Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 01.12.2020 | Letter

Virtual reality device training for extracorporeal membrane oxygenation

verfasst von: Georg Wolff, Raphael R. Bruno, Martina Reiter, Boris Kantzow, Malte Kelm, Christian Jung

Erschienen in: Critical Care | Ausgabe 1/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-020-03095-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extracorporeal membrane oxygenation (ECMO) is a last resort therapy for patients with terminal respiratory failure. In the current worldwide surge of critically ill patients with novel coronavirus disease (COVID-19), ECMO demand for the sickest of them is unprecedentedly high and management is very complex [1]. Highly trained healthcare personnel is essential to safely prime, implant, and operate ECMO devices [2]. Acquisition of such complex skillsets has always been difficult—especially for smaller hospitals with lower ECMO case counts [3]. During the pandemic, traditional face-to-face instructor-led training is additionally complicated by social distancing measures. Alternative and complementary ways of delivering high-quality training are thus desirable to increase personnel resources for ECMO services.
Virtual reality (VR) simulators are emerging as next-generation options in digital health to complement traditional training: VR training is largely independent of resources, location, and person-to-person contact; it integrates both teaching theory and practical application and allows unlimited repetition. Our research collaboration currently develops a prototype for VR training on an ECMO device (Fig. 1a): using a VR headset with controllers (Fig. 1b), trainees are immersed in a digital VR environment with a Getinge Cardiohelp® ECMO device (Fig. 1c+d). The virtual device is responsive to manual user input by movement of the body, head, and hands in the virtual space. A digital coach leads the trainee through a multi-layered didactic digital teaching program: beginners go through step-by-step video instructions and manually imitate each step on the ECMO device (Video 1); experts must perform tasks without any support (Video 2). Training includes sessions of the priming procedure of the device for use (Fig. 1c and Video 1) and configuring its program options (Fig. 1d and Video 2), each a complex sequence of single steps requiring specialized knowledge and manual skillsets. This VR prototype is ready to be evaluated for the ECMO priming procedure. It may be expanded to further content in the future, e.g., device troubleshooting or implantation. We are looking forward to reporting results of this innovative technology soon.
Virtual reality device training for extracorporeal membrane oxygenation promises to be a very valuable tool for health care personnel training—both during the pandemic and beyond.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-020-03095-y.

Acknowledgements

None
Not applicable

Competing interests

MR works for Getinge Group; BK and his company Weltenmacher received funding from Getinge for the development of this VR simulator; GW, RB, and CJ neither received any personal fees from either company, nor was there any third-party funding from either company to Heinrich-Heine-University Düsseldorf.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kowalewski M, Fina D, Słomka A, Raffa GM, Martucci G, Lo Coco V, et al. COVID-19 and ECMO: the interplay between coagulation and inflammation—a narrative review. Crit Care. 2020;24(1):205.CrossRef Kowalewski M, Fina D, Słomka A, Raffa GM, Martucci G, Lo Coco V, et al. COVID-19 and ECMO: the interplay between coagulation and inflammation—a narrative review. Crit Care. 2020;24(1):205.CrossRef
2.
Zurück zum Zitat Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8:518–26.CrossRef Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8:518–26.CrossRef
3.
Zurück zum Zitat Banjas N, Hopf H-B, Hanisch E, Friedrichson B, Fichte J, Buia A. ECMO-treatment in patients with acute lung failure, cardiogenic, and septic shock: mortality and ECMO-learning curve over a 6-year period. J Intensive Care. 2018;6:84.CrossRef Banjas N, Hopf H-B, Hanisch E, Friedrichson B, Fichte J, Buia A. ECMO-treatment in patients with acute lung failure, cardiogenic, and septic shock: mortality and ECMO-learning curve over a 6-year period. J Intensive Care. 2018;6:84.CrossRef
Metadaten
Titel
Virtual reality device training for extracorporeal membrane oxygenation
verfasst von
Georg Wolff
Raphael R. Bruno
Martina Reiter
Boris Kantzow
Malte Kelm
Christian Jung
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03095-y

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.