossRefPubMed
Zurück zum Zitat Holmes EC, Drummond AJ (2007) The evolutionary genetics of viral emergence. In: Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission, Childs JE, Mackenzie JS, Richt JA (editors), Berlin, Heidelberg: Springer, pp 51–66CrossRef Holmes EC, Drummond AJ (2007) The evolutionary genetics of viral emergence. In: Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission, Childs JE, Mackenzie JS, Richt JA (editors), Berlin, Heidelberg: Springer, pp 51–66CrossRef
Zurück zum Zitat Jones KE, Bielby J, Cardillo M, et al (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648.CrossRef Jones KE, Bielby J, Cardillo M, et al (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648.CrossRef
Zurück zum Zitat Jones KE, Purvis A, MacLarnon A, et al (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev 77:223–59.CrossRefPubMed Jones KE, Purvis A, MacLarnon A, et al (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev 77:223–59.CrossRefPubMed
Zurück zum Zitat McCracken GF, Wilkinson GS (2000) Bat Mating Systems. In: Chrichton EG, Krutzsch PH (eds) Reproductive Biology of Bats. Academic Press, San Diego, USA, pp 321–362CrossRef McCracken GF, Wilkinson GS (2000) Bat Mating Systems. In: Chrichton EG, Krutzsch PH (eds) Reproductive Biology of Bats. Academic Press, San Diego, USA, pp 321–362CrossRef
Zurück zum Zitat Nunn CL, Scully EJ, Kutsukake N, et al (2014) Mating Competition, Promiscuity, and Life History Traits as Predictors of Sexually Transmitted Disease Risk in Primates. Int J Primatol 35:764–786. doi:10.1007/s10764-014-9781-5 CrossRef Nunn CL, Scully EJ, Kutsukake N, et al (2014) Mating Competition, Promiscuity, and Life History Traits as Predictors of Sexually Transmitted Disease Risk in Primates. Int J Primatol 35:764–786. doi:10.​1007/​s10764-014-9781-5 CrossRef
Zurück zum Zitat Paradis E, Blomberg S, Bolker B, et al. (2017) Package “ape”: Analyses of Phylogenetics and Evolution Paradis E, Blomberg S, Bolker B, et al. (2017) Package “ape”: Analyses of Phylogenetics and Evolution
Zurück zum Zitat Simmons NB (2005) Order chiroptera. In: Mammal Species of the World: A Taxonomic and Geographic Reference. John Hopkins University Press, pp 312–529 Simmons NB (2005) Order chiroptera. In: Mammal Species of the World: A Taxonomic and Geographic Reference. John Hopkins University Press, pp 312–529
Zurück zum Zitat Tian L, Liang B, Maeda K, et al (2004) Molecular studies on the classification of Miniopterus schreibersii (Chiroptera: Vespertilionidae) inferred from mitochondrial cytochrome b sequences. Folia Zool 53:303–311. Tian L, Liang B, Maeda K, et al (2004) Molecular studies on the classification of Miniopterus schreibersii (Chiroptera: Vespertilionidae) inferred from mitochondrial cytochrome b sequences. Folia Zool 53:303–311.
Zurück zum Zitat Wilkinson GS (1985) The social organization of the common vampire bat: II Mating system, genetic structure, and relatedness. Behav Ecol Sociobiol 17:123–134. Wilkinson GS (1985) The social organization of the common vampire bat: II Mating system, genetic structure, and relatedness. Behav Ecol Sociobiol 17:123–134.
Metadaten
Titel
Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats
Publikationsdatum
13.10.2017
Erschienen in
EcoHealth / Ausgabe 4/2017
Print ISSN: 1612-9202
Elektronische ISSN: 1612-9210
DOI
https://doi.org/10.1007/s10393-017-1276-3

Weitere Artikel der Ausgabe 4/2017

EcoHealth 4/2017 Zur Ausgabe