Skip to main content
Erschienen in: Urolithiasis 1/2017

29.11.2016 | Invited Review

What does the crystallography of stones tell us about their formation?

verfasst von: Peter Rez

Erschienen in: Urolithiasis | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The mineral phase makes up most of the mass of a kidney stone. Minerals all come in the form of crystals that are regular arrangements of atoms or molecular groupings at the atomic scale, bounded macroscopically by well-defined crystal faces. Pathologic nephroliths are a polycrystalline aggregate of submicron crystals. Organic macromolecules clearly have an important role in either promoting or preventing aggregation and in altering the morphology of individual submicron crystals by influencing the surface energies of different faces. Crystals, similar in morphology to those grown in solution, are often found for calcium oxalate dihydrate, brushite, cystine and struvite. This is not the case for calcium oxalate monohydrate and hydroxyapatite, two of the most common constituents of stones.
Literatur
1.
Zurück zum Zitat Al-Atar U, Bokov AA, Marshall D, Teichman JMH, Gates BD, Ye ZG, Branda NR (2010) Mechanism of calcium oxalate monohydrate kidney stones formation: layered spherulitic growth. Chem Mater 22:1318–1329CrossRef Al-Atar U, Bokov AA, Marshall D, Teichman JMH, Gates BD, Ye ZG, Branda NR (2010) Mechanism of calcium oxalate monohydrate kidney stones formation: layered spherulitic growth. Chem Mater 22:1318–1329CrossRef
2.
Zurück zum Zitat Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc shell proteins. Nature 381:56–58CrossRef Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc shell proteins. Nature 381:56–58CrossRef
3.
Zurück zum Zitat Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond B 264:461–465CrossRef Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond B 264:461–465CrossRef
4.
Zurück zum Zitat Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1996) Calcium oxalate-crystal membrane interactions: dependence on membrane lipid composition. J Urol 155:1094–1098CrossRefPubMed Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1996) Calcium oxalate-crystal membrane interactions: dependence on membrane lipid composition. J Urol 155:1094–1098CrossRefPubMed
5.
Zurück zum Zitat Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: a review. J Urol 76:213–227PubMed Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: a review. J Urol 76:213–227PubMed
6.
Zurück zum Zitat Canales BK, Anderson L, Higgins L, Ensrud-Bowlin K, Roberts KP, Wu BL, Kim IW, Monga M (2010) Proteome of human calcium kidney stones. Urology 76(e1017):e13 Canales BK, Anderson L, Higgins L, Ensrud-Bowlin K, Roberts KP, Wu BL, Kim IW, Monga M (2010) Proteome of human calcium kidney stones. Urology 76(e1017):e13
7.
Zurück zum Zitat Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17CrossRefPubMed Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17CrossRefPubMed
8.
Zurück zum Zitat Daudon M, Bazin D, Andre G, Jungers P, Cousson A, Chevallier P, Veron E, Matzen G (2009) Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Crystallogr 42:109–115CrossRef Daudon M, Bazin D, Andre G, Jungers P, Cousson A, Chevallier P, Veron E, Matzen G (2009) Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Crystallogr 42:109–115CrossRef
9.
Zurück zum Zitat Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P (2005) Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int 67:1934–1943CrossRefPubMed Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P (2005) Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int 67:1934–1943CrossRefPubMed
10.
Zurück zum Zitat De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Colfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic and geologic environments. Science 349:6760CrossRef De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Colfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic and geologic environments. Science 349:6760CrossRef
11.
Zurück zum Zitat Deganello S (1981) The structure of whewellite, CaC2O4.H20 at 328K. Acta Crystallogr A B37:826–829CrossRef Deganello S (1981) The structure of whewellite, CaC2O4.H20 at 328K. Acta Crystallogr A B37:826–829CrossRef
12.
Zurück zum Zitat Dorian HH, Rez P, Drach GW (1996) Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy. J Urol 156:1833–1837CrossRefPubMed Dorian HH, Rez P, Drach GW (1996) Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy. J Urol 156:1833–1837CrossRefPubMed
13.
Zurück zum Zitat Elliot JS, Rabinowitz IN (1980) Calcium oxalate crystalluria: crystal size in urine. J Urol 123:324–327PubMed Elliot JS, Rabinowitz IN (1980) Calcium oxalate crystalluria: crystal size in urine. J Urol 123:324–327PubMed
14.
Zurück zum Zitat Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318CrossRefPubMed Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318CrossRefPubMed
15.
Zurück zum Zitat Evan AP, Bledsoe SB, Smith SB, Bushinsky DA (2004) Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 65:154–161CrossRefPubMed Evan AP, Bledsoe SB, Smith SB, Bushinsky DA (2004) Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 65:154–161CrossRefPubMed
16.
Zurück zum Zitat Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Record Adv Integr Anat Evol Biol 290:1315–1323CrossRef Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Record Adv Integr Anat Evol Biol 290:1315–1323CrossRef
17.
Zurück zum Zitat Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE (2015) Mechanisms of human kidney stone formation Urolithiasis 43:S19–S32 Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE (2015) Mechanisms of human kidney stone formation Urolithiasis 43:S19–S32
18.
Zurück zum Zitat Finlayson B, Reid F (1978) The expectation of free and fixed particles in stone disease. Investig Urol 15:442–448 Finlayson B, Reid F (1978) The expectation of free and fixed particles in stone disease. Investig Urol 15:442–448
19.
Zurück zum Zitat Fleming DE, Riessen AV, Chauvet MC, Grover PK, Hunter B, Van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291CrossRef Fleming DE, Riessen AV, Chauvet MC, Grover PK, Hunter B, Van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291CrossRef
20.
Zurück zum Zitat Frincu MC, Fogarty CE, Swift JA (2004) Epitaxial relationships between uric acid crystals and mineral surfaces: a factor in urinary stone formation. Langmuir 20:6524–6529CrossRefPubMed Frincu MC, Fogarty CE, Swift JA (2004) Epitaxial relationships between uric acid crystals and mineral surfaces: a factor in urinary stone formation. Langmuir 20:6524–6529CrossRefPubMed
21.
Zurück zum Zitat Ghosh S, Bhattacharya A, Chatterjee P, Mukherjee AK (2014) Structural and microstructural characterization of seven human kidney stones using FTIR spectroscopy, SEM, thermal study and X-ray Rietveld analysis. Z Kristallogr 229:451–458 Ghosh S, Bhattacharya A, Chatterjee P, Mukherjee AK (2014) Structural and microstructural characterization of seven human kidney stones using FTIR spectroscopy, SEM, thermal study and X-ray Rietveld analysis. Z Kristallogr 229:451–458
22.
Zurück zum Zitat Grohe B, O’Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951CrossRefPubMed Grohe B, O’Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951CrossRefPubMed
23.
Zurück zum Zitat Gul A, Rez P (2007) Models for protein binding to calcium oxalate surfaces. Urol Res 35:63–71CrossRefPubMed Gul A, Rez P (2007) Models for protein binding to calcium oxalate surfaces. Urol Res 35:63–71CrossRefPubMed
24.
Zurück zum Zitat Guo S, Ward MD, Wesson JA (2002) Direct visualisation of calcium oxalate monohydrate and crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir 18:4284–4291CrossRef Guo S, Ward MD, Wesson JA (2002) Direct visualisation of calcium oxalate monohydrate and crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir 18:4284–4291CrossRef
25.
Zurück zum Zitat Hahn T (ed) (2005) International tables for crystallography. International Union For Crystallography, Dordrecht Hahn T (ed) (2005) International tables for crystallography. International Union For Crystallography, Dordrecht
26.
Zurück zum Zitat Hajir M, Graf R, Tremel W (2014) Stable amorphous calcium oxalate: synthesis and potential intermediate in biomineralization. Chem Commun 50:6534–6536CrossRef Hajir M, Graf R, Tremel W (2014) Stable amorphous calcium oxalate: synthesis and potential intermediate in biomineralization. Chem Commun 50:6534–6536CrossRef
27.
Zurück zum Zitat He JY, Deng SP, Ouyang JM (2010) Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients. IEEE Trans Nanobiosci 9:156–163CrossRef He JY, Deng SP, Ouyang JM (2010) Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients. IEEE Trans Nanobiosci 9:156–163CrossRef
28.
Zurück zum Zitat Herring LC (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:545–562PubMed Herring LC (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:545–562PubMed
29.
Zurück zum Zitat Ihli J, Wang YW, Cantaert B, Kim YY, Green DC, Bomans PHH, Sommerdijk N, Meldrum FC (2015) Precipitation of amorphous calcium oxalate in aqueous solution. Chem Mater 27:3999–4007CrossRef Ihli J, Wang YW, Cantaert B, Kim YY, Green DC, Bomans PHH, Sommerdijk N, Meldrum FC (2015) Precipitation of amorphous calcium oxalate in aqueous solution. Chem Mater 27:3999–4007CrossRef
30.
Zurück zum Zitat Ihli J, Wong WC, Noel EH, Kim YY, Kulak AN, Christenson HK, Duer MJ, Meldrum FC (2014) Dehydration and crystallization of amorphous calcium carbonate in solution and air. Nat Commun 5:3169CrossRefPubMedPubMedCentral Ihli J, Wong WC, Noel EH, Kim YY, Kulak AN, Christenson HK, Duer MJ, Meldrum FC (2014) Dehydration and crystallization of amorphous calcium carbonate in solution and air. Nat Commun 5:3169CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Iwata H, Iio S, Nishio S, Takeuchi M (1992) Architecture of mixed calcium oxalate dihydrate and monohydrate stones. Scanning Microsc 6:231–238PubMed Iwata H, Iio S, Nishio S, Takeuchi M (1992) Architecture of mixed calcium oxalate dihydrate and monohydrate stones. Scanning Microsc 6:231–238PubMed
32.
Zurück zum Zitat Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383CrossRefPubMed Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383CrossRefPubMed
33.
Zurück zum Zitat Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072CrossRefPubMed Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072CrossRefPubMed
34.
Zurück zum Zitat Khan SR, Hackett RL (1986) Identification of urinary stone and sediment crystals by scanning electron microscopy and X-ray microanalysis. J Urol 135:818–826PubMed Khan SR, Hackett RL (1986) Identification of urinary stone and sediment crystals by scanning electron microscopy and X-ray microanalysis. J Urol 135:818–826PubMed
35.
Zurück zum Zitat King JS, Boyce WH (1957) Amino acid and carbohydrate composition of the mucoprotein matrix in various calculi. Proc Soc Exp Biol Med 95:183–187CrossRefPubMed King JS, Boyce WH (1957) Amino acid and carbohydrate composition of the mucoprotein matrix in various calculi. Proc Soc Exp Biol Med 95:183–187CrossRefPubMed
36.
Zurück zum Zitat Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefPubMed Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefPubMed
37.
Zurück zum Zitat Letellier JR, Lochlear MJ, Campbell AA, Vogel V (1998) Oriented growth of calcium oxalate monohydrate crystals between phospholipid monolayers. Biochim Biophys Acta 1380:31–45CrossRefPubMed Letellier JR, Lochlear MJ, Campbell AA, Vogel V (1998) Oriented growth of calcium oxalate monohydrate crystals between phospholipid monolayers. Biochim Biophys Acta 1380:31–45CrossRefPubMed
38.
Zurück zum Zitat Li H, Xin HL, Muller DA, Estroff LA (2009) Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogel. Science 326:1244–1247CrossRefPubMed Li H, Xin HL, Muller DA, Estroff LA (2009) Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogel. Science 326:1244–1247CrossRefPubMed
39.
Zurück zum Zitat Lian JB, Prien EL, Glimcher MJ, Gallop PM (1977) The presence of protein bound γ-carboxyglutamic acid in calcium-containing renal calculi. J Clin Invest 59:1151–1157CrossRefPubMedPubMedCentral Lian JB, Prien EL, Glimcher MJ, Gallop PM (1977) The presence of protein bound γ-carboxyglutamic acid in calcium-containing renal calculi. J Clin Invest 59:1151–1157CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Lonsdale K (1968) Epitaxy as a growth factor in urinary calculi and gallstones. Nature 217:56–58CrossRefPubMed Lonsdale K (1968) Epitaxy as a growth factor in urinary calculi and gallstones. Nature 217:56–58CrossRefPubMed
41.
Zurück zum Zitat Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci 105:12748–12753CrossRefPubMedPubMedCentral Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci 105:12748–12753CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Mandal T, Ward MD (2013) Determination of specific binding interactions at l-cystine crystal surfaces with chemical force microscopy. J Am Chem Soc 135:5525–5528CrossRefPubMed Mandal T, Ward MD (2013) Determination of specific binding interactions at l-cystine crystal surfaces with chemical force microscopy. J Am Chem Soc 135:5525–5528CrossRefPubMed
43.
Zurück zum Zitat Mandel N (1994) Crystal-membrane interaction in kidney stone disease. J Am Soc Nephrol 5:S37–S45PubMed Mandel N (1994) Crystal-membrane interaction in kidney stone disease. J Am Soc Nephrol 5:S37–S45PubMed
44.
Zurück zum Zitat Mandel N, Riese R (1991) Crystal cell interactions: crystal binding to rat renal papillary tip collecting duct cells in culture. Am J Kidney Dis 17:402–406CrossRefPubMed Mandel N, Riese R (1991) Crystal cell interactions: crystal binding to rat renal papillary tip collecting duct cells in culture. Am J Kidney Dis 17:402–406CrossRefPubMed
45.
Zurück zum Zitat Meyer AS, Finlayson B, DuBois L (1971) Direct observation of urinary stone ultrastructure. Brit J Urol 43:154–163CrossRefPubMed Meyer AS, Finlayson B, DuBois L (1971) Direct observation of urinary stone ultrastructure. Brit J Urol 43:154–163CrossRefPubMed
46.
Zurück zum Zitat Millan A (2001) Crystal growth of whewellite polymorphs: influence of structure distortions on crystal shape. Cryst Growth Design 1:245–254CrossRef Millan A (2001) Crystal growth of whewellite polymorphs: influence of structure distortions on crystal shape. Cryst Growth Design 1:245–254CrossRef
47.
Zurück zum Zitat Ogbuji LU, Finlayson B (1981) Crystal morphologies in whewellite stones: electron microscopy. Investig Urol 19:182–186 Ogbuji LU, Finlayson B (1981) Crystal morphologies in whewellite stones: electron microscopy. Investig Urol 19:182–186
48.
Zurück zum Zitat Politi Y, Metzler R, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. PNAS 105:17362–17366CrossRefPubMedPubMedCentral Politi Y, Metzler R, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. PNAS 105:17362–17366CrossRefPubMedPubMedCentral
49.
50.
Zurück zum Zitat Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, Zepeda S, De Yoreo JJ (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci 101:1811–1815CrossRefPubMedPubMedCentral Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, Zepeda S, De Yoreo JJ (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci 101:1811–1815CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Qiu SR, Wierzbicki A, Salter EA, Zepeda S, Orme CA, Hoyer JR, Nancollas GH, Cody AM, de Yoreo JJ (2005) Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps. J Am Chem Soc 127:9036–9044CrossRefPubMed Qiu SR, Wierzbicki A, Salter EA, Zepeda S, Orme CA, Hoyer JR, Nancollas GH, Cody AM, de Yoreo JJ (2005) Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps. J Am Chem Soc 127:9036–9044CrossRefPubMed
52.
Zurück zum Zitat Rez P, Sinha S, Gal A (2014) Nanocrystallite model for amorphous calcium carbonate. J Appl Cryst 47:1651–1657CrossRef Rez P, Sinha S, Gal A (2014) Nanocrystallite model for amorphous calcium carbonate. J Appl Cryst 47:1651–1657CrossRef
53.
Zurück zum Zitat Riese RJ, Riese JW, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS (1988) Specificity in calcium oxalate adherence to papillary epithelial cells. Am J Physiol 255:F1025–F1032PubMed Riese RJ, Riese JW, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS (1988) Specificity in calcium oxalate adherence to papillary epithelial cells. Am J Physiol 255:F1025–F1032PubMed
54.
Zurück zum Zitat Robertson WG, Peacock M, Nordin BEC (1971) Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin Sci 40:365–374CrossRefPubMed Robertson WG, Peacock M, Nordin BEC (1971) Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin Sci 40:365–374CrossRefPubMed
55.
Zurück zum Zitat Rodgers AL (1983) Common ultrastructural features in human calculi. Micron 14:219–224 Rodgers AL (1983) Common ultrastructural features in human calculi. Micron 14:219–224
56.
Zurück zum Zitat Rodgers AL, Cox TA, Noakes TD, Lombard CJ (1992) Crystalluria in marathon runners IV black subjects. Urol Res 20:27–33CrossRefPubMed Rodgers AL, Cox TA, Noakes TD, Lombard CJ (1992) Crystalluria in marathon runners IV black subjects. Urol Res 20:27–33CrossRefPubMed
57.
Zurück zum Zitat Rodgers AL, Greyling KG, Irving RA, Noakes TD (1988) Crystalluria in marathon runners II ultra-marathon—males and females. Urol Res 16:89–93CrossRefPubMed Rodgers AL, Greyling KG, Irving RA, Noakes TD (1988) Crystalluria in marathon runners II ultra-marathon—males and females. Urol Res 16:89–93CrossRefPubMed
58.
Zurück zum Zitat Rodgers AL, Greyling KG, Noakes TD (1991) Crystalluria in marathon runners III stone-forming subjects. Urol Res 19:189–192CrossRefPubMed Rodgers AL, Greyling KG, Noakes TD (1991) Crystalluria in marathon runners III stone-forming subjects. Urol Res 19:189–192CrossRefPubMed
59.
Zurück zum Zitat Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int 96:654–663CrossRefPubMed Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int 96:654–663CrossRefPubMed
60.
Zurück zum Zitat Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef
61.
Zurück zum Zitat Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: Intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402PubMed Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: Intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402PubMed
62.
Zurück zum Zitat Ryall RL, Grover PK, Turgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm–Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14CrossRefPubMed Ryall RL, Grover PK, Turgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm–Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14CrossRefPubMed
63.
Zurück zum Zitat Sandersius S, Rez P (2007) Morphology of crystals in calcium oxalate kidney stones. Urol Res 35:287–293CrossRefPubMed Sandersius S, Rez P (2007) Morphology of crystals in calcium oxalate kidney stones. Urol Res 35:287–293CrossRefPubMed
64.
Zurück zum Zitat Schubert G, Brien G (1981) Crystallographic investigations of urinary calcium oxalate calculi. Int Urol Nephrol 13:249–260CrossRefPubMed Schubert G, Brien G (1981) Crystallographic investigations of urinary calcium oxalate calculi. Int Urol Nephrol 13:249–260CrossRefPubMed
65.
Zurück zum Zitat Schubert G, Brien G, Lenk S, Koch R (1983) Texture examinations on grain and thin section preparations of calcium oxalate calculi and their relations to pathogenetic parameters. Urol Res 11:111–115CrossRefPubMed Schubert G, Brien G, Lenk S, Koch R (1983) Texture examinations on grain and thin section preparations of calcium oxalate calculi and their relations to pathogenetic parameters. Urol Res 11:111–115CrossRefPubMed
66.
Zurück zum Zitat Sheng X, Ward MD, Wesson JA (2003) Adhesion between molecules and calcium oxalate crystals: Critical interactions in kidney stone formation. J Am Chem Soc 125:2854–2855CrossRefPubMed Sheng X, Ward MD, Wesson JA (2003) Adhesion between molecules and calcium oxalate crystals: Critical interactions in kidney stone formation. J Am Chem Soc 125:2854–2855CrossRefPubMed
67.
Zurück zum Zitat Sheng XX, Jung TS, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci 102:267–272CrossRefPubMed Sheng XX, Jung TS, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci 102:267–272CrossRefPubMed
68.
Zurück zum Zitat Sours RE, Fink DA, Cox KA, Swift JA (2005) Uric acid dye inclusion crystals. Mol Cryst Liq Cryst 440:187CrossRef Sours RE, Fink DA, Cox KA, Swift JA (2005) Uric acid dye inclusion crystals. Mol Cryst Liq Cryst 440:187CrossRef
69.
Zurück zum Zitat Spector M, Garden NM, Rous SN (1978) Utrastructure and pathogenesis of human urinary calculi. Br J Urol 50:12–15CrossRefPubMed Spector M, Garden NM, Rous SN (1978) Utrastructure and pathogenesis of human urinary calculi. Br J Urol 50:12–15CrossRefPubMed
70.
Zurück zum Zitat Stapleton AMF, Ryall RL (1995) Blood coagulation proteins and urolithiasis are linked: crystal matrix protein is the F1 activation peptide of human prothrombin. Br J Urol 75:712–719CrossRefPubMed Stapleton AMF, Ryall RL (1995) Blood coagulation proteins and urolithiasis are linked: crystal matrix protein is the F1 activation peptide of human prothrombin. Br J Urol 75:712–719CrossRefPubMed
71.
Zurück zum Zitat Stapleton AMF, Simpson RJ, Ryall RL (1993) Crystal matrix protein is related to human prothrombin. Biochem Biophys Res Commun 195:1199–1203CrossRefPubMed Stapleton AMF, Simpson RJ, Ryall RL (1993) Crystal matrix protein is related to human prothrombin. Biochem Biophys Res Commun 195:1199–1203CrossRefPubMed
72.
Zurück zum Zitat Talham DR, Backov R, Benitez IO, Sharbaugh DM, Whipps S, Khan SR (2006) Role of lipids in urinary stones: studies of calcium oxalate precipitation at phospholipid langmuir monolayers. Langmuir 22:2450–2456CrossRefPubMed Talham DR, Backov R, Benitez IO, Sharbaugh DM, Whipps S, Khan SR (2006) Role of lipids in urinary stones: studies of calcium oxalate precipitation at phospholipid langmuir monolayers. Langmuir 22:2450–2456CrossRefPubMed
73.
Zurück zum Zitat Tazzoli V, Domeneghetti C (1980) The crystal structures of whewellite and weddellite: re-examination and comparison. Am Mineral 65:327–334 Tazzoli V, Domeneghetti C (1980) The crystal structures of whewellite and weddellite: re-examination and comparison. Am Mineral 65:327–334
74.
Zurück zum Zitat Thomas A, Rosseeva E, Hochrein O, Carrillo-Cabrera W, Simon P, Duchstein P, Zahn D, Kniep R (2012) Mimicking the growth of a pathologic biomineral: shape development and structures of calcium oxalate dihydrate in the presence of polyacrylic acid. Chem–A Eur J 18:4000–4009CrossRef Thomas A, Rosseeva E, Hochrein O, Carrillo-Cabrera W, Simon P, Duchstein P, Zahn D, Kniep R (2012) Mimicking the growth of a pathologic biomineral: shape development and structures of calcium oxalate dihydrate in the presence of polyacrylic acid. Chem–A Eur J 18:4000–4009CrossRef
75.
Zurück zum Zitat Werness PG, Bergert JH, Smith LH (1981) Crystalluria. J Cryst Growth 53:166–181CrossRef Werness PG, Bergert JH, Smith LH (1981) Crystalluria. J Cryst Growth 53:166–181CrossRef
76.
Zurück zum Zitat Werness PG, Duckworth SC, Smith LH (1979) Calcium oxalate dihydrate crystal growth. Investig Urol 17:230–233 Werness PG, Duckworth SC, Smith LH (1979) Calcium oxalate dihydrate crystal growth. Investig Urol 17:230–233
77.
Zurück zum Zitat Wesson JA, Ward MD (2007) Pathological biomineralization of kidney stones. Elements 3:415–421CrossRef Wesson JA, Ward MD (2007) Pathological biomineralization of kidney stones. Elements 3:415–421CrossRef
78.
Zurück zum Zitat Whipps S, Khan SR, Palko FJ, Backov R, Talham DR (1998) Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers. J Cryst Growth 192:243–249CrossRef Whipps S, Khan SR, Palko FJ, Backov R, Talham DR (1998) Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers. J Cryst Growth 192:243–249CrossRef
79.
Zurück zum Zitat Wulff G (1901) On the question of speed of growth and dissolution of crystal surfaces. Z Kristallogr und Mineral 34:449–530 Wulff G (1901) On the question of speed of growth and dissolution of crystal surfaces. Z Kristallogr und Mineral 34:449–530
Metadaten
Titel
What does the crystallography of stones tell us about their formation?
verfasst von
Peter Rez
Publikationsdatum
29.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe 1/2017
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-016-0951-0

Weitere Artikel der Ausgabe 1/2017

Urolithiasis 1/2017 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.