Skip to main content
Erschienen in: Brain Structure and Function 9/2023

14.09.2023 | Review

Why do different motor cortical areas activate the same muscles?

verfasst von: Alaa M. Albishi

Erschienen in: Brain Structure and Function | Ausgabe 9/2023

Einloggen, um Zugang zu erhalten

Abstract

The cortex contains multiple motor areas, including the primary motor cortex (M1) and supplementary motor area (SMA). Many muscles are represented in both the M1 and SMA, but the reason for this dual representation remains unclear. Previous work has shown that the M1 and SMA representations of a specific human muscle can be differentiated according to their functional connectivity with different brain areas located outside of the motor cortex. It is our perspective that this differential functional connectivity may be the neural substrate that allows an individual muscle to be accessed by distinct neural processes, such as those implementing volitional vs. postural task control. Here, we review existing human and animal literature suggesting how muscles are represented in the M1 and SMA and how these brain regions have distinct functions. We also discuss potential studies to further elucidate the distinct roles of the SMA and M1 in normal and dysfunctional motor control.
Literatur
Zurück zum Zitat Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673PubMedPubMedCentralCrossRef Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673PubMedPubMedCentralCrossRef
Zurück zum Zitat Armour Smith J, Tain R, Sharp KG, Glynn LM, Van Dillen LR, Henslee K, Jacobs JV, Cramer SC (2022). Identifying the neural correlates of anticipatory postural control: a novel fMRI paradigm. medRxiv 2022–09. Armour Smith J, Tain R, Sharp KG, Glynn LM, Van Dillen LR, Henslee K, Jacobs JV, Cramer SC (2022). Identifying the neural correlates of anticipatory postural control: a novel fMRI paradigm. medRxiv 2022–09.
Zurück zum Zitat Bashir S, Perez JM, Horvath JC, Pascual-Leone A (2013) Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects. J Clin Neurophysiol 30:390–395PubMedPubMedCentralCrossRef Bashir S, Perez JM, Horvath JC, Pascual-Leone A (2013) Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects. J Clin Neurophysiol 30:390–395PubMedPubMedCentralCrossRef
Zurück zum Zitat Bolzoni F, Bruttini C, Esposti R, Castellani C, Cavallari P (2015) Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement. Behav Brain Res 291:407–413PubMedCrossRef Bolzoni F, Bruttini C, Esposti R, Castellani C, Cavallari P (2015) Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement. Behav Brain Res 291:407–413PubMedCrossRef
Zurück zum Zitat Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA (2015) Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia 79:246–255PubMedPubMedCentralCrossRef Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA (2015) Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia 79:246–255PubMedPubMedCentralCrossRef
Zurück zum Zitat Bouisset S, Do MC (2008) Posture, dynamic stability, and voluntary movement. Neurophysiol Clin 38:345–362PubMedCrossRef Bouisset S, Do MC (2008) Posture, dynamic stability, and voluntary movement. Neurophysiol Clin 38:345–362PubMedCrossRef
Zurück zum Zitat Brinkman C (1981) Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task. Neurosci Lett 27:267–270PubMedCrossRef Brinkman C (1981) Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task. Neurosci Lett 27:267–270PubMedCrossRef
Zurück zum Zitat Bruttini C, Esposti R, Bolzoni F, Vanotti A, Mariotti C, Cavallari P (2014) Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients. Exp Brain Res 233:197–203PubMedCrossRef Bruttini C, Esposti R, Bolzoni F, Vanotti A, Mariotti C, Cavallari P (2014) Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients. Exp Brain Res 233:197–203PubMedCrossRef
Zurück zum Zitat Bryan E (2018) Comprehensive manual of therapeutic exercises: orthopedic and general conditions. ProtoView, Ringgold Bryan E (2018) Comprehensive manual of therapeutic exercises: orthopedic and general conditions. ProtoView, Ringgold
Zurück zum Zitat Canedo A (1997) Primary motor cortex influences on the descending and ascending systems. Progress Neurobiol 51:287–335CrossRef Canedo A (1997) Primary motor cortex influences on the descending and ascending systems. Progress Neurobiol 51:287–335CrossRef
Zurück zum Zitat Caronni A, Cavallari P (2009) Anticipatory postural adjustments stabilise the whole upper-limb prior to a gentle index finger tap. Exp Brain Res 194:59–66PubMedCrossRef Caronni A, Cavallari P (2009) Anticipatory postural adjustments stabilise the whole upper-limb prior to a gentle index finger tap. Exp Brain Res 194:59–66PubMedCrossRef
Zurück zum Zitat Chainay H, Krainik A, Tanguy M-L, Gerardin E, Le Bihan D, Phane S, Ricy L (2004) Foot, face and hand representation in the human supplementary motor area. NeuroReport 15:765–769PubMedCrossRef Chainay H, Krainik A, Tanguy M-L, Gerardin E, Le Bihan D, Phane S, Ricy L (2004) Foot, face and hand representation in the human supplementary motor area. NeuroReport 15:765–769PubMedCrossRef
Zurück zum Zitat Christensen MS, Lundbye-Jensen J, Grey MJ, Vejlby AD, Belhage B, Nielsen JB (2010) Illusory sensation of movement induced by repetitive transcranial magnetic stimulation. PLoS One 5 Christensen MS, Lundbye-Jensen J, Grey MJ, Vejlby AD, Belhage B, Nielsen JB (2010) Illusory sensation of movement induced by repetitive transcranial magnetic stimulation. PLoS One 5
Zurück zum Zitat Coffman KA, Dum RP, Strick PL (2011) Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci 108:16068–16073PubMedPubMedCentralCrossRef Coffman KA, Dum RP, Strick PL (2011) Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci 108:16068–16073PubMedPubMedCentralCrossRef
Zurück zum Zitat Colebatch JG, Deiber MP, Pasingham RE, Friston KJ, Frackowiack RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:1392–1401PubMedCrossRef Colebatch JG, Deiber MP, Pasingham RE, Friston KJ, Frackowiack RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:1392–1401PubMedCrossRef
Zurück zum Zitat Critchley M (1966) The parietal lobes. Hafner, New York Critchley M (1966) The parietal lobes. Hafner, New York
Zurück zum Zitat Davis KD, Taub E, Houle S, Lang AE, Dostrovsky JO, Tasker RR, Lozano AM (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of Parkinsonian symptoms. Nat Med 3:671–674PubMedCrossRef Davis KD, Taub E, Houle S, Lang AE, Dostrovsky JO, Tasker RR, Lozano AM (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of Parkinsonian symptoms. Nat Med 3:671–674PubMedCrossRef
Zurück zum Zitat Diener HC, Dichgans J, Guschlbauer B, Bacher M, Langenbach P (1989) Disturbances of motor preparation in basal ganglia and cerebellar disorders. Prog Brain Res 80:481–488PubMedCrossRef Diener HC, Dichgans J, Guschlbauer B, Bacher M, Langenbach P (1989) Disturbances of motor preparation in basal ganglia and cerebellar disorders. Prog Brain Res 80:481–488PubMedCrossRef
Zurück zum Zitat Donoghue JP, Parham C (1983) Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol 217:390–404PubMedCrossRef Donoghue JP, Parham C (1983) Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol 217:390–404PubMedCrossRef
Zurück zum Zitat Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682PubMedCrossRef Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682PubMedCrossRef
Zurück zum Zitat Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 9 Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 9
Zurück zum Zitat Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15:626–631PubMedCrossRef Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15:626–631PubMedCrossRef
Zurück zum Zitat Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, Spencer DD (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11:3656–3666PubMedPubMedCentralCrossRef Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, Spencer DD (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11:3656–3666PubMedPubMedCentralCrossRef
Zurück zum Zitat Gauthier J, Bourbonnais D, Filiatrault J, Gravel D, Arsenault AB (1992) Characterization of contralateral torques during static hip efforts in healthy subjects and subjects with hemiparesis. Brain 115:1193–1207PubMedCrossRef Gauthier J, Bourbonnais D, Filiatrault J, Gravel D, Arsenault AB (1992) Characterization of contralateral torques during static hip efforts in healthy subjects and subjects with hemiparesis. Brain 115:1193–1207PubMedCrossRef
Zurück zum Zitat Gordon EM, Chauvin RJ, Van AN et al (2023) A somato-cognitive action network alternates with effector regions in motor cortex. Nature 617:351–359PubMedPubMedCentralCrossRef Gordon EM, Chauvin RJ, Van AN et al (2023) A somato-cognitive action network alternates with effector regions in motor cortex. Nature 617:351–359PubMedPubMedCentralCrossRef
Zurück zum Zitat Grafton ST (2004) Contributions of functional imaging to understanding Parkinsonian symptoms. Curr Opin Neurobiol 14:715–719PubMedCrossRef Grafton ST (2004) Contributions of functional imaging to understanding Parkinsonian symptoms. Curr Opin Neurobiol 14:715–719PubMedCrossRef
Zurück zum Zitat Grafton ST, Woods RP, Mazziotta JC (1993) Positron emission tomography imaging of cerebral blood flow. Exp Brain Res 95:172–176PubMedCrossRef Grafton ST, Woods RP, Mazziotta JC (1993) Positron emission tomography imaging of cerebral blood flow. Exp Brain Res 95:172–176PubMedCrossRef
Zurück zum Zitat Guye M, Parker GJM, Symms M, Boulby P, Wheeler-Kingshott CAM, Salek-Haddadi A, Barker GJ, Duncan JS (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19:1349–1360PubMedCrossRef Guye M, Parker GJM, Symms M, Boulby P, Wheeler-Kingshott CAM, Salek-Haddadi A, Barker GJ, Duncan JS (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19:1349–1360PubMedCrossRef
Zurück zum Zitat He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMedPubMedCentralCrossRef He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMedPubMedCentralCrossRef
Zurück zum Zitat Herwig U, Kölbel K, Wunderlich AP, Thielscher A, Von Tiesenhausen C, Spitzer M, Schönfeldt-Lecuona C (2002) Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clin Neurophysiol 113:462–468PubMedCrossRef Herwig U, Kölbel K, Wunderlich AP, Thielscher A, Von Tiesenhausen C, Spitzer M, Schönfeldt-Lecuona C (2002) Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clin Neurophysiol 113:462–468PubMedCrossRef
Zurück zum Zitat Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012PubMedCrossRef Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012PubMedCrossRef
Zurück zum Zitat Horak FB (2006) Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35:7–11CrossRef Horak FB (2006) Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35:7–11CrossRef
Zurück zum Zitat Horsley V, Schafer EA (1888) A record of experiments upon the functions of the cerebral cortex. Phil Trans 179:1–45 Horsley V, Schafer EA (1888) A record of experiments upon the functions of the cerebral cortex. Phil Trans 179:1–45
Zurück zum Zitat Ikeda A, Lüders HO, Burgess RC, Burgess RC, Shibasaki H (1993) Movement-related potentials associated with single and repetitive movements recorded from human supplementary motor area. Electroenceph Clin Neurophysiol 89:269–277PubMedCrossRef Ikeda A, Lüders HO, Burgess RC, Burgess RC, Shibasaki H (1993) Movement-related potentials associated with single and repetitive movements recorded from human supplementary motor area. Electroenceph Clin Neurophysiol 89:269–277PubMedCrossRef
Zurück zum Zitat Ikeda A, Lüders HO, Shibasaki H, Collura TF, Burgess RC, Morris HH, Hamano T (1995) Movement-related potentials associated with bilateral simultaneous and unilateral movements recorded from human supplementary motor area. Electroencephalogr Clin Neurophysiol 95:323–334PubMedCrossRef Ikeda A, Lüders HO, Shibasaki H, Collura TF, Burgess RC, Morris HH, Hamano T (1995) Movement-related potentials associated with bilateral simultaneous and unilateral movements recorded from human supplementary motor area. Electroencephalogr Clin Neurophysiol 95:323–334PubMedCrossRef
Zurück zum Zitat Inase M, Sakai ST, Tanji J (1996) Overlapping corticostriatal projections from the supplementary motor area and the primary motor cortex in the macaque monkey: an anterograde double labelling study. J Comp Neurol 373:283–296PubMedCrossRef Inase M, Sakai ST, Tanji J (1996) Overlapping corticostriatal projections from the supplementary motor area and the primary motor cortex in the macaque monkey: an anterograde double labelling study. J Comp Neurol 373:283–296PubMedCrossRef
Zurück zum Zitat Indovina I, Sanes JN (2001) On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. Neuroimage 13:1027–1034PubMedCrossRef Indovina I, Sanes JN (2001) On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. Neuroimage 13:1027–1034PubMedCrossRef
Zurück zum Zitat Jacobs JV, Lou J, Kraakevik JA, Horak FB (2009) The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neurosci 164:877–885CrossRef Jacobs JV, Lou J, Kraakevik JA, Horak FB (2009) The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neurosci 164:877–885CrossRef
Zurück zum Zitat Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Sci 285(5436):2136–2139CrossRef Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Sci 285(5436):2136–2139CrossRef
Zurück zum Zitat Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York
Zurück zum Zitat Koch G, Brusa L, Carrillo F, Gerfo EL, Torriero S, Oliveri M, Stanzione P (2009) Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurol 73(2):113–119CrossRef Koch G, Brusa L, Carrillo F, Gerfo EL, Torriero S, Oliveri M, Stanzione P (2009) Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurol 73(2):113–119CrossRef
Zurück zum Zitat Kuypers HGJM, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res 24:29–48PubMedCrossRef Kuypers HGJM, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res 24:29–48PubMedCrossRef
Zurück zum Zitat Leh SE, Ptito A, Chakravarty MM, Strafella AP (2007) Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 419(2):113–118PubMedPubMedCentralCrossRef Leh SE, Ptito A, Chakravarty MM, Strafella AP (2007) Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 419(2):113–118PubMedPubMedCentralCrossRef
Zurück zum Zitat Lehéricy S, Ducros M, Krainik A, Francois C, Van De Moortele PF, Ugurbil K, Kim DS (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309PubMedCrossRef Lehéricy S, Ducros M, Krainik A, Francois C, Van De Moortele PF, Ugurbil K, Kim DS (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309PubMedCrossRef
Zurück zum Zitat lkeda A, Lüders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area-role of supplementary motor area in voluntary movements. Brain 115:1017–1043CrossRef lkeda A, Lüders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area-role of supplementary motor area in voluntary movements. Brain 115:1017–1043CrossRef
Zurück zum Zitat Lomond KV, Henry SM, Jacobs JV, Hitt JR, Horak FB, Cohen RG, DeSarno MJ (2013) Protocol to assess the neurophysiology associated with multi-segmental postural coordination. Physiol Meas 34(10):N97PubMedCrossRef Lomond KV, Henry SM, Jacobs JV, Hitt JR, Horak FB, Cohen RG, DeSarno MJ (2013) Protocol to assess the neurophysiology associated with multi-segmental postural coordination. Physiol Meas 34(10):N97PubMedCrossRef
Zurück zum Zitat Lotze M, Kaethner RJ, Erb M, Cohen LG, Grodd W, Topka H (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114:306–312PubMedCrossRef Lotze M, Kaethner RJ, Erb M, Cohen LG, Grodd W, Topka H (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114:306–312PubMedCrossRef
Zurück zum Zitat Macpherson JM, Marangoz C, Miles TS, Wiesendanger M (1982) Microstimulation of the supplementary motor area (SMA) in the awake monkey. Exp Brain Res 45:410–416PubMedCrossRef Macpherson JM, Marangoz C, Miles TS, Wiesendanger M (1982) Microstimulation of the supplementary motor area (SMA) in the awake monkey. Exp Brain Res 45:410–416PubMedCrossRef
Zurück zum Zitat Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56PubMedCrossRef Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56PubMedCrossRef
Zurück zum Zitat Min HK, Ross EK, Lee KH, Dennis K, Han SR, Jeong JH, Marsh MP, Striemer B, Felmlee JP, Lujan JL, Goerss S, Duffy PS, Blaha C, Chang SY, Bennet KE (2015) Subthalamic nucleus deep brain stimulation induces motor network BOLD activation: use of a high precision MRI guided stereotactic system for nonhuman primates. Brain Stimul 7(4):603–607. https://doi.org/10.1016/j.brs.2014.04.007CrossRef Min HK, Ross EK, Lee KH, Dennis K, Han SR, Jeong JH, Marsh MP, Striemer B, Felmlee JP, Lujan JL, Goerss S, Duffy PS, Blaha C, Chang SY, Bennet KE (2015) Subthalamic nucleus deep brain stimulation induces motor network BOLD activation: use of a high precision MRI guided stereotactic system for nonhuman primates. Brain Stimul 7(4):603–607. https://​doi.​org/​10.​1016/​j.​brs.​2014.​04.​007CrossRef
Zurück zum Zitat Mitza R, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7:1010–1021CrossRef Mitza R, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7:1010–1021CrossRef
Zurück zum Zitat Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMedCrossRef Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMedCrossRef
Zurück zum Zitat Nakagawa K, Takemi M, Nakanishi T et al (2020) Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. NeuroImage Clin 25:102144PubMedCrossRef Nakagawa K, Takemi M, Nakanishi T et al (2020) Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. NeuroImage Clin 25:102144PubMedCrossRef
Zurück zum Zitat Ng THB, Sowman PF, Brock J, Johnson BW (2011) Premovement brain activity in a bimanual load-lifting task. Exp Brain Res 208:189–201PubMedCrossRef Ng THB, Sowman PF, Brock J, Johnson BW (2011) Premovement brain activity in a bimanual load-lifting task. Exp Brain Res 208:189–201PubMedCrossRef
Zurück zum Zitat Ng THB, Sowman PF, Brock J, Johnson BW (2013) Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting. Neuroimage 66:343–352PubMedCrossRef Ng THB, Sowman PF, Brock J, Johnson BW (2013) Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting. Neuroimage 66:343–352PubMedCrossRef
Zurück zum Zitat O’Connell NE, Maskill DW, Cossar J, Nowicky AV (2007) Mapping the cortical representation of the lumbar paravertebral muscles. Clin Neurophysiol 118:2451–2455PubMedCrossRef O’Connell NE, Maskill DW, Cossar J, Nowicky AV (2007) Mapping the cortical representation of the lumbar paravertebral muscles. Clin Neurophysiol 118:2451–2455PubMedCrossRef
Zurück zum Zitat Penfield W, Welch K (1949) The supplementary motor area in the cerebral cortex of man. Trans Am Neurol Assoc 674:179–184 Penfield W, Welch K (1949) The supplementary motor area in the cerebral cortex of man. Trans Am Neurol Assoc 674:179–184
Zurück zum Zitat Rana M, Yani MS, Asavasopon S, Fisher BE, Kutch JJ (2015) Brain connectivity associated with muscle synergies in humans. J Neurosci 35:14708–14716PubMedPubMedCentralCrossRef Rana M, Yani MS, Asavasopon S, Fisher BE, Kutch JJ (2015) Brain connectivity associated with muscle synergies in humans. J Neurosci 35:14708–14716PubMedPubMedCentralCrossRef
Zurück zum Zitat Richard A, Van Hamme A, Drevelle X, Golmard J-L, Meunier S, Welter M-L (2017) Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience 358:181–189PubMedCrossRef Richard A, Van Hamme A, Drevelle X, Golmard J-L, Meunier S, Welter M-L (2017) Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience 358:181–189PubMedCrossRef
Zurück zum Zitat Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488PubMedCrossRef Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488PubMedCrossRef
Zurück zum Zitat Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex hand area?. Science 261(5120):489–492PubMedCrossRef Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex hand area?. Science 261(5120):489–492PubMedCrossRef
Zurück zum Zitat Schmitz C, Jenmalm P, Westling G, Ehrsson H, Forssberg H (2005) Anticipatory postural adjustments in a bimanual load-lifting task: central aspects. Gait Posture 21:550CrossRef Schmitz C, Jenmalm P, Westling G, Ehrsson H, Forssberg H (2005) Anticipatory postural adjustments in a bimanual load-lifting task: central aspects. Gait Posture 21:550CrossRef
Zurück zum Zitat Sharshar T, Hopkinson NS, Jonville S, Prigent H, Carlier R, Dayer MJ, Swallow EB, Lofaso F, Moxham J, Polkey MI (2004) Demonstration of a second rapidly conducting cortico-diaphragmatic pathway in humans. J Physiol 560:897–908PubMedPubMedCentralCrossRef Sharshar T, Hopkinson NS, Jonville S, Prigent H, Carlier R, Dayer MJ, Swallow EB, Lofaso F, Moxham J, Polkey MI (2004) Demonstration of a second rapidly conducting cortico-diaphragmatic pathway in humans. J Physiol 560:897–908PubMedPubMedCentralCrossRef
Zurück zum Zitat Smith JA, Albishi A, Babikian S, Asavasopon S, Fisher BE, Kutch JJ (2017) The motor cortical representation of a muscle is not homogeneous in brain connectivity. Exp Brain Res 235:2767–2776PubMedCrossRef Smith JA, Albishi A, Babikian S, Asavasopon S, Fisher BE, Kutch JJ (2017) The motor cortical representation of a muscle is not homogeneous in brain connectivity. Exp Brain Res 235:2767–2776PubMedCrossRef
Zurück zum Zitat Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255PubMedCrossRef Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255PubMedCrossRef
Zurück zum Zitat Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237PubMedCrossRef Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237PubMedCrossRef
Zurück zum Zitat Strick PL, Kim CC (1978) Input to primate motor cortex from posterior parietal cortex (area 5). I. Demonstration by retrograde transport. Brain Res 157:325–330PubMedCrossRef Strick PL, Kim CC (1978) Input to primate motor cortex from posterior parietal cortex (area 5). I. Demonstration by retrograde transport. Brain Res 157:325–330PubMedCrossRef
Zurück zum Zitat Tanji J (1994) Review article: the supplementary motor area in the cerebral cortex. Neurosci Res 19(3):251–268PubMedCrossRef Tanji J (1994) Review article: the supplementary motor area in the cerebral cortex. Neurosci Res 19(3):251–268PubMedCrossRef
Zurück zum Zitat Taskin B, Jungehulsing GJ, Ruben J, Brunecker P, Krause T, Blankenburg F, Villringer A (2006) Preserved responsiveness of secondary somatosensory cortex in patients with thalamic stroke. Cereb Cortex 16:1431–1439PubMedCrossRef Taskin B, Jungehulsing GJ, Ruben J, Brunecker P, Krause T, Blankenburg F, Villringer A (2006) Preserved responsiveness of secondary somatosensory cortex in patients with thalamic stroke. Cereb Cortex 16:1431–1439PubMedCrossRef
Zurück zum Zitat Thompson A, Murphy D, Dell’Acqua F, Ecker C, McAlonan G, Howells H, Baron-Cohen S, Lai MC, Lombardo MV (2017) Impaired communication between the motor and somatosensory homunculus is associated with poor manual dexterity in autism spectrum disorder. Biol Psychiatry 81:211–219PubMedPubMedCentralCrossRef Thompson A, Murphy D, Dell’Acqua F, Ecker C, McAlonan G, Howells H, Baron-Cohen S, Lai MC, Lombardo MV (2017) Impaired communication between the motor and somatosensory homunculus is associated with poor manual dexterity in autism spectrum disorder. Biol Psychiatry 81:211–219PubMedPubMedCentralCrossRef
Zurück zum Zitat Viallet F, Massion J, Massarino R, Khalil R (1992) Coordination between posture and movement in a bimanual load lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 88(3):674–684PubMedCrossRef Viallet F, Massion J, Massarino R, Khalil R (1992) Coordination between posture and movement in a bimanual load lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 88(3):674–684PubMedCrossRef
Zurück zum Zitat Wagner T, Rushmore J, Eden U, Valero-Cabre A (2009) Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45:1025–1034PubMedCrossRef Wagner T, Rushmore J, Eden U, Valero-Cabre A (2009) Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45:1025–1034PubMedCrossRef
Zurück zum Zitat Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2013) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66:531–542PubMedCrossRef Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2013) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66:531–542PubMedCrossRef
Zurück zum Zitat Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264PubMed Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264PubMed
Zurück zum Zitat Yamada K, Mori S, Nakamura H, Ito H, Kizu O, Shiga K, Yoshikawa K, Makino M, Yuen S, Kubota T, Tanaka O, Nishimura T (2003) Fiber-tracking method reveals sensorimotor pathway involvement in stroke patients. Stroke 34:e159–e162PubMedCrossRef Yamada K, Mori S, Nakamura H, Ito H, Kizu O, Shiga K, Yoshikawa K, Makino M, Yuen S, Kubota T, Tanaka O, Nishimura T (2003) Fiber-tracking method reveals sensorimotor pathway involvement in stroke patients. Stroke 34:e159–e162PubMedCrossRef
Zurück zum Zitat Yani MS, Fenske SJ, Rodriguez LV, Kutch JJ (2019) Motor cortical neuromodulation of pelvic floor muscle tone: potential implications for the treatment of urologic conditions. Neurourol Urodyn 38(6):1517–1523PubMedPubMedCentralCrossRef Yani MS, Fenske SJ, Rodriguez LV, Kutch JJ (2019) Motor cortical neuromodulation of pelvic floor muscle tone: potential implications for the treatment of urologic conditions. Neurourol Urodyn 38(6):1517–1523PubMedPubMedCentralCrossRef
Zurück zum Zitat Zarzecki P, Strick PL (1978) Input to primate motor cortex from posterior parietal cortex (area 5). II. Identification by antidromic activation. Brain Res 157(2):331–335PubMedCrossRef Zarzecki P, Strick PL (1978) Input to primate motor cortex from posterior parietal cortex (area 5). II. Identification by antidromic activation. Brain Res 157(2):331–335PubMedCrossRef
Metadaten
Titel
Why do different motor cortical areas activate the same muscles?
verfasst von
Alaa M. Albishi
Publikationsdatum
14.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2023
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-023-02703-1

Weitere Artikel der Ausgabe 9/2023

Brain Structure and Function 9/2023 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.