Skip to main content
Erschienen in: Child's Nervous System 8/2018

13.04.2018 | Original Paper

Visualization of the periventricular Virchow–Robin spaces with ependymal openings

verfasst von: Satoshi Tsutsumi, Hideo Ono, Hisato Ishii, Yukimasa Yasumoto

Erschienen in: Child's Nervous System | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The morphological relationships between the periventricular Virchow−Robin spaces (VRSs) and cerebral ventricles have been poorly documented. The present study aimed to explore the issue using magnetic resonance imaging.

Methods

A total of 211 patients were included in this study. T2-weighted and constructive interference in steady state (CISS) sequences were performed in thin-sliced, coronal sections.

Results

On T2-weighted sequence, the periventricular VRSs with ependymal openings were identified in 34% of 139 subjects. All the openings were located in the lateral wall of the anterior horn. In CISS sequences, such VRSs were found in 39% of 72 subjects. The mean age was significantly higher in the population with such VRSs compared to those without VRSs (p = 0.0047). Of the 58 periventricular VRSs with ependymal openings identified on T2-weighted images, 16% were located in the upper, 36% in the middle, and 48% in the lower part of the lateral wall. Of the 38 such VRSs identified on CISS images, 32% were located in the upper, 24% in the middle, and 42% in the lower part of the lateral wall, and 3% in the upper part of the medial wall.

Conclusions

The ependymal openings of the periventricular VRSs may be centered in the lateral wall of the anterior horn. The coronal CISS sequence can sensitively delineate the VRSs with ependymal openings.
Literatur
1.
Zurück zum Zitat Acabchuk RL, Sun Y, Wolferz R Jr, Eastman MB, Lennington JB, Shook BA, Wu Q, Conover JC (2015) 3D modeling of the lateral ventricles and histological characterization of periventricular tissue in humans and mouse. J Vis Exp 99:e52328 Acabchuk RL, Sun Y, Wolferz R Jr, Eastman MB, Lennington JB, Shook BA, Wu Q, Conover JC (2015) 3D modeling of the lateral ventricles and histological characterization of periventricular tissue in humans and mouse. J Vis Exp 99:e52328
2.
Zurück zum Zitat Andescavage NN, DuPlessis A, McCarter R, Vezina G, Robertson R, Limperopoulos C (2016) Cerebrospinal fluid and parenchymal brain development and growth in the healthy fetus. Dev Neurosci 38(6):420–429CrossRefPubMed Andescavage NN, DuPlessis A, McCarter R, Vezina G, Robertson R, Limperopoulos C (2016) Cerebrospinal fluid and parenchymal brain development and growth in the healthy fetus. Dev Neurosci 38(6):420–429CrossRefPubMed
3.
Zurück zum Zitat Bompard L, Xu S, Styner M, Paniagua B, Ahn M, Yuan Y, Jewells V, Gao W, Shen D, Zhu H, Lin W (2014) Multivariate longitudinal shape analysis of human lateral ventricles during the first twenty-four months of life. PLoS One 9(9):e108306CrossRefPubMedPubMedCentral Bompard L, Xu S, Styner M, Paniagua B, Ahn M, Yuan Y, Jewells V, Gao W, Shen D, Zhu H, Lin W (2014) Multivariate longitudinal shape analysis of human lateral ventricles during the first twenty-four months of life. PLoS One 9(9):e108306CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Burmeister HP, Möslein C, Bitter T, Fröber R, Herrmann H, Baltzer PA, Gudziol H, Dietzel M, Guntinas-Lichius O, Kaiser WA (2011) In vivo comparison of water displacement method and 3 Tesla MRI for MR-volumetry of the olfactory bulb: which sequence is appropriate? Acad Radiol 18(10):1233–1240CrossRefPubMed Burmeister HP, Möslein C, Bitter T, Fröber R, Herrmann H, Baltzer PA, Gudziol H, Dietzel M, Guntinas-Lichius O, Kaiser WA (2011) In vivo comparison of water displacement method and 3 Tesla MRI for MR-volumetry of the olfactory bulb: which sequence is appropriate? Acad Radiol 18(10):1233–1240CrossRefPubMed
5.
Zurück zum Zitat Held P, Fellner C, Fellner F, Seitz J, Graf S, Hilbert M, Strutz J (1997) MRI of inner ear and facial nerve pathology using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 70(834):558–566CrossRefPubMed Held P, Fellner C, Fellner F, Seitz J, Graf S, Hilbert M, Strutz J (1997) MRI of inner ear and facial nerve pathology using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 70(834):558–566CrossRefPubMed
6.
Zurück zum Zitat Hetzel W (1980) Post-mortem modifications of the ependyma of the lateral ventricular wall. Acta Neuropathol 51(1):15–22CrossRefPubMed Hetzel W (1980) Post-mortem modifications of the ependyma of the lateral ventricular wall. Acta Neuropathol 51(1):15–22CrossRefPubMed
7.
Zurück zum Zitat Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11(1):26CrossRefPubMedPubMedCentral Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11(1):26CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Horie T, Kajihara N, Matsumae M, Obara M, Hayashi N, Hirayama A, Takizawa K, Takahara T, Yatsushiro S, Kuroda K (2017) Magnetic resonance imaging technique for visualization of irregular cerebrospinal fluid motion in the ventricular system and subarachnoid space. World Neurosurg 97:523–531CrossRefPubMed Horie T, Kajihara N, Matsumae M, Obara M, Hayashi N, Hirayama A, Takizawa K, Takahara T, Yatsushiro S, Kuroda K (2017) Magnetic resonance imaging technique for visualization of irregular cerebrospinal fluid motion in the ventricular system and subarachnoid space. World Neurosurg 97:523–531CrossRefPubMed
9.
Zurück zum Zitat Ishikawa M, Yamada S, Yamamoto K (2015) Three-dimensional observation of Virchow–Robin spaces in the basal ganglia and white matter and their relevance to idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 12:15CrossRefPubMedPubMedCentral Ishikawa M, Yamada S, Yamamoto K (2015) Three-dimensional observation of Virchow–Robin spaces in the basal ganglia and white matter and their relevance to idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 12:15CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458CrossRefPubMed Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458CrossRefPubMed
11.
Zurück zum Zitat Kilsdonk ID, Steenwijk MD, Pouwels PJ, Zwanenburg JJ, Visser F, Luijten PR, Geurts J, Barkhof F, Wattjes MP (2015) Perivascular spaces in MS patients at 7 Tesla MRI: a marker of neurodegeneration? Mult Scler 21(2):155–162CrossRefPubMed Kilsdonk ID, Steenwijk MD, Pouwels PJ, Zwanenburg JJ, Visser F, Luijten PR, Geurts J, Barkhof F, Wattjes MP (2015) Perivascular spaces in MS patients at 7 Tesla MRI: a marker of neurodegeneration? Mult Scler 21(2):155–162CrossRefPubMed
12.
Zurück zum Zitat Leifer D, Buonanno FS, Richardson EP Jr (1990) Clinicopathologic correlations of cranial magnetic resonance imaging of periventricular white matter. Neurology 40(6):911–918CrossRefPubMed Leifer D, Buonanno FS, Richardson EP Jr (1990) Clinicopathologic correlations of cranial magnetic resonance imaging of periventricular white matter. Neurology 40(6):911–918CrossRefPubMed
13.
Zurück zum Zitat Stadlbauer A, Salomonowitz E, van der Riet W, Buchfelder M, Ganslandt O (2010) Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. NeuroImage 51(1):42–52CrossRefPubMed Stadlbauer A, Salomonowitz E, van der Riet W, Buchfelder M, Ganslandt O (2010) Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. NeuroImage 51(1):42–52CrossRefPubMed
14.
Zurück zum Zitat Taketani K, Yamada S, Uwabe C, Okada T, Togashi K, Takakuwa T (2015) Morphological features and length measurements of fetal lateral ventricles at 16-25 weeks of gestation by magnetic resonance imaging. Congenit Anom (Kyoto) 55(2):99–102CrossRef Taketani K, Yamada S, Uwabe C, Okada T, Togashi K, Takakuwa T (2015) Morphological features and length measurements of fetal lateral ventricles at 16-25 weeks of gestation by magnetic resonance imaging. Congenit Anom (Kyoto) 55(2):99–102CrossRef
15.
Zurück zum Zitat Utsunomiya H, Nakamura Y (2007) MR features of the developing perianterior horn structure including subcallosal fasciculus in infants and children. Neuroradiology 49(11):947–954CrossRefPubMed Utsunomiya H, Nakamura Y (2007) MR features of the developing perianterior horn structure including subcallosal fasciculus in infants and children. Neuroradiology 49(11):947–954CrossRefPubMed
16.
Zurück zum Zitat Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491(2):109–122CrossRefPubMedPubMedCentral Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491(2):109–122CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhan J, Dinov ID, Li J, Zhang Z, Hobel S, Shi Y, Lin X, Zamanyan A, Feng L, Teng G, Fang F, Tang Y, Zang F, Toga AW, Liu S (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. NeuroImage 82:115–126CrossRefPubMed Zhan J, Dinov ID, Li J, Zhang Z, Hobel S, Shi Y, Lin X, Zamanyan A, Feng L, Teng G, Fang F, Tang Y, Zang F, Toga AW, Liu S (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. NeuroImage 82:115–126CrossRefPubMed
18.
Zurück zum Zitat Zong X, Park SH, Shen D, Lin W (2016) Visualization of perivascular spaces in the human brain at 7T: sequence optimization and morphology characterization. NeuroImage 125:895–902CrossRefPubMed Zong X, Park SH, Shen D, Lin W (2016) Visualization of perivascular spaces in the human brain at 7T: sequence optimization and morphology characterization. NeuroImage 125:895–902CrossRefPubMed
Metadaten
Titel
Visualization of the periventricular Virchow–Robin spaces with ependymal openings
verfasst von
Satoshi Tsutsumi
Hideo Ono
Hisato Ishii
Yukimasa Yasumoto
Publikationsdatum
13.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Child's Nervous System / Ausgabe 8/2018
Print ISSN: 0256-7040
Elektronische ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-018-3793-y

Weitere Artikel der Ausgabe 8/2018

Child's Nervous System 8/2018 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.