Skip to main content
Erschienen in: Journal of Radiation Oncology 1/2019

31.01.2019 | Original Research

Volume effects in radiosurgical spinal cord dose tolerance: how small is too small?

verfasst von: Ting Martin Ma, Bahman Emami, Jimm Grimm, Jinyu Xue, Sucha O. Asbell, Gregory J. Kubicek, Rachelle Lanciano, James Welsh, Luke Peng, Chengcheng Gui, Indra J. Das, Howard Warren Goldman, Luther W. Brady, Kristin J. Redmond, Lawrence R. Kleinberg

Erschienen in: Journal of Radiation Oncology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

Spinal cord dose constraints are a critical feature for stereotactic body radiation therapy (SBRT). Spinal cord maximum point dose (Dmax) by Monte Carlo (MC) calculations is used as a critical cord tolerance limit for SBRT, but information is lacking about its reproducibility. This study examines uncertainty of MC dose calculations for small volumes in spine SBRT.

Methods

Seven consecutive spine radiosurgery cases were randomly selected to measure precision of the Dmax calculation in comparison to other volumes. Each plan was calculated five times using MC with a 2% uncertainty objective, and variabilities in dose-volume histogram (DVH) parameters across recalculations were evaluated with coefficient of variation (standard deviation divided by mean). The average ratio of D0.03 cc/Dmax was calculated across a larger series of 130 cases.

Results

The variability of Dmax was twice as high for D0.03 cc and five times as high for D1 cc across recalculations for the seven cases. For larger volumes, the variability was lower. The standard deviation of Dmax was 0.1959 Gy, compared to 0.0931 Gy, 0.0569 Gy, and 0.0364 Gy for D0.03 cc, D0.1 cc, and D1 cc, respectively. The average D0.03 cc/Dmax among 130 cases was 0.93.

Conclusions

Dmax has greater variability compared to D0.03 cc, D0.1 cc, and D1 cc, potentially creating risks when used for guidance for spinal cord. D0.03 cc may be an attractive alternative with higher reliability while its limits could be obtained by scaling the reported Dmax limit by a factor of 0.93. This may help guide treatment planning and aid in discovering true dose constraints for spine SBRT.
Literatur
1.
Zurück zum Zitat Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122CrossRefPubMed Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122CrossRefPubMed
2.
Zurück zum Zitat Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76:S42–S49CrossRefPubMed Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76:S42–S49CrossRefPubMed
3.
Zurück zum Zitat Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76:S1–S2CrossRefPubMed Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76:S1–S2CrossRefPubMed
4.
Zurück zum Zitat Marks LB, Yorke ED, Jackson A, ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19CrossRefPubMedPubMedCentral Marks LB, Yorke ED, Jackson A, ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Papiez L, Timmerman R (2008) Hypofractionation in radiation therapy and its impact. Med Phys 35:112–118CrossRefPubMed Papiez L, Timmerman R (2008) Hypofractionation in radiation therapy and its impact. Med Phys 35:112–118CrossRefPubMed
6.
Zurück zum Zitat Gibbs IC, Patil C, Gerszten PC, Adler JR Jr, Burton SA (2009) Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery 64:A67–A72CrossRefPubMed Gibbs IC, Patil C, Gerszten PC, Adler JR Jr, Burton SA (2009) Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery 64:A67–A72CrossRefPubMed
7.
Zurück zum Zitat Gwak HS, Yoo HJ, Youn SM, Chang U, Lee DH, Yoo SY, Rhee CH (2005) Hypofractionated stereotactic radiation therapy for skull base and upper cervical chordoma and chondrosarcoma: preliminary results. Stereotact Funct Neurosurg 83:233–243CrossRefPubMed Gwak HS, Yoo HJ, Youn SM, Chang U, Lee DH, Yoo SY, Rhee CH (2005) Hypofractionated stereotactic radiation therapy for skull base and upper cervical chordoma and chondrosarcoma: preliminary results. Stereotact Funct Neurosurg 83:233–243CrossRefPubMed
8.
Zurück zum Zitat Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, Rosenblum M, Kim JH (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636CrossRefPubMed Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, Rosenblum M, Kim JH (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636CrossRefPubMed
9.
Zurück zum Zitat Sahgal A, Chou D, Ames C, Ma L, Lamborn K, Huang K, Chuang C, Aiken A, Petti P, Weinstein P, Larson D (2007) Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: the University of California San Francisco preliminary experience. Technol Cancer Res Treat 6:595–604CrossRefPubMed Sahgal A, Chou D, Ames C, Ma L, Lamborn K, Huang K, Chuang C, Aiken A, Petti P, Weinstein P, Larson D (2007) Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: the University of California San Francisco preliminary experience. Technol Cancer Res Treat 6:595–604CrossRefPubMed
10.
Zurück zum Zitat Gerszten PC, Burton SA, Welch WC, Brufsky AM, Lembersky BC, Ozhasoglu C, Vogel WJ (2005) Single-fraction radiosurgery for the treatment of spinal breast metastases. Cancer 104:2244–2254CrossRefPubMed Gerszten PC, Burton SA, Welch WC, Brufsky AM, Lembersky BC, Ozhasoglu C, Vogel WJ (2005) Single-fraction radiosurgery for the treatment of spinal breast metastases. Cancer 104:2244–2254CrossRefPubMed
11.
Zurück zum Zitat Chang EL, Shiu AS, Mendel E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7:151–160CrossRefPubMed Chang EL, Shiu AS, Mendel E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7:151–160CrossRefPubMed
12.
Zurück zum Zitat Nelson JW, Yoo DS, Sampson JH, Isaacs RE, Larrier NA, Marks LB, Yin FF, Wu QJ, Wang Z, Kirkpatrick JP (2009) Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int J Radiat Oncol Biol Phys 73:1369–1375CrossRefPubMed Nelson JW, Yoo DS, Sampson JH, Isaacs RE, Larrier NA, Marks LB, Yin FF, Wu QJ, Wang Z, Kirkpatrick JP (2009) Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int J Radiat Oncol Biol Phys 73:1369–1375CrossRefPubMed
13.
Zurück zum Zitat Grimm J, Sahgal A, Soltys SG, Luxton G, Patel A, Herbert S, Xue J, Ma L, Yorke E, Adler JR, Gibbs IC (2016) Estimated risk level of unified stereotactic body radiation therapy dose tolerance limits for spinal cord. Semin Radiat Oncol 26:165–171CrossRefPubMedPubMedCentral Grimm J, Sahgal A, Soltys SG, Luxton G, Patel A, Herbert S, Xue J, Ma L, Yorke E, Adler JR, Gibbs IC (2016) Estimated risk level of unified stereotactic body radiation therapy dose tolerance limits for spinal cord. Semin Radiat Oncol 26:165–171CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, Angelov L, Gibbs I, Wong CS, Larson DA (2013) Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 85:341–347CrossRefPubMed Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, Angelov L, Gibbs I, Wong CS, Larson DA (2013) Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 85:341–347CrossRefPubMed
15.
Zurück zum Zitat Grimm J, LaCouture T, Croce R, Yeo I, Zhu Y, Xue J (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12:3368PubMed Grimm J, LaCouture T, Croce R, Yeo I, Zhu Y, Xue J (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12:3368PubMed
16.
Zurück zum Zitat Warkentin B, Stavrev P, Stavreva N, Field C, Fallone BG (2004) A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. J Appl Clin Med Phys 5:50–63CrossRefPubMedPubMedCentral Warkentin B, Stavrev P, Stavreva N, Field C, Fallone BG (2004) A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. J Appl Clin Med Phys 5:50–63CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Jin L, Wang L, Li J, Luo W, Feigenberg SJ, Ma CM (2007) Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations. Phys Med Biol 52:3549–3561CrossRefPubMed Jin L, Wang L, Li J, Luo W, Feigenberg SJ, Ma CM (2007) Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations. Phys Med Biol 52:3549–3561CrossRefPubMed
18.
Zurück zum Zitat Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I (2007) SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 52:4265–4281CrossRefPubMed Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I (2007) SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 52:4265–4281CrossRefPubMed
19.
Zurück zum Zitat Sharma SC, Ott JT, Williams JB, Dickow D (2007) Commissioning and acceptance testing of a CyberKnife linear accelerator. J Appl Clin Med Phys 8:2473CrossRef Sharma SC, Ott JT, Williams JB, Dickow D (2007) Commissioning and acceptance testing of a CyberKnife linear accelerator. J Appl Clin Med Phys 8:2473CrossRef
20.
Zurück zum Zitat Sempau J, Bielajew AF (2000) Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning. Phys Med Biol 45:131–157CrossRefPubMed Sempau J, Bielajew AF (2000) Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning. Phys Med Biol 45:131–157CrossRefPubMed
21.
Zurück zum Zitat Keall PJ, Siebers JV, Jeraj R, Mohan R (2000) The effect of dose calculation uncertainty on the evaluation of radiotherapy plans. Med Phys 27:478–484CrossRefPubMed Keall PJ, Siebers JV, Jeraj R, Mohan R (2000) The effect of dose calculation uncertainty on the evaluation of radiotherapy plans. Med Phys 27:478–484CrossRefPubMed
22.
Zurück zum Zitat Huo M, Sahgal A, Pryor D, Redmond K, Lo S, Foote M (2017) Stereotactic spine radiosurgery: review of safety and efficacy with respect to dose and fractionation. Surg Neurol Int 8:30CrossRefPubMedPubMedCentral Huo M, Sahgal A, Pryor D, Redmond K, Lo S, Foote M (2017) Stereotactic spine radiosurgery: review of safety and efficacy with respect to dose and fractionation. Surg Neurol Int 8:30CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Das IJ, Cheng CW, Chopra KL, Mitra RK, Srivastava SP, Glatstein E (2008) Intensity-modulated radiation therapy dose prescription, recording, and delivery: patterns of variability among institutions and treatment planning systems. J Natl Cancer Inst 100:300–307CrossRefPubMed Das IJ, Cheng CW, Chopra KL, Mitra RK, Srivastava SP, Glatstein E (2008) Intensity-modulated radiation therapy dose prescription, recording, and delivery: patterns of variability among institutions and treatment planning systems. J Natl Cancer Inst 100:300–307CrossRefPubMed
24.
Zurück zum Zitat Das IJ, Ding GX, Ahnesjo A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215CrossRefPubMed Das IJ, Ding GX, Ahnesjo A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215CrossRefPubMed
25.
Zurück zum Zitat Xue J, McKay JD, Grimm J et al (2017) Small field dose measurements using plastic scintillation detector in heterogeneous media. Med Phys 44:3815–3820CrossRefPubMed Xue J, McKay JD, Grimm J et al (2017) Small field dose measurements using plastic scintillation detector in heterogeneous media. Med Phys 44:3815–3820CrossRefPubMed
26.
Zurück zum Zitat Kawrakow I (2002) On the de-noising of Monte Carlo calculated dose distributions. Phys Med Biol 47:3087–3103CrossRefPubMed Kawrakow I (2002) On the de-noising of Monte Carlo calculated dose distributions. Phys Med Biol 47:3087–3103CrossRefPubMed
27.
Zurück zum Zitat Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CMC, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853CrossRefPubMed Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CMC, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853CrossRefPubMed
28.
Zurück zum Zitat Ding GX, Duggan DM, Coffey CW, Shokrani P, Cygler JE (2006) First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning--new issues for clinical consideration. Phys Med Biol 51:2781–2799CrossRefPubMed Ding GX, Duggan DM, Coffey CW, Shokrani P, Cygler JE (2006) First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning--new issues for clinical consideration. Phys Med Biol 51:2781–2799CrossRefPubMed
29.
Zurück zum Zitat Measurements TICoRUa. ICRU Report 91 (2014) Prescribing, recording, and reporting of stereotactic treatments with small photon beams. Int. Comm. Radiat. Unit and Meas. 14:1–160 Measurements TICoRUa. ICRU Report 91 (2014) Prescribing, recording, and reporting of stereotactic treatments with small photon beams. Int. Comm. Radiat. Unit and Meas. 14:1–160
30.
Zurück zum Zitat Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van der Kogel AJ (2003) Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281CrossRefPubMed Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van der Kogel AJ (2003) Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281CrossRefPubMed
31.
32.
Zurück zum Zitat Lutz S, Balboni T, Jones J, Lo S, Petit J, Rich SE, Wong R, Hahn C (2017) Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol 7:4–12CrossRefPubMed Lutz S, Balboni T, Jones J, Lo S, Petit J, Rich SE, Wong R, Hahn C (2017) Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol 7:4–12CrossRefPubMed
33.
Zurück zum Zitat Xue J, Goldman HW, Grimm J, LaCouture T, Chen Y, Hughes L, Yorke E (2012) Dose-volume effects on brainstem dose tolerance in radiosurgery. J Neurosurg 117 Suppl:189–196CrossRefPubMed Xue J, Goldman HW, Grimm J, LaCouture T, Chen Y, Hughes L, Yorke E (2012) Dose-volume effects on brainstem dose tolerance in radiosurgery. J Neurosurg 117 Suppl:189–196CrossRefPubMed
34.
Zurück zum Zitat Daly ME, Choi CY, Gibbs IC et al (2011) Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas. Int J Radiat Oncol Biol Phys 80:213–220CrossRefPubMed Daly ME, Choi CY, Gibbs IC et al (2011) Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas. Int J Radiat Oncol Biol Phys 80:213–220CrossRefPubMed
35.
Zurück zum Zitat Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van der Kogel AJ (2002) Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52:205–211CrossRefPubMed Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van der Kogel AJ (2002) Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52:205–211CrossRefPubMed
36.
Zurück zum Zitat Okoye CC, Patel RB, Hasan S, Podder T, Khouri A, Fabien J, Zhang Y, Dobbins D, Sohn JW, Yuan J, Yao M, Machtay M, Sloan AE, Miller J, Lo SS (2016) Comparison of ray tracing and Monte Carlo calculation algorithms for thoracic spine lesions treated with CyberKnife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15:196–202CrossRefPubMed Okoye CC, Patel RB, Hasan S, Podder T, Khouri A, Fabien J, Zhang Y, Dobbins D, Sohn JW, Yuan J, Yao M, Machtay M, Sloan AE, Miller J, Lo SS (2016) Comparison of ray tracing and Monte Carlo calculation algorithms for thoracic spine lesions treated with CyberKnife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15:196–202CrossRefPubMed
37.
Zurück zum Zitat Philippens ME, Pop LA, Visser AG, van der Kogel AJ (2007) Dose-volume effects in rat thoracolumbar spinal cord: the effects of nonuniform dose distribution. Int J Radiat Oncol Biol Phys 69:204–213CrossRefPubMed Philippens ME, Pop LA, Visser AG, van der Kogel AJ (2007) Dose-volume effects in rat thoracolumbar spinal cord: the effects of nonuniform dose distribution. Int J Radiat Oncol Biol Phys 69:204–213CrossRefPubMed
38.
Zurück zum Zitat Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, van der Kogel AJ (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503CrossRefPubMed Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, van der Kogel AJ (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503CrossRefPubMed
39.
Zurück zum Zitat Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van Der Kogel AJ (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61:543–551CrossRefPubMed Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van Der Kogel AJ (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61:543–551CrossRefPubMed
40.
Zurück zum Zitat Mian OY, Thomas O, Lee JJ et al (2016) Timely stereotactic body radiotherapy (SBRT) for spine metastases using a rapidly deployable automated planning algorithm. Springerplus 5:1337CrossRefPubMedPubMedCentral Mian OY, Thomas O, Lee JJ et al (2016) Timely stereotactic body radiotherapy (SBRT) for spine metastases using a rapidly deployable automated planning algorithm. Springerplus 5:1337CrossRefPubMedPubMedCentral
Metadaten
Titel
Volume effects in radiosurgical spinal cord dose tolerance: how small is too small?
verfasst von
Ting Martin Ma
Bahman Emami
Jimm Grimm
Jinyu Xue
Sucha O. Asbell
Gregory J. Kubicek
Rachelle Lanciano
James Welsh
Luke Peng
Chengcheng Gui
Indra J. Das
Howard Warren Goldman
Luther W. Brady
Kristin J. Redmond
Lawrence R. Kleinberg
Publikationsdatum
31.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Radiation Oncology / Ausgabe 1/2019
Print ISSN: 1948-7894
Elektronische ISSN: 1948-7908
DOI
https://doi.org/10.1007/s13566-018-0371-6

Weitere Artikel der Ausgabe 1/2019

Journal of Radiation Oncology 1/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.