Skip to main content
Erschienen in: BMC Endocrine Disorders 1/2020

Open Access 01.12.2020 | Research article

Vitamin D receptor gene polymorphisms and the risk of the type 1 diabetes: a meta-regression and updated meta-analysis

verfasst von: Na Zhai, Ramtin Bidares, Masoud Hassanzadeh Makoui, Saeed Aslani, Payam Mohammadi, Bahman Razi, Danyal Imani, Mohammad Yazdchi, Haleh Mikaeili

Erschienen in: BMC Endocrine Disorders | Ausgabe 1/2020

Abstract

Background

The association between the polymorphisms in the vitamin D receptor (VDR) gene and the risk of type 1 diabetes mellitus (T1DM) has been evaluated in several studies. However, the findings were inconclusive. Thus, we conducted a meta-analysis to comprehensively evaluate the effect of VDR gene polymorphisms on the risk of T1DM.

Methods

All relevant studies reporting the association between VDR gene polymorphisms and susceptibility to T1DM published up to May 2020 were identified by comprehensive systematic database search in ISI Web of Science, Scopus, and PubMed/MEDLINE. Strength of association were assessed by calculating of pooled odds ratios (ORs) and 95% confidence intervals (CIs). The methodological quality of each study was assessed according to the Newcastle–Ottawa Scale. To find the potential sources of heterogeneity, meta-regression and subgroup analysis were also performed.

Results

A total of 39 case–control studies were included in this meta-analysis. The results of overall population rejected any significant association between VDR gene polymorphisms and T1DM risk. However, the pooled results of subgroup analysis revealed significant negative and positive associations between FokI and BsmI polymorphisms and T1DM in Africans and Americans, respectively.

Conclusions

This meta-analysis suggested a significant association between VDR gene polymorphism and T1DM susceptibility in ethnic-specific analysis.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
T1DM
Type 1 diabetes mellitus
VDR
Vitamin D receptor
Vitamin D
VitD
SNP
Single nucleotide polymorphisms
IL
Interleukin
PRISMA
Preferred Reporting Items for Systematic reviews and Meta-Analyses
NOS
Newcastle-Ottawa Scale
UVR
Ultraviolet radiation
Th
T helper
TNF
Tumor necrosis factor
IFN
Interferon
HWE
Hardy–Weinberg equilibrium
PCR- RFLP
Polymerase chain reaction-restriction fragment length polymorphism

Background

Type 1 diabetes mellitus (T1DM) is a globally-widespread disease that is characterized by a reduction in insulin production or the production of ineffective insulin [1]. It is generally believed that the immune-associated destruction of beta cells of the islets of Langerhans causes the disease, resulting in lower insulin levels (that is called type 1a diabetes mellitus). In a smaller T1DM subset, no evidence of autoimmunity can be found (type 1b) [2]. T1DM constitutes roughly 5 to 10% of all diabetes cases, and its prevalence is still rising [3]. With more than half a million children living with T1DM, and almost 90,000 children diagnosed each year, T1DM inflicts mostly children of under 15 years of age [4]. It is well known that T1DM is a multi-factorial autoimmune disorder caused by interactions between genetic and environmental factors [5].
Vitamin D (VitD) is a steroid molecule that has many roles in the body, such as regulation of the immune cells. In addition to immune responses, VitD is also involved in the etiopathogenesis of several disorders, such as cancer, autoimmune disorders, cardiovascular disorders, asthma, and diabetes [69]. In animal model of T1DM, VitD suppresses the occurrence of diabetes, by regulating the T helper (Th) 1/Th2 cytokine balance in the local pancreatic lesions [10, 11]. Moreover, VitD inhibits T cell activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-12, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, which are involved in the pathogenesis of T1DM [1214]. Mostly, VitD exerts its function through vitamin D receptor (VDR), which is found in the nuclei of target cells, such as lymphocytes, macrophages, and pancreatic cells. VDR is a member of the nuclear hormone receptors superfamily and has been linked to insulin sensitivity and secretion [15].
Four common single nucleotide polymorphisms (SNPs) of VDR gene are FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232). Among them, ApaI, BsmI, and TaqI polymorphisms are located in the 3′-end of VDR gene which lead to silent mutation associated with increased VDR mRNA stability. In contrast, FokI SNP is located in the start codon that produces a protein with shorter size (424 amino acids), which is more active than the long form (427 amino acids) [8, 16, 17]. Over the course of past few decades, the VDR gene polymorphisms have been associated with susceptibility to numerous autoimmune disorders [8, 18, 19].
In recent years, several studies have investigated the association between VDR gene SNPs and T1DM in all over the world, which have yielded conflicting results. The reasons for these discrepancies might be small sample sizes, clinical heterogeneity, and low statistical power. Therefore, a comprehensive meta-analysis might be the best way to solve these problems. Two previous meta-analyses performed by Tizaouia et al. in 2014 [20] and Guo et al. in 2006 [21] reported that VDR gene polymorphisms were not associated with the susceptibility to T1DM. However, Zhang et al. in 2012 [22] demonstrated that BsmI polymorphism was significantly associated with the risk of T1DM. Furthermore, Sahin et al. in 2017 indicated that BsmI and TaqI polymorphisms were associated withT1DM risk in children with less than average 15 years old [23]. Qin et al. in 2014 evaluated the association of only BsmI SNP with T1DM risk and demonstrated its association in the overall analysis, as well as in Asians, Latino, and Africans [24]. In 2014, Wang et al., by including 20 studies, reported that BsmI polymorphism might be a risk factor for susceptibility to T1DM in the East Asian population, and the FokI polymorphism was associated with an increased risk of T1DM in the West Asian population [25].
Since several articles published after the last meta-analysis, here we conducted an updated meta-analysis with the aim of providing a much more reliable conclusion on the significance of the association between VDR gene polymorphisms and T1DM risk.

Methods

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, including search strategy, inclusion and exclusion criteria, data extraction and quality assessment, and statistical analysis [26].

Search strategy

Three electronic databases (PubMed/MEDLINE, Scopus, and Web of Science) were systematically searched for studies regarding the association of VDR gene polymorphisms, including FokI (rs2228570) and/or TaqI (rs731236) and/or BsmI (rs1544410) and/or ApaI (rs7975232), and T1DM susceptibility, which were published before May 2020. The following combinations of search terms were used: (“T1D” OR “type 1 diabetes” OR “diabetes”) AND (“VDR” OR “vitamin D receptor”) AND (“polymorphisms” OR “SNP” OR “variation” OR “mutation”). The reference lists of review articles were also manually searched for additional pertinent publications. Original data in English language and human population studies were collected.

Inclusion and exclusion criteria

Eligible studies must meet the following criteria: a) All studies assessing the association of VDR gene polymorphisms and T1DM risk; b) All studies reporting sufficient data to calculate the odds ratio (OR) and its 95% confidence intervals (CIs); c) All studies with distinct case and control groups (case-control and cohort design). The exclusion criteria were: a) studies that their genotype or allele frequency could not be extracted; b) letters, non-English publications, animal studies, case reports, reviews, comments, book chapters, and abstracts; c) duplicate and republished studies. The application of these criteria recognized 39 studies eligible for the quantitative analysis.

Data extraction and quality assessment

According to a standardized extraction form, the following data were independently extracted by two reviewers: the author’s name, journal and year of publication, country of origin, ethnicity, number of case and control for each gender separately, genotype and allele frequencies in cases and healthy groups, mean or range of age, genotyping method, total sample size of cases and controls. The third reviewer finalized the extracted data, and potential discrepancies were resolved by consensus. For quality assessment of the included publications, the Newcastle-Ottawa Scale (NOS) was applied [27]. In this respect, studies with 0–3, 4–6 or 7–9 scores were, respectively, of low, moderate, and high-quality.

Statistical analysis

Deviation from Hardy–Weinberg equilibrium (HWE) for distribution of the allele frequencies was analyzed by χ2-test in control groups. The strength of association between VDR gene polymorphisms and T1DM susceptibility was estimated by calculating pooled OR and its 95% CI. Different comparison model for FokI, TaqI, BsmI, and ApaI were as follows: FokI; dominant model (ff + Ff vs. FF), recessive model (ff vs. Ff + FF), allelic model (f vs. F), homozygote (ff vs. FF), and heterozygote (Ff vs. FF): TaqI; dominant model (tt + Tt vs. TT), recessive model (tt vs. Tt + TT), allelic model (t vs. T), homozygote (tt vs. TT), and heterozygote (Tt vs. TT): BsmI; dominant model (bb + Bb vs. BB), recessive model (bb vs. Bb + BB), allelic model (b vs. B), homozygote (bb vs. BB), and heterozygote (Bb vs. BB): ApaI; dominant model (aa+Aa vs. AA), recessive model (aa vs. Aa+AA), allelic model (a vs. A), homozygote (aa vs. AA), and heterozygote (Aa vs. AA). The heterogeneity among studies was measured by the χ2 test-based Q statistic, and I2 value which quantify the degree of heterogeneity [28]. Accordingly, heterogeneity was considered significant if I2 values exceeded 50% or the Q statistic had a P value of less than 0.1 and random-effects model (DerSimonian–Laird approach) was carried out [29]. Otherwise, the fixed-effects model (Mantel–Haenszel approach) was performed for combination of data [30]. In order to assess the predefined sources of heterogeneity among included studies, subgroup analysis and meta-regression analysis based on year of population, and ethnicity were performed. Stability of our results was assessed by sensitivity analysis. Potential publication bias was estimated by Egger’s linear regression test, and also Begg’s test was employed to estimate the funnel plot asymmetry (P value< 0.05 considered statistically significant) [31, 32]. The data analyses were carried out using STATA (version 14.0; Stata Corporation, College Station, TX) and SPSS (version 23.0; SPSS, Inc. Chicago, IL).

Results

Study characteristics

Regarding to aforementioned keywords, a total of 1116 studies were initially retrieved. Of these studies, 456 publications were duplicate, 559 and 62 publications excluded by title & abstract and full text examination, respectively. Finally, 39 studies qualified for quantitative analysis. It should be noted that while the latest meta-analysis by Tizaouia et al. [20] in 2014 included 23 studies, we performed the updated meta-analysis by adding 16 more articles. Also, no studies were found by hand search (Fig. 1). The eligible studies were published from 1998 to 2019 and had an overall good methodological quality with NOS scores ranging from 6 to 8. Polymerase chain reaction-restriction fragment length polymorphism (PCR- RFLP) and Taq-man were used by majority of included studies as genotyping method. Tables 1 and 2 summarized the characteristics and genotype frequency of the included studies.
Table 1
Characteristics of studies included in meta-analysis of overall T1DM
Study author
Year
Country
Ethnicity
Sex cases/controls
Total cases/control
Age case/control (Mean)
Genotyping method
Quality
score
FokI (rs2228570)
 Ban et al. [33]
2001
Japan
Asian
M = 50/60
F = 100/150
108 / 250
26.0 ± 3.8 / NR
RFLP-PCR
7
 Fassbender et al. [34]
2002
Germany
European
M = 42/33
F = 27/30
75 / 57
34.1 ± 11.1 / 33.5 ± 10.1
RFLP-PCR
6
 Gyorffy et al. [35]
2002
Hungary
European
M = 57/50
F = 53/50
107 / 103
23.5 ± 5.11 / NR
RFLP-PCR
7
 Turpeinen (Turku) et al. [36]
2003
Finland
European
M = NR
F=NR
274 / 808
NR / NR
Mini sequencing
8
 Turpeinen (Tampere) et al. [36]
2003
Finland
European
M = NR
F=NR
55 / 457
NR / NR
Mini sequencing
8
 Turpeinen (Oulu) et al. [36]
2003
Finland
European
M = NR
F=NR
249 / 795
NR / NR
Mini sequencing
8
 Audi (barcellona) et al. [37]
2004
Spain
European
M = 69/86
F = 153/122
155 / 275
NR / NR
Mini sequencing
7
 Audi (navarra) et al. [37]
2004
Spain
European
M = 40/46
F = 58/58
86 / 116
NR / NR
Mini sequencing
7
 San Pedro et al. [38]
2005
Spain
European
M = NR
F=NR
71 / 88
14.5 ± 9.9 / NR
RFLP-PCR
6
 Zemunik et al. [39]
2005
Croatia
European
M = 72/62
F=NR
134 / 232
8.6 ± 4.3 / NR
RFLP-PCR
7
 Capoluongo et al. [40]
2006
Italy
European
M = 135/111
F = 135/111
246 / 246
39.3 ± 11.1 / 39.6 ± 9.1
RFLP-PCR
8
 Lemos et al. [41]
2008
Portugal
European
M = 113/94
F = 143/106
207 / 249
27.5 ± 10.2 / 36.8 ± 13.8
RFLP-PCR
8
 Israni et al. [42]
2009
India
Asian
M = 131/135
F = 116/81
236 / 197
15.1 ± 7.30 / 30.1 ± 10.2
RFLP-PCR
7
 Mory et al. [43]
2009
Brazil
American
M = NR
F=NR
177 / 182
17.2 ± 5.4 / 12.2 ± 8.1
RFLP-PCR
7
 Panierakis et al. [15]
2009
Greece
European
M = NR
F = 52/44
100 / 96
NR / NR
Mini sequencing
6
 Yavuz et al. [44]
2011
turkey
European
M = 60/57
F = 73/61
117 / 134
27.6 ± 7.3 / 26.2 ± 5.3
RFLP-PCR
6
 Yokota et al. [45]
2012
Japan
Asian
M = NR
F=NR
108 / 220
NR / NR
NR
7
 Bonakdaran et al. [46]
2012
Iran
Asian
M = 28/41
F = 19/26
69 / 45
NR / NR
RFLP-PCR
6
 Sahin et al. [47]
2012
Turkey
European
M = NR
F=NR
85 / 80
NR / NR
NR
6
 Mohammadnejad et al. [48]
2012
Iran
Asian
M = 32/55
F = 50/50
87 / 100
27.93 ± 10.86 / 28.58 ± 7.40
RFLP-PCR
6
 Vedralova et al. [49]
2012
Czech
European
M = NR
F=NR
116 / 113
67.0 ± 12.44 / 45.0 ± 7.31
RFLP-PCR
6
 Greer et al. [50]
2012
Australia
Australian
M = NR
F=NR
50 / 55
NR / NR
RFLP-PCR
6
 Hamed et al. [51]
2013
Egypt
African
M = 64/68
F = 18/22
132 / 40
8.5 ± 3.3 / 9.0 ± 1.5
RFLP-PCR
6
 Abd-Allah et al. [52]
2014
Egypt
African
M = 42/78
F = 42/78
120 / 120
11.7 ± 2.8 / 11.1 ± 2.6
RFLP-PCR
7
 Kafoury et al. [53]
2014
Egypt
African
M = 25/35
F=NR
60 / 60
11.2 ± 3.7 / 27.2 ± 6.4
RFLP-PCR
6
 Nasreen et al. [54]
2016
Pakistan
Asian
M = 25/19
F = 23/21
44 / 44
14.81 ± 2.7 / 17.92 ± 2.8
RFLP-PCR
6
 Mukhtar et al. [55]
2017
Pakistan
Asian
M = NR
F=NR
102 / 100
13/2 / 13/8
RFLP-PCR
6
 Ali et al. [56]
2018
Saudi Arabia
Asian
M = 54/46
F = 43/59
100 / 102
10.33 ± 3.15 / > 35
RFLP-PCR
7
 Rasoul et al. [57]
2019
Kuwait
Asian
M = NR
F=NR
253 / 214
8.5 ± 5.5 / 8.9 ± 5.2
RFLP-PCR
8
TaqI (rs731236)
 Chang et al. [58]
2000
China
Asian
M = 71/86
F = 156/92
157 /248
23.5 ± 5.11 / 32.4 ± 6.6
RFLP-PCR
8
 Fassbender et al. [34]
2002
Germany
European
M = 57/50
F = 53/50
75 /57
5.8 ± 2.3 / NR
RFLP-PCR
6
 Gyorffy et al. [35]
2002
Hungary,
European
M = 57/50
F = 53/50
107 / 103
23.5 ± 5.11 / NR
RFLP-PCR
7
 Skrabic et al. [59]
2003
Croatia
European
M = 72/62
F = 60/72
134 / 132
8.69 ± 4.3 / 8.24 ± 4.9
RFLP-PCR
7
 Bianco et al. [60]
2004
Italy
European
M = NR
F=NR
31 / 36
NR / NR
RFLP-PCR
6
 San Pedro et al. [38]
2005
Spain
European
M = NR
F=NR
71 / 88
14.5 ± 9.9 / NR
RFLP-PCR
6
 Garcia et al. [61]
2007
Chile
American
M = 120/96
F = 106/97
216 / 203
9.3 ± 4.2 / 10.3 ± 2.5
RFLP-PCR
8
 Lemos et al. [41]
2008
Portugal
European
M = NR
F=NR
205 / 232
27.5 ± 10.2 / 36.8 ± 13.8
RFLP-PCR
8
 Israni et al. [42]
2009
India
Asian
M = 131/135
F = 116/81
236 / 197
15.1 ± 7.30 / 30.1 ± 10.2
RFLP-PCR
7
 Panierakis et al. [15]
2009
Greece
European
M = NR
F = 52/44
100 / 96
NR / NR
Mini sequencing
6
 Yavuz et al. [44]
2011
Turkey
European
M = 60/57
F = 73/61
117 / 134
27.6 ± 7.3 / 26.2 ± 5.3
RFLP-PCR
6
 Bonakdaran et al. [46]
2012
Iran
Asian
M = 28/41
F = 19/26
69 / 45
NR / NR
RFLP-PCR
6
 Mohammadnejad et al. [48]
2012
Iran
Asian
M = 32/55
F = 50/50
87 / 100
27.93 ± 10.86 / 28.58 ± 7.40
RFLP-PCR
6
 Greer et al. [50]
2012
Australia
Australian
M = NR
F=NR
50 / 55
NR / NR
RFLP-PCR
6
 Abd-Allah et al. [52]
2014
Egypt
African
M = 42/78
F = 42/78
120 / 120
11.7 ± 2.8 / 11.1 ± 2.6
RFLP-PCR
7
 Cheon et al. [62]
2015
Korea
Asian
M = 35/46
F = 53/60
81 / 113
10.28 ± 3.73 / 9.98 ± 3.56
RFLP-PCR
6
 Khalid et al. [63]
2016
Saudi Arabia
Asian
M = NR
F=NR
100 / 50
11.48 ± 3.39 / 9.50 ± 4.23
RFLP-PCR
6
 Iyer et al. [64]
2017
Saudi Arabia
Asian
M = 25/25
F = 25/25
50 / 50
25.37 ± 4.07 / 23.44 ± 5.38
RFLP-PCR
6
 Rasoul et al. [57]
2019
Kuwait
Asian
M = NR
F=NR
253 / 214
8.5 ± 5.5 / 8.9 ± 5.2
RFLP-PCR
8
 Ahmed et al. [65]
2019
Egypt
African
M = 24/25
F = 26/25
50 / 50
11.16 ± 3.27 / 10.97 ± 2.77
RFLP-PCR
6
BsmI (rs1544410)
 Hauache et al. [66]
1998
Brazil
American
M = NR
F = 31/63
78 / 94
15.5 ± 6.0 / 49 ± 11
RFLP-PCR
6
 Chang et al. [58]
2000
China
Asian
M = 71/86
F = 156/92
157 / 248
23.5 ± 5.11 / 32.4 ± 6.6
RFLP-PCR
8
 Fassbender et al. [34]
2002
Germany
European
M = 57/50
F = 53/50
75 / 57
5.8 ± 2.3 / NR
RFLP-PCR
6
 Gyorffy et al. [35]
2002
Hungary
European
M = 57/50
F = 53/50
107 / 103
23.5 ± 5.11 / NR
RFLP-PCR
7
 Motohashi et al. [67]
2002
Japan
Asian
M = 96/107
F = 101/121
203 / 222
34.6 ± 16.9 / 44.4 ± 13.7
RFLP-PCR
8
 Skrabic et al. [59]
2003
Croatia
European
M = 72/62
F = 60/72
134 / 132
8.69 ± 4.3 / 8.24 ± 4.9
RFLP-PCR
7
 Turpeinen (Turku) et al. [36]
2003
Finland
European
M = NR
F=NR
220 / 844
NR / NR
Mini sequencing
8
 Turpeinen (Tampere) et al. [36]
2003
Finland
European
M = NR
F=NR
58 / 1175
NR / NR
Mini sequencing
8
 Turpeinen (Oulu) et al. [36]
2003
Finland
European
M = NR
F=NR
226 / 818
NR / NR
Mini sequencing
8
 Audi (barcellona) et al. [37]
2004
Spain
European
M = 69/84
F = 153/121
153 / 274
NR / NR
Mini sequencing
7
 Audi (navarra) et al. [37]
2004
Spain
European
M = 40/49
F = 58/58
89 /116
NR / NR
Mini sequencing
7
 Bianco et al. [60]
2004
Italy
European
M = NR
F=NR
31 / 36
NR / NR
RFLP-PCR
6
 San Pedro et al. [38]
2005
Spain
European
M = NR
F=NR
71 / 88
14.5 ± 9.9 / NR
RFLP-PCR
6
 Capoluongo et al. [40]
2006
Italy
European
M = 135/111
F = 135/111
246 / 246
39.3 ± 11.1 / 39.6 ± 9.1
RFLP-PCR
8
 Garcia et al. [61]
2007
Chile
American
M = NR
F = 106/97
208 / 203
9.3 ± 4.2 / 10.3 ± 2.5
RFLP-PCR
8
 Lemos et al. [41]
2008
Portugal
European
M = NR
F=NR
207 / 248
27.5 ± 10.2 / 36.8 ± 13.8
RFLP-PCR
8
 Shimada et al. [68]
2008
Japan
Asian
M = 357/417
F=NR
774 / 599
29/8 / NR
RFLP-PCR
8
 Israni et al. [42]
2009
India
Asian
M = 131/135
F = 116/81
236 / 197
15.1 ± 7.30 / 30.1 ± 10.2
RFLP-PCR
7
 Mory et al. [43]
2009
Brazil
American
M = NR
F=NR
177 / 182
17.2 ± 5.4 / 12.2 ± 8.1
RFLP-PCR
7
 Panierakis et al. [15]
2009
Greece
European
M = NR
F = 52/44
100 / 96
NR / NR
Mini sequencing
6
 Yavuz et al. [44]
2011
Turkey
European
M = 60/57
F = 73/61
117 / 134
27.6 ± 7.3 / 26.2 ± 5.3
RFLP-PCR
6
 Tawfeek et al. [69]
2011
Arabic Saudi
Asian
M = 0/30
F = 0/14
30 / 14
35.7 ± 5.33 / 33.2 ± 4.06
RFLP-PCR
6
 Bonakdaran et al. [46]
2012
Iran
Asian
M = 28/41
F = 19/26
69 / 45
NR / NR
RFLP-PCR
6
 Vedralova et al. [49]
2012
Czech
European
M = NR
F=NR
104 / 83
67.0 ± 12.44 / 45.0 ± 7.31
RFLP-PCR
6
 Mohammadnejad et al. [48]
2012
Iran
Asian
M = 32/55
F = 50/50
87 / 100
27.93 ± 10.86 / 28.58 ± 7.40
RFLP-PCR
6
 Moubarak et al. [70]
2013
Syria
Asian
M = 25/30
F = 24/26
55 / 50
13.75 ± 6.91 / 39.86 ± 11.66
RFLP-PCR
6
 Abd-Allah et al. [52]
2014
Egypt
Africian
M = 42/78
F = 42/78
120 / 120
11.7 ± 2.8 / 11.1 ± 2.6
RFLP-PCR
7
 Kafoury et al. [53]
2014
Egypt
Africian
M = 25/35
F=NR
60 / 56
11.2 ± 3.7 / 27.2 ± 6.4
RFLP-PCR
6
 Cheon et al. [62]
2015
Korea
Asian
M = 35/46
F = 53/60
81 / 113
10.28 ± 3.73 / 9.98 ± 3.56
RFLP-PCR
6
 Khalid et al. [63]
2016
Saudi Arabia
Asian
M = NR
F=NR
100 / 50
11.48 ± 3.39 / 9.50 ± 4.23
RFLP-PCR
6
 Iyer et al. [64]
2017
Saudi Arabia
Asian
M = 25/25
F = 25/25
50 / 50
25.37 ± 4.07 / 23.44 ± 5.38
RFLP-PCR
6
 Ali et al. [56]
2018
Saudi Arabia
Asian
M = 54/46
F = 43/59
100 / 102
10.33 ± 3.15 / > 35
RFLP-PCR
7
 Rasoul et al. [57]
2019
Kuwait
Asian
M = NR
F=NR
253 / 214
8.5 ± 5.5 / 8.9 ± 5.2
RFLP-PCR
8
 Ahmed et al. [65]
2019
Egypt
African
M = 24/25
F = 26/25
50 / 50
11.16 ± 3.27 / 10.97 ± 2.77
RFLP-PCR
6
ApaI (rs7975232)
 Chang et al. [58]
2000
China
Asian
M = 71/86
F = 156/92
157 / 248
23.5 ± 5.11 / 32.4 ± 6.6
RFLP-PCR
8
 Gyorffy et al. [35]
2002
Hungary
European
M = 57/50
F = 53/50
107 / 103
23.5 ± 5.11 / NR
RFLP-PCR
7
 Skrabic et al. [59]
2003
Croatia
European
M = 72/62
F = 60/72
134 / 132
8.69 ± 4.3 / 8.24 ± 4.9
RFLP-PCR
7
 Turpeinen (Turku) et al. [36]
2003
Finland
European
M = NR
F=NR
198 / 797
NR / NR
Mini sequencing
8
 Turpeinen (Tampere) et al. [36]
2003
Finland
European
M = NR
F=NR
56 / 450
NR / NR
Mini sequencing
8
 Turpeinen (Oulu) et al. [36]
2003
Finland
European
M = NR
F=NR
239 / 843
NR / NR
Mini sequencing
8
 Bianco et al. [60]
2004
Italy
European
M = NR
F=NR
31 / 36
NR / NR
RFLP-PCR
6
 San Pedro et al. [38]
2005
Spain
European
M = NR
F=NR
71 / 88
14.5 ± 9.9 / NR
RFLP-PCR
6
 Garcia et al. [61]
2007
Chile
American
M = NR
F = 106/97
213 / 203
9.3 ± 4.2 / 10.3 ± 2.5
RFLP-PCR
8
 Lemos et al. [41]
2008
Portugal
European
M = NR
F=NR
205 / 232
27.5 ± 10.2 / 36.8 ± 13.8
RFLP-PCR
8
 Israni et al. [42]
2009
India
Asian
M = 131/135
F = 116/81
236 / 197
15.1 ± 7.30 / 30.1 ± 10.2
RFLP-PCR
7
 Panierakis et al. [15]
2009
Greece
European
M = NR
F = 52/44
100 / 96
NR / NR
Mini sequencing
6
 Yavuz et al. [44]
2011
Turkey
European
M = 60/57
F = 73/61
117 / 136
27.6 ± 7.3 / 26.2 ± 5.3
RFLP-PCR
6
 Bonakdaran et al. [46]
2012
Iran
Asian
M = 28/41
F = 19/26
69 / 45
NR / NR
RFLP-PCR
6
 Mohammadnejad et al. [48]
2012
Iran
Asian
M = 32/55
F = 50/50
87 / 100
27.93 ± 10.86 / 28.58 ± 7.40
RFLP-PCR
6
 Greer et al. [50]
2012
Australia
Australian
M = NR
F=NR
50 / 55
NR / NR
RFLP-PCR
6
 Abd-Allah et al. [52]
2014
Egypt
African
M = 42/78
F = 42/78
120 / 120
11.7 ± 2.8 / 11.1 ± 2.6
RFLP-PCR
7
 Cheon et al. [62]
2015
Korea
Asian
M = 35/46
F = 53/60
81 / 113
10.28 ± 3.73 / 9.98 ± 3.56
RFLP-PCR
6
 Khalid et al. [63]
2016
Saudi Arabia
Asian
M = NR
F=NR
100 / 50
11.48 ± 3.39 / 9.50 ± 4.23
RFLP-PCR
6
 Nasreen et al. [54]
2016
Pakistan
Asian
M = 25/19
F = 23/21
44 / 44
14.81 ± 2.7 / 17.92 ± 2.8
RFLP-PCR
6
 Iyer et al. [64]
2017
Saudi Arabia
Asian
M = 25/25
F = 25/25
50 / 50
25.37 ± 4.07 / 23.44 ± 5.38
RFLP-PCR
6
 Mukhtar et al. [55]
2017
Pakistan
Asian
M = NR
F=NR
102 / 100
13/2 / 13/8
RFLP-PCR
6
 Rasoul et al. [57]
2019
Kuwait
Asian
M = NR
F=NR
252 / 214
8.5 ± 5.5 / 8.9 ± 5.2
RFLP-PCR
8
 Ahmed et al. [65]
2019
Egypt
African
M = 24/25
F = 26/25
50 / 50
11.16 ± 3.27 / 10.97 ± 2.77
RFLP-PCR
6
NR not reported, M male, F female
Table 2
Distribution of genotype and allele among T1DM patients and controls
Study author
T1DM cases
Healthy control
P-HWE
MAF
FF
Ff
ff
F
f
FF
Ff
Ff
F
f
FokI (rs2228570)
    Ban et al. [33]
50
52
6
152
64
82
138
30
302
198
0.01
0.396
    Fassbender et al. [34]
35
30
10
100
50
19
30
8
68
46
0.48
0.403
    Gyorffy et al. [35]
32
56
19
120
94
34
47
22
115
91
0.44
0.441
    Turpeinen (Turku) et al. [36]
50
150
74
250
298
102
414
292
618
998
0.01
0.617
    Turpeinen (Tampere) et al. [36]
7
28
20
42
68
61
226
170
348
566
0.29
0.619
    Turpeinen (Oulu) et al. [36]
37
114
98
188
310
93
360
342
546
1044
0.9
0.656
    Audi (barcellona) et al. [37]
69
68
18
206
104
105
142
28
352
198
0.04
0.36
    Audi (navarra) et al. [37]
35
45
6
115
57
41
53
22
135
97
0.51
0.418
    San Pedro et al. [38]
31
35
5
97
45
41
39
8
121
55
0.76
0.312
    Zemunik et al. [39]
42
63
29
147
121
73
136
23
282
182
< 0.001
0.392
    Capoluongo et al. [40]
89
112
45
290
202
91
127
28
309
183
0.09
0.371
    Lemos et al. [41]
81
101
25
263
151
97
114
38
308
190
0.63
0.381
    Israni et al. [42]
142
79
15
363
109
116
76
5
308
86
0.06
0.218
    Mory et al. [43]
80
81
16
241
113
91
67
24
249
115
0.04
0.315
    Panierakis et al. [15]
50
43
7
143
57
64
31
1
159
33
0.18
0.171
    Yavuz et al. [44]
61
46
10
168
66
60
63
11
183
85
0.32
0.317
    Yokota et al. [45]
50
46
12
146
70
59
20
141
138
302
< 0.001
0.686
    Bonakdaran et al. [46]
38
25
6
101
37
18
20
7
56
34
0.71
0.377
    Sahin et al. [47]
54
31
0
139
31
43
28
9
114
46
0.19
0.287
    Mohammadnejad et al. [48]
49
33
5
131
43
55
40
5
150
50
0.5
0.25
    Vedralova et al. [49]
38
60
18
136
96
25
76
12
126
100
< 0.001
0.442
    Greer et al. [50]
21
21
8
63
37
28
22
5
78
32
0.82
0.29
    Hamed et al. [51]
24
92
16
140
124
8
28
4
44
36
0.008
0.45
    Abd-Allah et al. [52]
58
50
12
166
74
78
38
4
194
46
0.8
0.191
    Kafoury et al. [53]
23
21
16
67
53
41
12
7
94
26
0.001
0.216
    Nasreen et al. [54]
32
12
0
76
12
25
19
0
69
19
0.06
0.215
    Mukhtar et al. [55]
84
13
5
181
23
100
0
0
200
0
< 0.001
0
    Ali et al. [56]
64
33
3
161
39
79
21
2
179
25
0.66
0.122
    Rasoul et al. [57]
178
30
45
386
120
146
67
1
359
69
0.02
0.161
Study author
T1DM cases
Healthy control
P-HWE
MAF
TT
Tt
tt
T
t
TT
Tt
tt
T
t
TaqI (rs731236)
    Chang et al. [58]
142
15
0
299
15
233
14
1
480
16
0.13
0.032
    Fassbender et al. [34]
34
31
10
99
51
19
20
18
58
56
0.02
0.491
    Gyorffy et al. [35]
46
34
27
126
88
42
27
34
111
95
< 0.001
0.461
    Skrabic et al. [59]
54
55
25
163
105
48
72
12
168
96
0.04
0.363
    Bianco et al. [60]
10
18
3
38
24
11
20
5
42
30
0.39
0.416
    San Pedro et al. [38]
24
36
11
84
58
31
43
14
105
71
0.88
0.403
    Garcia et al. [61]
115
79
22
309
123
121
69
13
311
95
0.46
0.233
    Lemos et al. [41]
70
94
41
234
176
91
95
46
277
187
0.02
0.403
    Israni et al. [42]
91
112
33
294
178
80
98
19
258
136
0.15
0.345
    Panierakis et al. [15]
34
59
7
127
73
10
64
22
84
108
< 0.001
0.562
    Yavuz et al. [44]
37
58
22
132
102
41
66
27
148
120
0.96
0.447
    Bonakdaran et al. [46]
34
28
7
96
42
20
17
8
57
33
0.21
0.366
    Mohammadnejad et al. [48]
32
52
3
116
58
59
41
0
159
41
< 0.001
0.205
    Greer et al. [50]
18
26
6
62
38
26
24
5
76
34
0.87
0.309
    Abd-Allah et al. [52]
42
66
12
150
90
33
69
18
135
105
0.06
0.437
    Cheon et al. [62]
66
15
0
147
15
105
8
0
218
8
0.69
0.035
    Khalid et al. [63]
63
22
15
148
52
19
16
15
54
46
0.01
0.46
    Iyer et al. [64]
19
14
17
52
48
16
16
18
48
52
0.01
0.52
    Rasoul et al. [57]
96
96
61
288
218
156
36
22
348
80
< 0.001
0.186
    Ahmed et al. [65]
0
42
8
42
58
0
40
10
40
60
< 0.001
0.6
Study author
T1DM cases
Healthy control
P-HWE
MAF
BB
Bb
bb
B
b
BB
Bb
bb
B
b
BsmI (rs1544410)
    Hauache et al. [66]
13
39
26
65
91
12
43
39
67
121
0.97
0.643
    Chang et al. [58]
4
16
137
24
290
1
16
231
18
478
0.22
0.963
    Fassbender et al. [34]
14
35
26
63
87
18
25
14
61
53
0.37
0.464
    Gyorffy et al. [35]
19
46
42
84
130
16
53
34
85
121
0.53
0.587
    Motohashi et al. [67]
12
64
127
88
318
1
49
172
51
393
0.2
0.885
    Skrabic et al. [59]
24
58
52
106
162
17
74
41
108
156
0.06
0.59
    Turpeinen (Turku) et al. [36]
97
97
26
291
149
354
388
102
1096
592
0.78
0.35
    Turpeinen (Tampere) et al. [36]
29
22
7
80
36
533
488
154
1554
796
0.01
0.338
    Turpeinen (Oulu) et al. [36]
90
103
33
283
169
403
305
110
1111
525
< 0.001
0.32
    Audi (barcellona) et al. [37]
21
73
59
115
191
46
147
81
239
309
0.13
0.563
    Audi (navarra) et al. [37]
20
43
26
83
95
19
53
44
91
141
0.65
0.607
    Bianco et al. [60]
13
14
4
40
22
14
17
5
45
27
0.96
0.375
    San Pedro et al. [38]
15
40
16
70
72
17
44
27
78
98
0.9
0.556
    Capoluongo et al. [40]
62
125
59
249
243
61
122
63
244
248
0.89
0.504
    Garcia et al. [61]
21
110
77
152
264
14
74
115
102
304
0.65
0.748
    Lemos et al. [41]
43
96
68
182
232
56
107
85
219
277
0.04
0.558
    Shimada et al. [68]
32
165
577
229
1319
7
121
471
135
1063
0.8
0.887
    Israni et al. [42]
79
120
37
278
194
56
94
47
206
188
0.53
0.477
    Mory et al. [43]
60
57
60
177
177
38
74
70
150
214
0.62
0.587
    Panierakis et al. [15]
23
57
20
103
97
38
43
15
119
73
0.62
0.38
    Yavuz et al. [44]
20
57
40
97
137
14
59
61
87
181
0.96
0.675
    Tawfeek et al. [69]
3
18
9
24
36
1
8
5
10
18
0.36
0.642
    Bonakdaran et al. [46]
14
26
29
54
84
16
11
18
43
47
< 0.001
0.522
    Vedralova et al. [49]
43
47
14
133
75
30
33
20
93
73
0.07
0.439
    Mohammadnejad et al. [48]
11
36
40
58
116
9
45
46
63
137
0.66
0.685
    Moubarak et al. [70]
7
25
23
39
71
14
26
10
54
46
0.74
0.46
    Abd-Allah et al. [52]
27
68
25
122
118
48
52
20
148
92
0.36
0.383
    Kafoury et al. [53]
8
13
39
29
91
4
11
41
19
93
0.02
0.83
    Cheon et al. [62]
0
13
68
13
149
1
4
108
6
220
< 0.001
0.973
    Khalid et al. [63]
51
32
17
134
66
19
21
10
59
41
0.35
0.41
    Iyer et al. [64]
8
12
30
28
72
26
12
12
64
36
< 0.001
0.36
    Ali et al. [56]
30
45
25
105
95
62
28
12
152
52
0.005
0.254
    Rasoul et al. [57]
141
83
29
365
141
120
66
28
306
122
< 0.001
0.285
    Ahmed et al. [65]
8
35
7
51
49
32
18
0
82
18
< 0.001
0.19
Study author
T1DM cases
Healthy control
P-HWE
MAF
AA
Aa
aa
A
a
AA
Aa
aa
A
a
ApaI (rs7975232)
 
    Chang et al. [58]
16
76
65
108
206
13
105
130
131
365
0.16
0.735
    Gyorffy et al. [35]
23
27
57
73
141
33
45
25
111
95
0.21
0.461
    Skrabic et al. [59]
66
52
16
184
84
51
66
15
168
96
0.35
0.363
    Turpeinen (Turku) et al. [36]
35
106
57
176
220
152
441
204
745
849
0.001
0.532
    Turpeinen (Tampere) et al. [36]
13
23
20
49
63
69
229
152
367
533
0.25
0.592
    Turpeinen (Oulu) et al. [36]
43
115
81
201
277
165
389
289
719
967
0.09
0.573
    Bianco et al. [60]
18
11
2
47
15
11
20
5
42
30
0.39
0.416
    San Pedro et al. [38]
15
37
19
67
75
28
43
17
99
77
0.94
0.437
    Garcia et al. [61]
54
115
44
223
203
43
125
35
211
195
< 0.001
0.48
    Lemos et al. [41]
55
100
50
210
200
68
101
63
237
227
0.04
0.489
    Israni et al. [42]
85
133
18
303
169
60
110
27
230
164
0.03
0.416
    Panierakis et al. [15]
37
57
6
131
69
23
58
15
104
88
0.03
0.458
    Yavuz et al. [44]
36
58
23
130
104
35
70
31
140
132
0.72
0.485
    Bonakdaran et al. [46]
13
52
4
78
60
18
26
1
62
28
0.01
0.311
    Mohammadnejad et al. [48]
27
48
12
102
72
27
57
16
111
89
0.12
0.445
    Greer et al. [50]
15
24
11
54
46
12
32
11
56
54
0.22
0.49
    Abd-Allah et al. [52]
44
65
11
153
87
36
68
16
140
100
0.06
0.416
    Cheon et al. [62]
5
32
44
42
120
9
34
70
52
174
0.1
0.769
    Khalid et al. [63]
49
44
7
142
58
26
21
3
73
27
0.64
0.27
    Nasreen et al. [54]
14
25
5
53
35
15
25
4
55
33
0.15
0.375
    Iyer et al. [64]
17
16
17
50
50
18
16
16
52
48
0.01
0.48
    Mukhtar et al. [55]
43
26
33
112
92
86
0
14
172
28
< 0.001
0.14
    Rasoul et al. [57]
192
31
29
415
89
162
37
15
361
67
< 0.001
0.156
    Ahmed et al. [65]
24
22
4
70
30
37
13
0
87
13
< 0.001
0.15
P-HWE P value for Hardy–Weinberg equilibrium, MAF minor allele frequency of control group

Quantitative synthesis

Meta-analysis of the association between FokI (rs2228570) polymorphism and T1DM risk

Overall, 29 case-control studies with 3723 cases and 5578 controls were analyzed for assessment of FokI polymorphism and T1DM risk. Of 29 studies, 15 studies were conducted in European countries [15, 3436, 3841, 44, 47, 49, 71], 9 studies were in Asian countries [33, 42, 45, 46, 48, 5457], 3 studies were in African population [5153] and eventually one study in Australia [50] and one study in American population [43]. Among studies were performed in Europe, Audi et al. [71] conducted an association study in different city of Spain (Barcelona and Navarra) and reported all data separately including genotype and allele frequency; thus we considered each population as a separate study. The pooled results revealed no significant association in overall population across all genotype models, meanwhile subgroup analysis according to ethnicity showed decreased risk of T1DM susceptibility in European population [dominant model (OR = 0.86, 95% CI, 0.74–1.00, P = 0.05) and heterozygote contrast (OR = 0.86, 95% CI, 0.75–0.99, P = 0.04)] and increased risk of T1DM susceptibility in African population under all genotype models; dominant model (OR = 2.06, 95% CI, 1.20–3.53, P = 0.008), recessive model (OR = 2.14, 95% CI, 1.03–4.43, P = 0.04), allelic model (OR = 1.17, 95% CI, 1.06–2.97, P = 0.02), ff vs. FF model (OR = 3.11, 95% CI, 1.44–6.69, P = 0.004), and Ff vs. FF model (OR = 1.81, 95% CI, 1.13–2.91, P = 0.01). Besides, susceptibility to T1DM in Asians compared to Africans and Europeans were not affected by FokI polymorphism (Fig. 2). The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.
Table 3
Main results of pooled ORs in meta-analysis of Vitamin D Receptor gene polymorphisms
Group
Genetic Model
Case/Control
Test of Association
Test of Heterogenicity
Test of publication bias
(Begg’s test)
(Egger’s test)
OR
95%CI (P value)
I2 (%)
P
Z
P
T
P
FokI (rs2228570)
Overall
Dominant model
3723 / 5578
0.92
0.79–1.08 (0.31)
< 0.001
< 0.001
0.28
0.78
0.79
0.43
Recessive model
3723 / 5578
0.98
0.71–1.35 (0.91)
< 0.001
< 0.001
1.43
0.15
1.28
0.21
Allelic model
3723 / 5578
0.96
0.81–1.14 (0.65)
< 0.001
< 0.001
0.71
0.47
0.87
0.39
ff vs. FF
3723 / 5578
0.96
0.69–1.35 (0.83)
< 0.001
< 0.001
1.70
0.09
1.78
0.08
Ff vs. FF
3723 / 5578
0.94
0.79–1.12 (0.49)
< 0.001
< 0.001
1.19
0.23
1.23
0.22
European
Dominant model
3723 / 5578
0.86
0.74–1.00 (0.05)
0.268
0.268
−0.15
0.88
0.33
0.74
Recessive model
2077 / 3849
1.00
0.77–1.30 (0.98)
0.011
0.011
0.60
0.54
1.15
0.27
Allelic model
2077 / 3849
0.93
0.82–1.06 (0.28)
0.015
0.015
- 0.05
0.96
0.69
0.50
ff vs. FF
2077 / 3849
0.90
0.67–1.20 (0.46)
0.046
0.046
0.27
0.78
1.01
0.33
Ff vs. FF
2077 / 3849
0.86
0.75–0.99 (0.04)
0.435
0.435
0.74
0.45
0.59
0.56
Asian
Dominant model
2077 / 3849
0.76
0.55–1.05 (0.09)
0.015
0.015
- 0.74
0.45
−0.31
0.76
Recessive model
1107 / 1272
0.93
0.23–3.68 (0.91)
< 0.001
< 0.001
1.65
0.09
3.26
0.02
Allelic model
1107 / 1272
0.78
0.46–1.33 (0.36)
< 0.001
< 0.001
− 0.25
0.80
0.04
0.97
ff vs. FF
1107 / 1272
0.87
0.25–3.01 (0.82)
< 0.001
< 0.001
1.95
0.05
3.01
0.03
Ff vs. FF
1107 / 1272
0.84
0.53–1.34 (0.47)
< 0.001
< 0.001
0.49
0.62
0.50
0.63
African
Dominant model
1107 / 1272
2.06
1.20–3.53 (0.008)
0.225
0.225
- 0.52
0.60
−0.19
0.88
Recessive model
312 /220
2.14
1.03–4.43 (0.04)
0.382
0.382
- 0.52
0.60
−0.60
0.65
Allelic model
312 /220
1.77
1.06–2.97 (0.02)
0.057
0.057
0.52
0.60
0.23
0.85
ff vs. FF
312 /220
3.11
1.44–6.69 (0.004)
0.493
0.493
- 1.57
0.11
−1.65
0.34
Ff vs. FF
312 /220
1.81
1.13–2.91 (0.01)
0.337
0.337
- 0.52
0.60
0.03
0.98
TaqI (rs731236)
Overall
Dominant model
1873 / 1895
1.06
0.78 – 1.45 (0.70)
78.3
< 0.001
− 0.45
0.65
−1.61
0.12
Recessive model
1873 / 1895
0.91
0.66 – 1.26(0.58)
59.1
0.001
−1.93
0.05
−1.93
0.07
Allelic model
1873/ 1895
1.02
0.81 – 1.29 (0.86)
81.9
< 0.001
−0.24
0.80
− 0.96
0.34
tt vs. TT
1873 / 1895
0.90
0.58 – 1.39 (0.62)
72.9
< 0.001
−2.14
0.03
−2.65
0.01
Tt vs.TT
1873 / 18995
1.12
0.84– 1.49 (0.45)
70.7
< 0.001
−0.39
0.69
−1.04
0.31
European
Dominant model
840 / 878
0.82
0.59–1.13 (0.23)
49.1
0.056
−1.48
0.13
−1.88
0.11
Recessive model
840 / 878
0.78
0.50–1.21 (0.26)
55.1
0.029
−1.24
0.21
−0.95
0.38
Allelic model
840 / 878
0.92
0.76–1.11 (0.36)
9.6
0.356
−1.73
0.08
−1.27
0.25
tt vs. TT
840 / 878
0.75
0.44–1.27 (0.28)
61.1
0.012
−1.73
0.08
−1.68
0.14
Tt vs.TT
840 / 878
0.87
0.64–1.20 (0.40)
39.8
0.114
− 0.99
0.32
−1.10
0.31
Asian
Dominant model
1033 / 1017
1.40
0.75 – 2.58 (0.28)
85.7
< 0.001
0
1
−1.08
0.31
Recessive model
1033 / 1017
1.05
0.51 – 2.16 (0.88)
74.5
0.008
−2.44
0.01
−3.55
0.02
Allelic model
1033 / 1017
1.27
0.75 – 2.14 (0.36)
88.7
< 0.001
0
1
−0.75
0.45
tt vs. TT
1033 / 1017
1.03
0.37 – 2.85 (0.95)
85.4
< 0.001
−1.69
0.09
−3.10
0.03
Tt vs.TT
1033 / 1017
1.46
0.83 – 2.58 (0.19)
80.1
< 0.001
− 0.83
0.40
− 0.77
0.46
BsmI (rs1544410)
Overall
Dominant model
4826 / 7159
1.02
0.80– 1.30 (0.88)
76.3
< 0.001
−0.25
0.80
0.48
0.63
Recessive model
4826 / 7159
0.94
0.80 – 1.10 (0.45)
52.9
< 0.001
0.13
0.89
0.20
0.84
Allelic model
4826 / 7159
0.99
0.86 – 1.15 (0.92)
77.6
< 0.001
0.21
0.83
0.16
0.87
bb vs. BB
4826 / 7159
0.96
0.75– 1.23 (0.74)
59.8
< 0.001
−0.59
−0.55
−0.69
0.49
Bb vs. BB
4826 / 7159
1.07
0.88 – 1.29 (0.52)
53.9
< 0.001
−0.19
0.84
−0.58
0.56
European
Dominant model
1938 / 4450
0.94
0.71–1.24 (0.66)
71.0
< 0.001
−0.25
0.80
0.89
0.39
Recessive model
1938 / 4450
1.00
0.85–1.19 (0.95)
20.7
0.223
−0.25
0.80
−0.63
0.54
Allelic model
1938 / 4450
1.00
0.89–1.13 (0.93)
41.7
0.046
−0.35
0.72
−0.75
0.46
bb vs. BB
1938 / 4450
0.99
0.80–1.23 (0.92)
16.1
0.273
0.05
0.96
−0.57
0.57
Bb vs. BB
1938 / 4450
1.05
0.89–1.25 (0.56)
15.0
0.286
−0.45
0.65
−0.99
0.34
Asian
Dominant model
2195 /2004
1.05
0.61 – 1.79 (0.87)
77.8
< 0.001
− 0.12
0.90
−0.38
0.71
Recessive model
2195 /2004
1.02
0.73 – 1.40 (0.92)
65.7
< 0.001
−0.38
0.70
0.18
0.86
Allelic model
2195 /2004
1.00
0.72 – 1.38 (0.97)
85
< 0.001
0.38
0.70
0.24
0.81
bb vs. BB
2195 /2004
1.07
0.55 – 2.09 (0.84)
76.8
< 0.001
−0.12
0.90
−0.42
0.68
Bb vs. BB
2195 /2004
1.07
0.67 – 1.71(0.77)
63.5
< 0.001
0.12
0.90
−0.49
0.63
American
Dominant model
463 / 479
0.57
0.39–0.84 (0.004)
0.0
0.755
1.57
0.11
14.1
0.04
Recessive model
463 / 479
0.62
0.41–0.94 (0.02)
50.5
0.133
0.52
0.60
0.38
0.76
Allelic model
463 / 479
0.66
0.54–0.81 (< 0.001)
0.0
0.549
0.52
0.60
0.80
0.57
bb vs. BB
463 / 479
0.52
0.34–0.80 (0.003)
0.0
0.876
0.52
0.60
0.06
0.96
Bb vs. BB
463 / 479
0.66
0.41–1.05 (0.08)
13.2
0.316
0.52
0.60
1.56
0.36
African
Dominant model
230 / 226
2.41
0.63–9.18 (0.19)
81
0.065
−0.52
0.60
−0.15
0.90
Recessive model
230 / 226
0.99
0.52–1.89 (0.96)
26.8
0.242
−1
0.31
0.18
0.23
Allelic model
230 / 226
1.63
0.65–4.08 (0.29)
86.3
0.031
−0.52
0.60
0.05
0.96
bb vs. BB
230 / 226
1.18
0.26–5.25 (0.83)
67.0
0.082
−1
0.31
0.15
0.35
Bb vs. BB
230 / 226
2.40
0.81–7.17 (0.11)
63.9
0.141
−0.52
0.60
−0.16
0.89
ApaI (rs7975232)
Overall
Dominant model
2436 / 4074
1.03
0.82–1.29 (0.79)
66.2
< 0.001
0.25
0.80
0.62
0.54
Recessive model
2436 / 4074
1.03
0.90–1.17 (0.68)
48.4
0.005
0.24
0.81
0.20
0.84
Allelic model
2436 / 4074
1.05
0.90–1.23 (0.52)
72.7
< 0.001
0.99
0.32
0.98
0.34
aa vs. AA
2436 / 4074
1.02
0.77–1.33 (0.90)
52.9
0.002
−0.18
0.85
−0.56
0.57
Aa vs. AA
2436 / 4074
0.91
0.80–1.04 (0.18)
25.5
0.355
−0.03
0.97
0.05
0.97
European
Dominant model
1258/ 2913
0.91
0.70–1.18 (0.47)
49.1
0.039
−0.98
0.32
−1.24
0.25
Recessive model
1258/ 2913
1.09
0.92–1.30 (0.32)
56.9
0.013
−0.63
0.53
−0.28
0.78
Allelic model
1258/ 2913
0.99
0.81–1.21 (0.90)
68.6
0.001
−1.16
0.24
−0.62
0.54
aa vs. AA
1258/ 2913
1.02
0.72–1.45 (0.91)
53.1
0.024
−1.70
0.08
−1.03
0.33
Aa vs. AA
1258/ 2913
0.90
0.75–1.09 (0.29)
29.5
0.174
−1.70
0.08
−2.23
0.05
Asian
Dominant model
1178 / 1161
1.27
0.78–2.05 (0.34)
77.4
< 0.001
1.70
0.08
0.90
0.39
Recessive model
1178 / 1161
0.91
0.71–1.15 (0.42)
52.0
0.027
1.88
0.06
1.26
0.24
Allelic model
1178 / 1161
1.15
0.82–1.62 (0.40)
82.2
< 0.001
1.34
0.18
1.69
0.13
aa vs. AA
1178 / 1161
1.14
0.63–2.04 (0.66)
64.8
0.002
1.34
0.18
0.23
0.82
Aa vs. AA
1178 / 1161
0.92
0.72–1.18 (0.52)
6.8
0.379
1.46
0.14
1.35
0.22

Meta-analysis of the association between TaqI (rs731236) polymorphism and T1DM risk

There were 20 case-control studies with 1837 cases and 1895 controls concerning TaqI polymorphism and T1DM risk. Studies were performed in different population, 8 studies were in Europeans [15, 34, 35, 38, 41, 44, 59, 60], 8 studies in Asians [42, 46, 48, 57, 58, 6264], 2 studies in Africans [52, 65] and one study each was in Australia [50] and Americans [61]. Meta-analysis rejected any significant association between TaqI SNP and the risk of T1DM susceptibility. Moreover, the results of subgroup analysis by ethnicity were not significant under five genotype models. In subgroup analysis, since there was only one study for the Australians [50], Americans [61], and two studies for Africans [52, 65], these studies were excluded from the analysis. The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

Meta-analysis of the association between BsmI (rs1544410) polymorphism and T1DM risk

To examining the association between BsmI polymorphism and T1DM risk, 34 case-control studies with 4826 cases and 7159 controls subjects were included. It was detected that 15 studies with 1938 cases and 4450 controls were performed in European countries [15, 3436, 38, 40, 41, 44, 49, 59, 60, 71] which among these 15 studies, Turpeinen et al. [36] conducted an association study in different city of Finland (Turku, Tampere and Oulu) and reported all data separately, including genotype and allele frequency; thus we considered each population as a separate study. Moreover, 13 studies out of 34 eligible studies were carried out in Asian populations [42, 46, 48, 5658, 6264, 6770], 3 studies were in Americans [43, 61, 66] and three studies were in Africans [52, 53, 65]. No significant association between BsmI polymorphism and T1DM risk were found under all genotype models for the overall population. However, pooled results of subgroup analysis indicated markedly significant negative associations between BsmI SNP and the risk of T1DM susceptibility in American populations across all genotype models; dominant model (OR = 0.57, 95% CI, 0.39–0.84, P = 0.004), recessive model (OR = 0.62, 95% CI, 0.41–0.94, P = 0.02), allelic model (OR = 0.66, 95% CI, 0.54–0.81, P < 0.001), bb vs. BB model (OR = 0.52, 95% CI, 0.34–0.80, P = 0.003), except Bb vs. BB model (OR = 0.66, 95% CI, 0.41–1.05, P = 0.08) (Fig. 3). No significant association was detected for European, Asian and African population. The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

Meta-analysis of the association between ApaI (rs7975232) polymorphism and T1DM risk

Finally, 24 case-control studies with 2436 cases and 4074 controls were identified eligible for quantitative synthesis of the association between ApaI polymorphism and T1DM risk. Overall, 10 studies were conducted in Europe [15, 35, 36, 38, 41, 44, 59, 60], 10 studies were in Asia [42, 46, 48, 54, 55, 57, 58, 6264], 2 studies in Africa [52, 65] and one study each was in Australia [50] and America [61]. Because of limited number of studies performed in Australia, America and Africa these studies were excluded from subgroup analysis. The results demonstrated no significant association between the ApaI polymorphism and risk of T1DM in the overall population and ethnic-specific analysis (Fig. 3). The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

Evaluation of heterogeneity and publication bias

During the meta-analysis of VDR gene polymorphism evidence of substantial to moderate heterogeneity was detected. However, partial heterogeneity was resolved while the data were stratified by ethnicity. Publication bias was evaluated by funnel plot, Begg’s test and Egger’s test. There was no obvious evidence of asymmetry from the shapes of the funnel plots (Fig. 4), and all P values of Begg’s test and Egger’s test were > 0.05, which showed no evidences of publication biases.

Sensitivity analysis

The leave-one-out method was used in the sensitivity analysis to explore the effect of individual data on the pooled ORs. The significance of ORs was not altered through omitting any single study in the dominant model for FokI, TaqI, BsmI and ApaI SNPs, indicating that our results were statistically robust (Fig. 5).

Bayesian meta-regression analysis

Meta-regression and subgroup analyses were performed to explore potential sources of heterogeneity among included studies (Table 4). The findings of meta-regression indicated that ethnicity can be the potential source of heterogeneity, therefore, subgroup analysis was performed to attenuate the effect of these parameters. (Fig. 6).
Table 4
Meta-regression analyses of potential source of heterogeneity
Heterogeneity Factor
 
Coefficient
SE
T
P-value
95% CI
 
UL
LL
FokI (rs2228570)
Publication Year
Dominant model
0.037
0.021
1.74
0.09
- 0.006
0.082
Recessive model
0.763
0.313
2.44
0.02
0.117
1.410
Allelic model
0.037
0.018
2.07
0.04
0.001
0.074
ff vs. FF
0.631
0.242
2.60
0.01
0.130
1.131
Ff vs. FF
0.032
0.022
1.43
0.16
−0.014
0.078
Ethnicity
Dominant model
0.322
0.081
3.97
0.001
0.155
0.489
Recessive model
−1.10
1.43
−0.77
0.44
−4.063
1.85
Allelic model
0.231
0.073
3.15
0.004
0.080
0.382
ff VS. FF
−0.591
1.134
−0.52
0.60
−2.932
1.749
Ff vs. FF
0.217
0.097
2.23
0.03
0.017
0.416
TaqI (rs731236)
Publication Year
Dominant model
0.069
0.037
1.83
0.08
−0.010
0.148
Recessive model
0.020
0.031
0.65
0.52
−0.046
0.087
Allelic model
0.038
0.026
1.47
0.15
−0.016
0.093
tt vs. TT
0.063
0.048
1.32
0.20
−0.039
0.166
Tt vs.TT
0.064
0.037
1.72
0.10
−0.014
0.142
Ethnicity
Dominant model
−0.249
0.207
−1.20
0.24
−0.684
0.185
Recessive model
−0.114
0.145
−0.79
0.44
− 0.424
0.194
Allelic model
−0.145
0.123
−1.18
0.25
−0.404
0.113
tt vs. TT
−0.167
0.253
−0.66
0.51
−0.707
0.373
Tt vs.TT
−0.250
0.200
−1.25
0.22
−0.670
0.170
BsmI (rs1544410)
Publication Year
Dominant model
0.142
0.046
3.03
0.005
0.046
0.237
Recessive model
0.031
0.024
1.29
0.20
−0.018
0.081
Allelic model
0.063
0.025
2.54
0.01
0.012
0.115
bb vs. BB
0.103
0.047
2.17
0.03
0.006
0.200
Bb vs. BB
0.095
0.033
2.84
0.008
0.026
0.163
Ethnicity
Dominant model
0.482
0.265
1.82
0.07
−0.058
1.023
Recessive model
−0.133
0.139
−0.96
0.34
−0.417
0.149
Allelic model
0.152
0.143
1.07
0.293
−0.138
0.444
bb vs. BB
−0.274
0.280
−0.98
0.33
−0.846
0.296
Bb vs. BB
0.381
0.188
2.03
0.05
−0.002
0.764
ApaI (rs7975232)
Publication Year
Dominant model
0.098
0.054
1.81
0.08
−0.014
0.211
Recessive model
0.005
0.030
0.18
0.86
−0.057
0.068
Allelic model
0.052
0.032
1.64
0.11
−0.013
0.119
aa vs. AA
0.042
0.042
0.98
0.33
−0.047
0.131
Aa vs. AA
0.027
0.019
1.37
0.18
−0.014
0.069
Ethnicity
Dominant model
−0.130
0.290
−0.45
0.65
−0.733
0.471
Recessive model
−0.086
0.175
−0.49
0.62
−0.452
0.279
Allelic model
0.007
0.171
0.04
0.96
−0.348
0.362
aa vs. AA
−0.279
0.243
−1.15
0.26
−0.785
0.226
Aa vs. AA
0.033
0.103
0.32
0.74
−0.181
0.248

Discussion

In this study, we performed a systematic review and meta-analysis to achieve a vivid and exact approximation of the associations between the VDR gene polymorphisms, including FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232) and susceptibility to T1DM. The findings of meta-analysis on 39 case–control studies, containing 29 studies with 3723 cases and 5578 controls for FokI, 20 studies with 1837 cases and 1895 controls for TaqI, 34 studies with 4826 cases and 7159 controls for BsmI, and 24 studies with 2436 cases and 4074 controls for ApaI, indicated no significant association of VDR gene polymorphisms with T1DM risk in overall population. That notwithstanding, the subgroup analysis resulted in identification of significant associations between FokI and BsmI polymorphism and T1DM in African and American population. Our study provided some beneficial points over previous studies. First, this meta-analysis included further studies with more sample size compared with the previous studies, conferring more conclusive results. Second, we performed subgroup analysis by ethnicity to indicated association of VDR gene polymorphisms with T1DM risk in different ethnical groups.
Over the course of past years, a bulk of studies has addressed the association of VDR gene polymorphisms and risk of T1DM throughout various populations, resulting in conflicting findings [61, 67]. Such discrepancies might stem from diversity in detection methods, differences in diagnostic criterions, clinical heterogeneity, small sample sizes, low statistical power, and interactions between genetic and environmental contributing factors according to variations in the geo-epidemiological factors. As a consequence, three previous meta-analyses by Guo et al. [21] in 2006 [including 11 studies for FokI (1424 cases and 3301 controls), 13 studies for BsmI (1601cases and 4207 controls), 9 studies for ApaI (1101 cases and 2805 controls), and 7 studies for TaqI (681 cases and 781 controls)], Zhang et al. [22] in 2012 [T1DM cases and 4049 controls in 21 studies for BsmI, 2167 T1DM cases and 3402 controls in 17 studies for FokI, 1166 T1DM cases and 2328 controls in 11 studies for ApaI, and 1041 T1DM cases and 1137 controls in 8 studies for TaqI], and Tizaouia et al. [20] in 2014 (13 studies for TaqI, 23 studies for BsmI, 15 studies for ApaI, and 18 studies for FokI) were carried out to resolved the conundrum and attain an exact approximation. They indicated that VDR gene SNPs were not associated with T1DM risk, except than BsmI polymorphism association with T1DM predisposition that was observed in Zhang et al. [22] study. Upon the latest meta-analysis published in 2014, several original association studies evaluated the role of VDR gene polymorphisms with T1DM risk. As a result, the necessity for performing an updated meta-analysis is sensed to come up with resolution of the limitations of individual association studies and to gain a much more valid and comprehensive pooled estimation on the association of VDR gene polymorphisms with T1D risk.
Previous meta-analysis performed by Tizaouia et al. [20] in 2014 reported no significant association of VDR gene FokI polymorphism with risk of T1D. According to our meta-analysis, the pooled results in overall population across all genotype models demonstrated no significant association of VDR gene FokI polymorphism; nonetheless, subgroup analysis according to ethnicity showed a marginally-significant decreased susceptibility to T1DM in European population according to dominant genetic model and heterozygote comparison, while an increased risk of T1DM in African population according to all genotype models. In addition, our meta-analysis did not support any significant association between TaqI SNP and susceptibility to T1DM. Furthermore, the results of subgroup analysis according to ethnicity did not show any significant association in all genetic models. However, in the subgroup analysis, given that there was only one study in the Australian [50] and American [61] populations, and two studies in the African [52, 65] population, the subgroup analysis was not performed in these populations. In line with our findings, previous meta-analysis by Tizaouia et al. [20] also did not show significant association of VDR gene TaqI polymorphism with risk of T1D. According to the previous meta-analysis, BsmI SNP was not the risk factor for T1D susceptibility. However, after excluding one study, a marginal significant (P = 0.051) association was found in the homozygous model. On the other side, our meta-analysis also revealed that BsmI polymorphism was not a risk for T1DM in all genetic models when all of the population were analyzed. Nonetheless, subgroup analysis demonstrated a strong negative significant association between BsmI SNP and the risk of T1DM in American population in all of the genetic model comparisons. Finally neither our meta-analysis nor the previous one by Tizaouia et al. [20] found any significant association of ApaI polymorphism and T1DM risk in overall as well as subgroup analyses. Taken together, although our meta-analysis included further studies compared to the previous study, the overall analysis was almost the same. Nonetheless, our subgroup analysis indicated association of VDR genetic polymorphisms with T1DM risk in different ethnical groups.
In their meta-analysis, Tizaoui et al. [20] indicated in the stratification analysis that publication year, age, gender, estimated VitD levels, and latitude modulated the association between VDR gene polymorphisms and T1D risk. Furthermore, another meta-analysis revealed a relationship between winter ultraviolet radiation (UVR) and VDR gene polymorphisms in T1DM, implying to the influence of the UVR on the association between VDR polymorphisms and T1DM susceptibility [72]. During the four cooler months, it was observed that latitude strongly determines the available levels of VitD producing UV. As latitude increases, the amount of VitD producing UV decreases, which may prevent VitD synthesis in humans [73]. As a result, the latitude of the locations in which the individuals live may impress the susceptibility to develop T1DM.
Despite we tried to conduct best meta-analysis of the VDR gene polymorphisms and susceptibility to RA, there was also a number of limitations that should be taken into account. First, there was significant heterogeneity across studies, which may lessen the certainty of the results. However, we tried to find and attenuate its effect by meta-regression and subgroup analysis. Consequently, heterogeneity was still an unavoidable problem that may influence the accuracy of the overall results. Second, only articles published in the English language were include in this meta-analysis. Third, our meta-analysis was based on crude approximation of the genetic variations regardless of adjusting the analysis by gender, age, VitD intake, and other environmental factors like exposure to sun light, as several studies noted the involvement of these parameters as well as gene-environment and gene-gene interactions in the susceptibility and of RA and we could not analyze it owing to a lack of published well-structured data.

Conclusion

In conclusion, this study was a systematic review and meta-analysis of 40 case–control association studies to come up with the clear estimation of the associations between the VDR gene SNPs [FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232)] and susceptibility to T1DM. The findings of meta-analysis revealed no significant association of VDR gene SNPs with T1DM risk in the overall population. However, the subgroup analysis indicated significant associations between FokI and BsmI polymorphism and T1DM risk in African and American population. As a limitation, we did not evaluate a number of VDR gene SNPs that might act in interaction with environmental factors to determine the fate of T1DM pathogenicity. Further investigations on the VDR, above and beyond the genetic as well as traditional risk factors, may confer a possibility for identification of critical susceptibility factors in the disease development, which might be applicable in the personalized medicine for better and optimized therapy of T1DM patients.

Acknowledgements

The authors would like to thank Mrs. Maryam Izad for all her support.

Disclosure of conflict of interest

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Gupta G, et al. A clinical update on metformin and lung cancer in diabetic patients. Panminerva Med. 2018;60(2):70–5.PubMedCrossRef Gupta G, et al. A clinical update on metformin and lung cancer in diabetic patients. Panminerva Med. 2018;60(2):70–5.PubMedCrossRef
2.
3.
Zurück zum Zitat Miettinen ME, et al. Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child. PLoS One. 2017;12(10):e0184942.PubMedPubMedCentralCrossRef Miettinen ME, et al. Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child. PLoS One. 2017;12(10):e0184942.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Diaz-Valencia PA, Bougnères P, Valleron A-J. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health. 2015;15(1):255.PubMedPubMedCentralCrossRef Diaz-Valencia PA, Bougnères P, Valleron A-J. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health. 2015;15(1):255.PubMedPubMedCentralCrossRef
5.
6.
Zurück zum Zitat Vaidya A, Williams JS. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes. Metabolism. 2012;61(4):450–8.PubMedCrossRef Vaidya A, Williams JS. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes. Metabolism. 2012;61(4):450–8.PubMedCrossRef
7.
Zurück zum Zitat Riek AE, et al. Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients. J Biol Chem. 2012;287(46):38482–94.PubMedPubMedCentralCrossRef Riek AE, et al. Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients. J Biol Chem. 2012;287(46):38482–94.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Makoui MH, Imani D, Motallebnezhad M, Azimi M, Razi B. Vitamin D receptor gene polymorphism and susceptibility to asthma: Meta-analysis based on 17 case-control studies. Ann Allergy Asthma Immunol. 2020;124(1):57–69.PubMedCrossRef Makoui MH, Imani D, Motallebnezhad M, Azimi M, Razi B. Vitamin D receptor gene polymorphism and susceptibility to asthma: Meta-analysis based on 17 case-control studies. Ann Allergy Asthma Immunol. 2020;124(1):57–69.PubMedCrossRef
9.
Zurück zum Zitat Bagheri-Hosseinabadi Z, et al. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): systematic review and meta-analysis. Clin Rheumatol. 2020. Bagheri-Hosseinabadi Z, et al. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): systematic review and meta-analysis. Clin Rheumatol. 2020.
10.
Zurück zum Zitat Bhalla AK, et al. 1, 25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J Immunol. 1984;133(4):1748–54.PubMed Bhalla AK, et al. 1, 25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J Immunol. 1984;133(4):1748–54.PubMed
11.
Zurück zum Zitat Lemire JM. Immunomodulatory actions of 1, 25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 1995;53(1–6):599–602.PubMedCrossRef Lemire JM. Immunomodulatory actions of 1, 25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 1995;53(1–6):599–602.PubMedCrossRef
12.
Zurück zum Zitat Riachy R, et al. 1, 25-Dihydroxyvitamin D 3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis. 2006;11(2):151–9.PubMedCrossRef Riachy R, et al. 1, 25-Dihydroxyvitamin D 3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis. 2006;11(2):151–9.PubMedCrossRef
13.
Zurück zum Zitat Trembleau S, et al. The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol Today. 1995;16(8):383–6.PubMedCrossRef Trembleau S, et al. The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol Today. 1995;16(8):383–6.PubMedCrossRef
14.
Zurück zum Zitat Uitterlinden AG, et al. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338(2):143–56.PubMedCrossRef Uitterlinden AG, et al. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338(2):143–56.PubMedCrossRef
15.
Zurück zum Zitat Panierakis C, et al. Vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Crete, Greece. Clin Immunol. 2009;133(2):276–81.PubMedCrossRef Panierakis C, et al. Vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Crete, Greece. Clin Immunol. 2009;133(2):276–81.PubMedCrossRef
16.
Zurück zum Zitat Wang Q, et al. Quantitative assessment of the associations between four polymorphisms (FokI, ApaI, BsmI, TaqI) of vitamin D receptor gene and risk of diabetes mellitus. Mol Biol Rep. 2012;39(10):9405–14.PubMedCrossRef Wang Q, et al. Quantitative assessment of the associations between four polymorphisms (FokI, ApaI, BsmI, TaqI) of vitamin D receptor gene and risk of diabetes mellitus. Mol Biol Rep. 2012;39(10):9405–14.PubMedCrossRef
17.
Zurück zum Zitat Ferrari S, et al. Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: interaction with age, dietary calcium, and 3′-end region polymorphisms. J Bone Miner Res. 1998;13(6):925–30.PubMedCrossRef Ferrari S, et al. Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: interaction with age, dietary calcium, and 3′-end region polymorphisms. J Bone Miner Res. 1998;13(6):925–30.PubMedCrossRef
18.
Zurück zum Zitat Imani D, et al. Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): an updated meta-analysis. BMC Neurol. 2019;19(1):339.PubMedPubMedCentralCrossRef Imani D, et al. Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): an updated meta-analysis. BMC Neurol. 2019;19(1):339.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta. 2006;371(1–2):1–12.PubMedCrossRef Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta. 2006;371(1–2):1–12.PubMedCrossRef
20.
Zurück zum Zitat Tizaoui K, et al. Contribution of VDR polymorphisms to type 1 diabetes susceptibility: systematic review of case–control studies and meta-analysis. J Steroid Biochem Mol Biol. 2014;143:240–9.PubMedCrossRef Tizaoui K, et al. Contribution of VDR polymorphisms to type 1 diabetes susceptibility: systematic review of case–control studies and meta-analysis. J Steroid Biochem Mol Biol. 2014;143:240–9.PubMedCrossRef
21.
Zurück zum Zitat Guo S-W, et al. Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. Am J Epidemiol. 2006;164(8):711–24.PubMedCrossRef Guo S-W, et al. Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. Am J Epidemiol. 2006;164(8):711–24.PubMedCrossRef
22.
Zurück zum Zitat Zhang J, et al. Polymorphisms in the vitamin D receptor gene and type 1 diabetes mellitus risk: an update by meta-analysis. Mol Cell Endocrinol. 2012;355(1):135–42.PubMedCrossRef Zhang J, et al. Polymorphisms in the vitamin D receptor gene and type 1 diabetes mellitus risk: an update by meta-analysis. Mol Cell Endocrinol. 2012;355(1):135–42.PubMedCrossRef
23.
Zurück zum Zitat Sahin OA, et al. Association of vitamin D receptor polymorphisms and type 1 diabetes susceptibility in children: a meta-analysis. Endocr Connections. 2017;6(3):159–71.CrossRef Sahin OA, et al. Association of vitamin D receptor polymorphisms and type 1 diabetes susceptibility in children: a meta-analysis. Endocr Connections. 2017;6(3):159–71.CrossRef
24.
Zurück zum Zitat Qin W-H, et al. A meta-analysis of association of vitamin D receptor BsmI gene polymorphism with the risk of type 1 diabetes mellitus. J Recept Signal Transduct. 2014;34(5):372–7.CrossRef Qin W-H, et al. A meta-analysis of association of vitamin D receptor BsmI gene polymorphism with the risk of type 1 diabetes mellitus. J Recept Signal Transduct. 2014;34(5):372–7.CrossRef
25.
Zurück zum Zitat Wang G, et al. Associations between two polymorphisms (FokI and BsmI) of vitamin D receptor gene and type 1 diabetes mellitus in Asian population: a meta-analysis. PLoS One. 2014;9(3):e89325.PubMedPubMedCentralCrossRef Wang G, et al. Associations between two polymorphisms (FokI and BsmI) of vitamin D receptor gene and type 1 diabetes mellitus in Asian population: a meta-analysis. PLoS One. 2014;9(3):e89325.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRefPubMed Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRefPubMed
27.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef
28.
Zurück zum Zitat Huedo-Medina TB, et al. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193.PubMedCrossRef Huedo-Medina TB, et al. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193.PubMedCrossRef
29.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials control. Clin Trials. 1986;7:177–88. Find this article online.CrossRef DerSimonian R, Laird N. Meta-analysis in clinical trials control. Clin Trials. 1986;7:177–88. Find this article online.CrossRef
30.
Zurück zum Zitat Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMed Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMed
32.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.PubMedCrossRef Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.PubMedCrossRef
33.
Zurück zum Zitat Ban Y, et al. Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet. 2001;2(1):7.PubMedPubMedCentralCrossRef Ban Y, et al. Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet. 2001;2(1):7.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Fassbender W, et al. VDR gene polymorphisms are overrepresented in German patients with type 1 diabetes compared to healthy controls without effect on biochemical parameters of bone metabolism. Horm Metab Res. 2002;34(06):330–7.PubMedCrossRef Fassbender W, et al. VDR gene polymorphisms are overrepresented in German patients with type 1 diabetes compared to healthy controls without effect on biochemical parameters of bone metabolism. Horm Metab Res. 2002;34(06):330–7.PubMedCrossRef
35.
Zurück zum Zitat Gyorffy B, et al. Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur J Endocrinol. 2002;147(6):803–8.PubMedCrossRef Gyorffy B, et al. Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur J Endocrinol. 2002;147(6):803–8.PubMedCrossRef
36.
Zurück zum Zitat Turpeinen H, et al. Vitamin D receptor polymorphisms: no association with type 1 diabetes in the Finnish population. Eur J Endocrinol. 2003;149(6):591–6.PubMedCrossRef Turpeinen H, et al. Vitamin D receptor polymorphisms: no association with type 1 diabetes in the Finnish population. Eur J Endocrinol. 2003;149(6):591–6.PubMedCrossRef
37.
Zurück zum Zitat Martí G, Audí L, Esteban C, Oyarzábal M, Chueca M, Gussinyé M, Yeste D, Fernández-Cancio M, Andaluz P, Carrascosa A. Asociación de los polimorfismos del gen del receptor de la vitamina D con la diabetes mellitus tipo 1 en dos poblaciones españolas. Med Clín. 2004;123(8):286–90. Martí G, Audí L, Esteban C, Oyarzábal M, Chueca M, Gussinyé M, Yeste D, Fernández-Cancio M, Andaluz P, Carrascosa A. Asociación de los polimorfismos del gen del receptor de la vitamina D con la diabetes mellitus tipo 1 en dos poblaciones españolas. Med Clín. 2004;123(8):286–90.
38.
Zurück zum Zitat Pedro JS, et al. Heterogeneity of vitamin D receptor gene association with celiac disease and type 1 diabetes mellitus. Autoimmunity. 2005;38(6):439–44.CrossRef Pedro JS, et al. Heterogeneity of vitamin D receptor gene association with celiac disease and type 1 diabetes mellitus. Autoimmunity. 2005;38(6):439–44.CrossRef
39.
Zurück zum Zitat Zemunik T, et al. FokI polymorphism, vitamin D receptor, and interleukin-1 receptor haplotypes are associated with type 1 diabetes in the Dalmatian population. J Mol Diagn. 2005;7(5):600–4.PubMedPubMedCentralCrossRef Zemunik T, et al. FokI polymorphism, vitamin D receptor, and interleukin-1 receptor haplotypes are associated with type 1 diabetes in the Dalmatian population. J Mol Diagn. 2005;7(5):600–4.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Capoluongo E, et al. Slight association between type 1 diabetes and “ff” VDR FokI genotype in patients from the Italian Lazio region. Lack of association with diabetes complications. Clin Biochem. 2006;39(9):888–92.PubMedCrossRef Capoluongo E, et al. Slight association between type 1 diabetes and “ff” VDR FokI genotype in patients from the Italian Lazio region. Lack of association with diabetes complications. Clin Biochem. 2006;39(9):888–92.PubMedCrossRef
41.
Zurück zum Zitat Lemos MC, et al. Lack of association of vitamin D receptor gene polymorphisms with susceptibility to type 1 diabetes mellitus in the Portuguese population. Hum Immunol. 2008;69(2):134–8.PubMedCrossRef Lemos MC, et al. Lack of association of vitamin D receptor gene polymorphisms with susceptibility to type 1 diabetes mellitus in the Portuguese population. Hum Immunol. 2008;69(2):134–8.PubMedCrossRef
42.
43.
Zurück zum Zitat Mory DB, et al. Prevalence of vitamin D receptor gene polymorphisms FokI and BsmI in Brazilian individuals with type 1 diabetes and their relation to β-cell autoimmunity and to remaining β-cell function. Hum Immunol. 2009;70(6):447–51.PubMedCrossRef Mory DB, et al. Prevalence of vitamin D receptor gene polymorphisms FokI and BsmI in Brazilian individuals with type 1 diabetes and their relation to β-cell autoimmunity and to remaining β-cell function. Hum Immunol. 2009;70(6):447–51.PubMedCrossRef
44.
Zurück zum Zitat Yavuz DG, et al. Vitamin D receptor gene BsmI, FokI, ApaI, TaqI polymorphisms and bone mineral density in a group of Turkish type 1 diabetic patients. Acta Diabetol. 2011;48(4):329–36.CrossRef Yavuz DG, et al. Vitamin D receptor gene BsmI, FokI, ApaI, TaqI polymorphisms and bone mineral density in a group of Turkish type 1 diabetic patients. Acta Diabetol. 2011;48(4):329–36.CrossRef
45.
Zurück zum Zitat Yokota I, et al. Association between vitamin D receptor genotype and age of onset in juvenile Japanese patients with type 1 diabetes. Diabetes Care. 2002;25(7):1244.PubMedCrossRef Yokota I, et al. Association between vitamin D receptor genotype and age of onset in juvenile Japanese patients with type 1 diabetes. Diabetes Care. 2002;25(7):1244.PubMedCrossRef
46.
Zurück zum Zitat Bonakdaran, S., et al., Vitamin D receptor gene polymorphisms in type 1 diabetes mellitus: a new pattern from Khorasan province, Islamic Republic of Iran. 2012. Bonakdaran, S., et al., Vitamin D receptor gene polymorphisms in type 1 diabetes mellitus: a new pattern from Khorasan province, Islamic Republic of Iran. 2012.
47.
Zurück zum Zitat Sahin SB, et al. Fas, Fas ligand, and vitamin D receptor FokI gene polymorphisms in patients with type 1 diabetes mellitus in the Aegean region of Turkey. Genet Test Mol Biomark. 2012;16(10):1179–83.CrossRef Sahin SB, et al. Fas, Fas ligand, and vitamin D receptor FokI gene polymorphisms in patients with type 1 diabetes mellitus in the Aegean region of Turkey. Genet Test Mol Biomark. 2012;16(10):1179–83.CrossRef
48.
Zurück zum Zitat Mohammadnejad Z, et al. Association between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Iranian population. Mol Biol Rep. 2012;39(2):831–7.PubMedCrossRef Mohammadnejad Z, et al. Association between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Iranian population. Mol Biol Rep. 2012;39(2):831–7.PubMedCrossRef
49.
Zurück zum Zitat Vedralová M, et al. Polymorphisms in the vitamin D receptor gene and parathyroid hormone gene in the development and progression of diabetes mellitus and its chronic complications, diabetic nephropathy and non-diabetic renal disease. Kidney Blood Press Res. 2012;36(1):1–9.PubMedCrossRef Vedralová M, et al. Polymorphisms in the vitamin D receptor gene and parathyroid hormone gene in the development and progression of diabetes mellitus and its chronic complications, diabetic nephropathy and non-diabetic renal disease. Kidney Blood Press Res. 2012;36(1):1–9.PubMedCrossRef
50.
Zurück zum Zitat Greer RM, et al. Serum vitamin D levels are lower in Australian children and adolescents with type 1 diabetes than in children without diabetes. Pediatr Diabetes. 2013;14(1):31–41.PubMedCrossRef Greer RM, et al. Serum vitamin D levels are lower in Australian children and adolescents with type 1 diabetes than in children without diabetes. Pediatr Diabetes. 2013;14(1):31–41.PubMedCrossRef
51.
Zurück zum Zitat Hamed EO, et al. Vitamin D level and Fok-I vitamin D receptor gene polymorphism in Egyptian patients with type-1 diabetes. Egypt J Immunol. 2013;20(2):1–10.PubMed Hamed EO, et al. Vitamin D level and Fok-I vitamin D receptor gene polymorphism in Egyptian patients with type-1 diabetes. Egypt J Immunol. 2013;20(2):1–10.PubMed
52.
Zurück zum Zitat Abd-Allah SH, et al. Vitamin D status and vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Gene. 2014;536(2):430–4.PubMedCrossRef Abd-Allah SH, et al. Vitamin D status and vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Gene. 2014;536(2):430–4.PubMedCrossRef
53.
Zurück zum Zitat El-Kafoury AA, et al. The association of polymorphic sites in some genes with type 1 diabetes mellitus in a sample of Egyptian children. Egypt J Med Hum Genet. 2014;15(3):265–72.CrossRef El-Kafoury AA, et al. The association of polymorphic sites in some genes with type 1 diabetes mellitus in a sample of Egyptian children. Egypt J Med Hum Genet. 2014;15(3):265–72.CrossRef
54.
Zurück zum Zitat Nasreen M, et al. Serum vitamin D levels and gene polymorphisms (Fok1 and Apa1) in children with type I diabetes and healthy controls. JPMA. 2016;66:1215. Nasreen M, et al. Serum vitamin D levels and gene polymorphisms (Fok1 and Apa1) in children with type I diabetes and healthy controls. JPMA. 2016;66:1215.
55.
56.
57.
Zurück zum Zitat Rasoul MA, et al. Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in Kuwaiti children. BMC Pediatr. 2019;19(1):71.PubMedPubMedCentralCrossRef Rasoul MA, et al. Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in Kuwaiti children. BMC Pediatr. 2019;19(1):71.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Chang TJ, et al. Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population. Clin Endocrinol. 2000;52(5):575–80.CrossRef Chang TJ, et al. Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population. Clin Endocrinol. 2000;52(5):575–80.CrossRef
59.
Zurück zum Zitat Škrabić V, et al. Vitamin D receptor polymorphism and susceptibility to type 1 diabetes in the Dalmatian population. Diabetes Res Clin Pract. 2003;59(1):31–5.PubMedCrossRef Škrabić V, et al. Vitamin D receptor polymorphism and susceptibility to type 1 diabetes in the Dalmatian population. Diabetes Res Clin Pract. 2003;59(1):31–5.PubMedCrossRef
60.
Zurück zum Zitat Bianco M, et al. Vitamin D receptor polymorphisms: are they really associated with type 1 diabetes? Eur J Endocrinol. 2004;151(5):641–2.PubMedCrossRef Bianco M, et al. Vitamin D receptor polymorphisms: are they really associated with type 1 diabetes? Eur J Endocrinol. 2004;151(5):641–2.PubMedCrossRef
61.
Zurück zum Zitat García D, et al. VDR polymorphisms influence the immune response in type 1 diabetic children from Santiago, Chile. Diabetes Res Clin Pract. 2007;77(1):134–40.PubMedCrossRef García D, et al. VDR polymorphisms influence the immune response in type 1 diabetic children from Santiago, Chile. Diabetes Res Clin Pract. 2007;77(1):134–40.PubMedCrossRef
62.
Zurück zum Zitat Cheon CK, et al. Vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in a Korean population. Pediatr Int. 2015;57(5):870–4.PubMedCrossRef Cheon CK, et al. Vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in a Korean population. Pediatr Int. 2015;57(5):870–4.PubMedCrossRef
63.
Zurück zum Zitat Khalid KE. Vitamin D receptor gene polymorphisms in Sudanese children with type 1 diabetes. AIMS Genet. 2016;3(3):167–76.CrossRef Khalid KE. Vitamin D receptor gene polymorphisms in Sudanese children with type 1 diabetes. AIMS Genet. 2016;3(3):167–76.CrossRef
64.
Zurück zum Zitat Iyer A, et al. Relationship between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Saudi patients. Int J Pharmacol. 2017;13(8):1092–7.CrossRef Iyer A, et al. Relationship between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Saudi patients. Int J Pharmacol. 2017;13(8):1092–7.CrossRef
65.
Zurück zum Zitat Ahmed AE-A, et al. Vitamin D receptor rs7975232, rs731236 and rs1544410 single nucleotide polymorphisms, and 25-hydroxyvitamin D levels in Egyptian children with type 1 diabetes mellitus: effect of vitamin D co-therapy. Diabetes Metab Syndr Obes. 2019;12:703.PubMedPubMedCentralCrossRef Ahmed AE-A, et al. Vitamin D receptor rs7975232, rs731236 and rs1544410 single nucleotide polymorphisms, and 25-hydroxyvitamin D levels in Egyptian children with type 1 diabetes mellitus: effect of vitamin D co-therapy. Diabetes Metab Syndr Obes. 2019;12:703.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Hauache O, et al. Vitamin D receptor gene polymorphism: correlation with bone mineral density in a Brazilian population with insulin-dependent diabetes mellitus. Osteoporos Int. 1998;8(3):204–10.PubMedCrossRef Hauache O, et al. Vitamin D receptor gene polymorphism: correlation with bone mineral density in a Brazilian population with insulin-dependent diabetes mellitus. Osteoporos Int. 1998;8(3):204–10.PubMedCrossRef
67.
Zurück zum Zitat Motohashi Y, et al. Vitamin D receptor gene polymorphism affects onset pattern of type 1 diabetes. J Clin Endocrinol Metab. 2003;88(7):3137–40.PubMedCrossRef Motohashi Y, et al. Vitamin D receptor gene polymorphism affects onset pattern of type 1 diabetes. J Clin Endocrinol Metab. 2003;88(7):3137–40.PubMedCrossRef
68.
Zurück zum Zitat Shimada A, et al. Evidence for association between vitamin D receptor BsmI polymorphism and type 1 diabetes in Japanese. J Autoimmun. 2008;30(4):207–11.PubMedCrossRef Shimada A, et al. Evidence for association between vitamin D receptor BsmI polymorphism and type 1 diabetes in Japanese. J Autoimmun. 2008;30(4):207–11.PubMedCrossRef
69.
Zurück zum Zitat Tawfeek M, Habib F, Saultan EM. Vitamin D receptor BsmI gene polymorphisms and gestational diabetes mellitus: a Saudi study. Br J Med Med Res. 2011;1(4):459–68.CrossRef Tawfeek M, Habib F, Saultan EM. Vitamin D receptor BsmI gene polymorphisms and gestational diabetes mellitus: a Saudi study. Br J Med Med Res. 2011;1(4):459–68.CrossRef
70.
Zurück zum Zitat Al-Moubarak SH. Gender-specific association of vitamin D receptor polymorphism Bsm-I with type 1 diabetes mellitus. Int J Pharm Sci Rev Res. 2013;21(2):254–7. Al-Moubarak SH. Gender-specific association of vitamin D receptor polymorphism Bsm-I with type 1 diabetes mellitus. Int J Pharm Sci Rev Res. 2013;21(2):254–7.
71.
Zurück zum Zitat Martí G, et al. Asociación de los polimorfismos del gen del receptor de la vitamina D con la diabetes mellitus tipo 1 en dos poblaciones españolas. Med Clin. 2004;123(8):286–90.CrossRef Martí G, et al. Asociación de los polimorfismos del gen del receptor de la vitamina D con la diabetes mellitus tipo 1 en dos poblaciones españolas. Med Clin. 2004;123(8):286–90.CrossRef
72.
Zurück zum Zitat Ponsonby A-L, et al. Variation in associations between allelic variants of the vitamin D receptor gene and onset of type 1 diabetes mellitus by ambient winter ultraviolet radiation levels: a meta-regression analysis. Am J Epidemiol. 2008;168(4):358–65.PubMedCrossRef Ponsonby A-L, et al. Variation in associations between allelic variants of the vitamin D receptor gene and onset of type 1 diabetes mellitus by ambient winter ultraviolet radiation levels: a meta-regression analysis. Am J Epidemiol. 2008;168(4):358–65.PubMedCrossRef
73.
Zurück zum Zitat Kimlin MG, Olds WJ, Moore MR. Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J Photochem Photobiol B Biol. 2007;86(3):234–9.CrossRef Kimlin MG, Olds WJ, Moore MR. Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J Photochem Photobiol B Biol. 2007;86(3):234–9.CrossRef
Metadaten
Titel
Vitamin D receptor gene polymorphisms and the risk of the type 1 diabetes: a meta-regression and updated meta-analysis
verfasst von
Na Zhai
Ramtin Bidares
Masoud Hassanzadeh Makoui
Saeed Aslani
Payam Mohammadi
Bahman Razi
Danyal Imani
Mohammad Yazdchi
Haleh Mikaeili
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Endocrine Disorders / Ausgabe 1/2020
Elektronische ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-020-00575-8

Weitere Artikel der Ausgabe 1/2020

BMC Endocrine Disorders 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.