Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2021

28.07.2020 | Original Research Article

Volume of Distribution is Unaffected by Metabolic Drug–Drug Interactions

verfasst von: Jasleen K. Sodhi, Caroline H. Huang, Leslie Z. Benet

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Introduction

It has been recognized that significant transporter interactions result in volume of distribution changes in addition to potential changes in clearance. For drugs that are not clinically significant transporter substrates, it is expected that drug–drug interactions would not result in any changes in volume of distribution.

Methods

An evaluation of this hypothesis proceeded via an extensive analysis of published intravenous metabolic drug–drug interactions, based on clinically recommended index substrates and inhibitors of major cytochrome P450 (CYP) isoforms.

Results

Seventy-two metabolic drug interaction studies were identified where volume of distribution at steady-state (Vss) values were available for the CYP index substrates caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), theophylline (CYP1A2), and tolbutamide (CYP2C9). Changes in exposure (area under the curve) up to 5.1-fold were observed; however, ratios of Vss changes have a range of 0.70–1.26, with one outlier displaying a Vss ratio of 0.57.

Discussion

These results support the widely held founding tenant of pharmacokinetics that clearance and Vss are independent parameters. Knowledge that Vss is unchanged in metabolic drug–drug interactions can be helpful in discriminating changes in clearance from changes in bioavailability (F) when only oral dosing data are available, as we have recently demonstrated. As Vss remains unchanged for intravenous metabolic drug–drug interactions, following oral dosing changes in Vss/F will reflect changes in F alone. This estimation of F change can subsequently be utilized to assess changes in clearance alone from calculations of apparent clearance. Utilization of this simple methodology for orally dosed drugs will have a significant impact on how drug–drug interactions are interpreted from drug development and regulatory perspectives.
Literatur
2.
Zurück zum Zitat Benet LZ, Bowman CM, Sodhi JK. How transporters have changed basic pharmacokinetic understanding. AAPS J. 2019;21:103.PubMedCrossRef Benet LZ, Bowman CM, Sodhi JK. How transporters have changed basic pharmacokinetic understanding. AAPS J. 2019;21:103.PubMedCrossRef
3.
Zurück zum Zitat Sodhi JK, Benet LZ. A simple methodology to differentiate changes in bioavailability from changes in clearance following oral dosing of metabolized drugs. Clin Pharmacol Ther. 2020;108:306–15.PubMedCrossRef Sodhi JK, Benet LZ. A simple methodology to differentiate changes in bioavailability from changes in clearance following oral dosing of metabolized drugs. Clin Pharmacol Ther. 2020;108:306–15.PubMedCrossRef
4.
Zurück zum Zitat Tornio A, Filppula AM, Niemi M, Backman JT. Clinical studies on drug–drug interactions involving metabolism and transport: methodology, pitfalls and interpretation. Clin Pharmacol Ther. 2019;105:1345–61.PubMedPubMedCentralCrossRef Tornio A, Filppula AM, Niemi M, Backman JT. Clinical studies on drug–drug interactions involving metabolism and transport: methodology, pitfalls and interpretation. Clin Pharmacol Ther. 2019;105:1345–61.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Isoherranen N, Lutz JD, Chung SP, Hachad H, Levy RH, Ragueneau-Majlessi I. Importance of multi-P450 inhibition in drug–drug interactions: evidence of incidence, inhibition magnitude, and prediction from in vitro data. Chem Res Toxicol. 2012;25:2285–300.PubMedPubMedCentralCrossRef Isoherranen N, Lutz JD, Chung SP, Hachad H, Levy RH, Ragueneau-Majlessi I. Importance of multi-P450 inhibition in drug–drug interactions: evidence of incidence, inhibition magnitude, and prediction from in vitro data. Chem Res Toxicol. 2012;25:2285–300.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin. Clin Pharmacokinet. 2003;42:819–50.PubMedCrossRef Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin. Clin Pharmacokinet. 2003;42:819–50.PubMedCrossRef
7.
Zurück zum Zitat Pelkonen O, Mäeenpäeä J, Taavitsainen P, Rautio A, Paunio H. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998;28:1203–53.PubMedCrossRef Pelkonen O, Mäeenpäeä J, Taavitsainen P, Rautio A, Paunio H. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998;28:1203–53.PubMedCrossRef
8.
Zurück zum Zitat Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol. 2008;82:667–715.PubMedCrossRef Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol. 2008;82:667–715.PubMedCrossRef
9.
Zurück zum Zitat Polasek TM, Lin FPY, Miners JO, Doogue MP. Perpetrators of pharmacokinetic drug–drug interactions arising from altered cytochrome P450 activity: a criteria-based assessment. Br J Clin Pharmacol. 2011;71:727–36.PubMedPubMedCentralCrossRef Polasek TM, Lin FPY, Miners JO, Doogue MP. Perpetrators of pharmacokinetic drug–drug interactions arising from altered cytochrome P450 activity: a criteria-based assessment. Br J Clin Pharmacol. 2011;71:727–36.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Bi Y, Mathialagan S, Tylaska L, Fu M, Keefer J, Vildede A, et al. Organic anion transporter 2 mediates hepatic uptake of tolbutamide, a CYP2C9 probe drug. J Pharmacol Exp Ther. 2018;364:390–8.PubMedCrossRef Bi Y, Mathialagan S, Tylaska L, Fu M, Keefer J, Vildede A, et al. Organic anion transporter 2 mediates hepatic uptake of tolbutamide, a CYP2C9 probe drug. J Pharmacol Exp Ther. 2018;364:390–8.PubMedCrossRef
11.
Zurück zum Zitat Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol. 2005;97:249–56.PubMedCrossRef Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol. 2005;97:249–56.PubMedCrossRef
12.
Zurück zum Zitat Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.PubMedCrossRef Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.PubMedCrossRef
13.
Zurück zum Zitat Benet LZ, Galeazzi RL. Noncompartmental determination of the volume of distribution steady state. J Pharm Sci. 1979;68:1071–4.PubMedCrossRef Benet LZ, Galeazzi RL. Noncompartmental determination of the volume of distribution steady state. J Pharm Sci. 1979;68:1071–4.PubMedCrossRef
14.
Zurück zum Zitat Wahlländer A, Paumgartner G. Effect of ketoconazole and terbinafine on the pharmacokinetics of caffeine in healthy volunteers. Eur J Clin Pharmacol. 1989;37:279–83.PubMedCrossRef Wahlländer A, Paumgartner G. Effect of ketoconazole and terbinafine on the pharmacokinetics of caffeine in healthy volunteers. Eur J Clin Pharmacol. 1989;37:279–83.PubMedCrossRef
15.
Zurück zum Zitat Leemann TD, Devi KP, Dayer P. Similar effect of oxidation deficiency (debrisoquine polymorphism) and quinidine on the apparent volume of distribution of (±)-metoprolol. Eur J Clin Pharmacol. 1993;45:65–71.PubMedCrossRef Leemann TD, Devi KP, Dayer P. Similar effect of oxidation deficiency (debrisoquine polymorphism) and quinidine on the apparent volume of distribution of (±)-metoprolol. Eur J Clin Pharmacol. 1993;45:65–71.PubMedCrossRef
16.
Zurück zum Zitat Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM, Hall SD. The contribution of intestinal and hepatic CYP3A4 to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther. 1998;64:133–43.PubMedCrossRef Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM, Hall SD. The contribution of intestinal and hepatic CYP3A4 to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther. 1998;64:133–43.PubMedCrossRef
17.
Zurück zum Zitat Quinney SK, Haehner BD, Rhoades MB, Lin Z, Gorski JC, Hall SD. Interaction between midazolam and clarithromycin in the elderly. Br J Clin Pharmacol. 2008;65:98–109.PubMedCrossRef Quinney SK, Haehner BD, Rhoades MB, Lin Z, Gorski JC, Hall SD. Interaction between midazolam and clarithromycin in the elderly. Br J Clin Pharmacol. 2008;65:98–109.PubMedCrossRef
18.
Zurück zum Zitat Olkkola KT, Aranko K, Luurila H, Hiller A, Saarnivarra L, Himberg JJ, Neuvonen PJ. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther. 1993;53:298–305.PubMedCrossRef Olkkola KT, Aranko K, Luurila H, Hiller A, Saarnivarra L, Himberg JJ, Neuvonen PJ. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther. 1993;53:298–305.PubMedCrossRef
19.
Zurück zum Zitat Swart EL, van der Hoven B, Groeneveld ABJ, Touw DJ, Danhof M. Correlation between midazolam and lignocaine pharmacokinetics and MEGX formation in healthy volunteers. Br J Clin Pharmacol. 2002;53:133–9.PubMedPubMedCentralCrossRef Swart EL, van der Hoven B, Groeneveld ABJ, Touw DJ, Danhof M. Correlation between midazolam and lignocaine pharmacokinetics and MEGX formation in healthy volunteers. Br J Clin Pharmacol. 2002;53:133–9.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kharasch ED, Walker A, Hoffer C, Sheffels P. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimally invasive and noninvasive probes for hepatic and first-pass CYP3A activity. J Clin Pharmacol. 2005;45:1187–97.PubMedCrossRef Kharasch ED, Walker A, Hoffer C, Sheffels P. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimally invasive and noninvasive probes for hepatic and first-pass CYP3A activity. J Clin Pharmacol. 2005;45:1187–97.PubMedCrossRef
21.
Zurück zum Zitat Isoherranen N, Ludington SR, Givens RC, Lamba JK, Pusek SN, Dees EC, et al. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos. 2008;36:146–54.PubMedCrossRef Isoherranen N, Ludington SR, Givens RC, Lamba JK, Pusek SN, Dees EC, et al. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos. 2008;36:146–54.PubMedCrossRef
22.
Zurück zum Zitat Olkkola KT, Ahonen J, Neuvonen PJ. The effect of systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg. 1996;82:511–6.PubMed Olkkola KT, Ahonen J, Neuvonen PJ. The effect of systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg. 1996;82:511–6.PubMed
23.
Zurück zum Zitat Tsunoda SM, Velez RL, von Moltke LL, Greenblatt DJ. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther. 1999;66:461–71.PubMedCrossRef Tsunoda SM, Velez RL, von Moltke LL, Greenblatt DJ. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther. 1999;66:461–71.PubMedCrossRef
24.
Zurück zum Zitat Shin K-H, Ahn LY, Choi MH, Moon J-Y, Lee J, Jang I-J, et al. Urinary 6β-hydroxycortisol/cortisol ratio most highly correlates with midazolam clearance under hepatic CYP3A inhibition and induction in females: a pharmacometabolomics approach. AAPS J. 2016;18:1254–61.PubMedCrossRef Shin K-H, Ahn LY, Choi MH, Moon J-Y, Lee J, Jang I-J, et al. Urinary 6β-hydroxycortisol/cortisol ratio most highly correlates with midazolam clearance under hepatic CYP3A inhibition and induction in females: a pharmacometabolomics approach. AAPS J. 2016;18:1254–61.PubMedCrossRef
25.
Zurück zum Zitat Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos. 2011;38:1070–8.CrossRef Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos. 2011;38:1070–8.CrossRef
26.
Zurück zum Zitat Loi C-M, Parker BM, Cusak BJ, Vestal RE. Aging and drug interactions. III. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in healthy male and female nonsmokers. J Pharmacol Exp Ther. 1997;280:627–37.PubMed Loi C-M, Parker BM, Cusak BJ, Vestal RE. Aging and drug interactions. III. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in healthy male and female nonsmokers. J Pharmacol Exp Ther. 1997;280:627–37.PubMed
27.
Zurück zum Zitat Breen KJ, Bury R, Desmond MB, Mashford MB, Morphett B, Westwood B, et al. Effects of cimetidine and ranitidine on hepatic drug metabolism. Clin Pharmacol Ther. 1982;31:297–300.PubMedCrossRef Breen KJ, Bury R, Desmond MB, Mashford MB, Morphett B, Westwood B, et al. Effects of cimetidine and ranitidine on hepatic drug metabolism. Clin Pharmacol Ther. 1982;31:297–300.PubMedCrossRef
28.
Zurück zum Zitat Gugler R, Wolf M, Hansen H-H, Jensen JC. The inhibition of drug metabolism by cimetidine in patients with liver cirrhosis. Klin Wochenschr. 1984;62:1126–31.PubMedCrossRef Gugler R, Wolf M, Hansen H-H, Jensen JC. The inhibition of drug metabolism by cimetidine in patients with liver cirrhosis. Klin Wochenschr. 1984;62:1126–31.PubMedCrossRef
29.
Zurück zum Zitat Jackson JE, Powell JR, Wandell M, Bentley J, Dorr R. Cimetidine decreases theophylline clearance. Am Rev Respir Dis. 1981;123:615–7.PubMed Jackson JE, Powell JR, Wandell M, Bentley J, Dorr R. Cimetidine decreases theophylline clearance. Am Rev Respir Dis. 1981;123:615–7.PubMed
30.
Zurück zum Zitat Lin JH, Chremos AN, Chiou R, Yeh KC, Williams R. Comparative effect of famotidine and cimetidine on the pharmacokinetics of theophylline in normal volunteers. Br J Clin Pharmacol. 1987;24:669–72.PubMedPubMedCentralCrossRef Lin JH, Chremos AN, Chiou R, Yeh KC, Williams R. Comparative effect of famotidine and cimetidine on the pharmacokinetics of theophylline in normal volunteers. Br J Clin Pharmacol. 1987;24:669–72.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Macias WL, Bergstrom RF, Cerimele BJ, Kassahun K, Tatum DE, Callagan JT. Lack of effect of olanzapine on the pharmacokinetics of a single aminophylline dose in healthy men. Pharmacotherapy. 1998;18:1237–48.PubMed Macias WL, Bergstrom RF, Cerimele BJ, Kassahun K, Tatum DE, Callagan JT. Lack of effect of olanzapine on the pharmacokinetics of a single aminophylline dose in healthy men. Pharmacotherapy. 1998;18:1237–48.PubMed
32.
Zurück zum Zitat Bachmann K, Sullivan TJ, Reese JH, Jauregui L, Miller K, Scott M, et al. Controlled study of the putative interaction between famotidine and theophylline in patients with chronic obstructive pulmonary disease. J Clin Pharmacol. 1995;35:529–35.PubMedCrossRef Bachmann K, Sullivan TJ, Reese JH, Jauregui L, Miller K, Scott M, et al. Controlled study of the putative interaction between famotidine and theophylline in patients with chronic obstructive pulmonary disease. J Clin Pharmacol. 1995;35:529–35.PubMedCrossRef
33.
Zurück zum Zitat Davis RL, Quenzer RW, Kelly HW, Powell JR. Effect of the addition of ciprofloxacin on theophylline pharmacokinetics in subjects inhibited by cimetidine. Ann Pharmacother. 1992;26:11–3.PubMedCrossRef Davis RL, Quenzer RW, Kelly HW, Powell JR. Effect of the addition of ciprofloxacin on theophylline pharmacokinetics in subjects inhibited by cimetidine. Ann Pharmacother. 1992;26:11–3.PubMedCrossRef
34.
Zurück zum Zitat Prince RA, Casabar E, Adair CG, Wexler DB, Lettieri J, Kasik JE. Effect of quinolone antimicrobials on theophylline pharmacokinetics. J Clin Pharmacol. 1989;29:650–4.PubMedCrossRef Prince RA, Casabar E, Adair CG, Wexler DB, Lettieri J, Kasik JE. Effect of quinolone antimicrobials on theophylline pharmacokinetics. J Clin Pharmacol. 1989;29:650–4.PubMedCrossRef
35.
Zurück zum Zitat Abernethy DR, Egan JM, Dickinson TH, Carrum G. Substrate-selective inhibition by verapamil and diltiazem: differential disposition of antipyrine and theophylline in humans. J Pharmacol Exp Ther. 1988;224:994–9. Abernethy DR, Egan JM, Dickinson TH, Carrum G. Substrate-selective inhibition by verapamil and diltiazem: differential disposition of antipyrine and theophylline in humans. J Pharmacol Exp Ther. 1988;224:994–9.
36.
Zurück zum Zitat Sano M, Kawakatsu K, Ohkita C, Yamamoto I, Takeyama M, Yamashina H, Goto M. Effects of enoxacin, ofloxacin and norfloxacin on theophylline disposition in humans. Eur J Clin Pharmacol. 1988;35:161–5.PubMedCrossRef Sano M, Kawakatsu K, Ohkita C, Yamamoto I, Takeyama M, Yamashina H, Goto M. Effects of enoxacin, ofloxacin and norfloxacin on theophylline disposition in humans. Eur J Clin Pharmacol. 1988;35:161–5.PubMedCrossRef
37.
Zurück zum Zitat Stringer KA, Mallet J, Clarke M, Lindenfeld JA. The effect of three different oral doses of verapamil on the disposition of theophylline. Eur J Clin Pharmacol. 1992;43:35–8.PubMedCrossRef Stringer KA, Mallet J, Clarke M, Lindenfeld JA. The effect of three different oral doses of verapamil on the disposition of theophylline. Eur J Clin Pharmacol. 1992;43:35–8.PubMedCrossRef
38.
Zurück zum Zitat Nielsen-Kudsk JE, Buhl JS, Johannessen AC. Verapamil-induced inhibition of theophylline elimination in healthy humans. Pharmacol Toxicol. 1990;66:101–3.PubMedCrossRef Nielsen-Kudsk JE, Buhl JS, Johannessen AC. Verapamil-induced inhibition of theophylline elimination in healthy humans. Pharmacol Toxicol. 1990;66:101–3.PubMedCrossRef
39.
Zurück zum Zitat Back DJ, Tjia J, Mönig H, Ohnhaus EE, Park BK. Selective inhibition of drug oxidation after simultaneous administration of two probe drugs, antipyrine and tolbutamide. Eur J Clin Pharmacol. 1988;34:157–63.PubMedCrossRef Back DJ, Tjia J, Mönig H, Ohnhaus EE, Park BK. Selective inhibition of drug oxidation after simultaneous administration of two probe drugs, antipyrine and tolbutamide. Eur J Clin Pharmacol. 1988;34:157–63.PubMedCrossRef
40.
Zurück zum Zitat Roberts RK, Grice J, Wood L, Petroff V, McGuffie C. Cimetidine impairs the elimination of theophylline and antipyrine. Gastroenterology. 1981;81:19–21.PubMedCrossRef Roberts RK, Grice J, Wood L, Petroff V, McGuffie C. Cimetidine impairs the elimination of theophylline and antipyrine. Gastroenterology. 1981;81:19–21.PubMedCrossRef
41.
Zurück zum Zitat Ciraulo DA, Barnhill J, Boxenbaum H. Pharmacokinetic interaction of disulfiram and antidepressants. Am J Psychiatry. 1985;142:1373–4.PubMedCrossRef Ciraulo DA, Barnhill J, Boxenbaum H. Pharmacokinetic interaction of disulfiram and antidepressants. Am J Psychiatry. 1985;142:1373–4.PubMedCrossRef
42.
Zurück zum Zitat Cremer KF, Secor J, Speeg KV Jr. The effect of route of administration on the cimetidine–theophylline drug interaction. J Clin Pharmacol. 1989;29:451–6.PubMedCrossRef Cremer KF, Secor J, Speeg KV Jr. The effect of route of administration on the cimetidine–theophylline drug interaction. J Clin Pharmacol. 1989;29:451–6.PubMedCrossRef
43.
Zurück zum Zitat Loi C-M, Parker BM, Cusack BJ, Vestal RE. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol. 1993;36:195–200.PubMedPubMedCentralCrossRef Loi C-M, Parker BM, Cusack BJ, Vestal RE. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol. 1993;36:195–200.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Prince RA, Wing DS, Weinberger MM, Hendeles LS, Riegelman S. Effects of erythromycin on theophylline kinetics. J Allergy Clin Immunol. 1981;68:427–31.PubMedCrossRef Prince RA, Wing DS, Weinberger MM, Hendeles LS, Riegelman S. Effects of erythromycin on theophylline kinetics. J Allergy Clin Immunol. 1981;68:427–31.PubMedCrossRef
45.
Zurück zum Zitat Benet LZ, Bowman CM, Koleske ML, Rinaldi CL, Sodhi JK. Understanding drug–drug interaction and pharmacogenomic changes in pharmacokinetics for metabolized drugs. J Pharmacokinet Pharmacodyn. 2019;42:155–63.CrossRef Benet LZ, Bowman CM, Koleske ML, Rinaldi CL, Sodhi JK. Understanding drug–drug interaction and pharmacogenomic changes in pharmacokinetics for metabolized drugs. J Pharmacokinet Pharmacodyn. 2019;42:155–63.CrossRef
Metadaten
Titel
Volume of Distribution is Unaffected by Metabolic Drug–Drug Interactions
verfasst von
Jasleen K. Sodhi
Caroline H. Huang
Leslie Z. Benet
Publikationsdatum
28.07.2020
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2021
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-020-00926-7

Weitere Artikel der Ausgabe 2/2021

Clinical Pharmacokinetics 2/2021 Zur Ausgabe