Skip to main content
Erschienen in: Brain Structure and Function 7/2016

09.10.2015 | Original Article

Wnt1 signal determines the patterning of the diencephalic dorso-ventral axis

verfasst von: Maria Navarro-Garberi, Carlos Bueno, Salvador Martinez

Erschienen in: Brain Structure and Function | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

The diencephalon is a complex brain area that derives from the caudal region of the prosencephalon. This structure is divided into four longitudinal neuroepithelial zones: roof, alar, basal and floor plates, which constitute its dorso-ventral (DV) columnar domains. Morphogenetic differences between alar and basal plates in the prosencephalon and mesencephalon contribute to the characteristic expansion of alar plate derivatives in the brain and the formation of the cephalic flexure. Although differential histogenesis among DV regions seems to be relevant in understanding structural and functional complexity of the brain, most of our knowledge about DV regionalization comes from the spinal cord development. Therefore, it seems of interest to study the molecular mechanisms that govern DV patterning in the diencephalon, the brain region where strong differences in size and complexity between alar and basal derivatives are evident in all vertebrates. Different morphogenetic signals, which induce specific progenitors fate to the neighboring epithelium, are involved in the spinal cord DV patterning. To study if Wnt1, one of these signaling molecules, has a role for the establishment of the diencephalic longitudinal domains, we carried out gain- and loss-of-function experiments, using mice and chick embryos. Our results demonstrated functional differences in the molecular mechanisms downstream of Wnt1 function in the diencephalon, in relation to the spinal cord. We further demonstrated that Bmp4 signal induces Wnt1 expression in the diencephalon, unraveling a new molecular regulatory code downstream of primary dorsalizing signals to control ventral regionalization in the diencephalon.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Martí E (2008) Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 135:237–247CrossRefPubMed Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Martí E (2008) Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 135:237–247CrossRefPubMed
Zurück zum Zitat Anderson E, Hill RE (2014) Lon range regulation of sonic hedgehog gene. Curr Opin Genet Dev 27:54–59CrossRefPubMed Anderson E, Hill RE (2014) Lon range regulation of sonic hedgehog gene. Curr Opin Genet Dev 27:54–59CrossRefPubMed
Zurück zum Zitat Bach A, Lallemand Y, Nicola MA, Ramos C, Mathis L, Maufras M, Robert B (2003) Msx1 is required for dorsal diencephalon patterning. Development 130:4025–4036CrossRefPubMed Bach A, Lallemand Y, Nicola MA, Ramos C, Mathis L, Maufras M, Robert B (2003) Msx1 is required for dorsal diencephalon patterning. Development 130:4025–4036CrossRefPubMed
Zurück zum Zitat Bally-Cuif L, Cholley B, Wassef M (1995) Involvement of Wnt-1 in the formation of the mes/metencephalic boundary. Mech Dev 53:23–34CrossRefPubMed Bally-Cuif L, Cholley B, Wassef M (1995) Involvement of Wnt-1 in the formation of the mes/metencephalic boundary. Mech Dev 53:23–34CrossRefPubMed
Zurück zum Zitat Barth KA, Kishimoto Y, Rohr KB, Seydler C, Schulte-Merker S, Wilson SW (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126:4977–4987PubMed Barth KA, Kishimoto Y, Rohr KB, Seydler C, Schulte-Merker S, Wilson SW (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126:4977–4987PubMed
Zurück zum Zitat Bovolenta P, Mallamaci A, Puelles L, Boncinelli E (1998) Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech Dev 70:201–203CrossRef Bovolenta P, Mallamaci A, Puelles L, Boncinelli E (1998) Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech Dev 70:201–203CrossRef
Zurück zum Zitat Braun MM, Etheridge A, Bernard A, Robertson CP, Roelink H (2003) Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 130:5579–5587CrossRefPubMed Braun MM, Etheridge A, Bernard A, Robertson CP, Roelink H (2003) Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 130:5579–5587CrossRefPubMed
Zurück zum Zitat Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49CrossRefPubMed Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49CrossRefPubMed
Zurück zum Zitat Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545CrossRefPubMed Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545CrossRefPubMed
Zurück zum Zitat Cho G, Lim Y, Zand D, Golden JA (2008) Sizn1 is a novel protein that functions as a transcriptional coactivator of bone morphogenic protein signaling. Mol Cell Biol 28:1565–1572CrossRefPubMed Cho G, Lim Y, Zand D, Golden JA (2008) Sizn1 is a novel protein that functions as a transcriptional coactivator of bone morphogenic protein signaling. Mol Cell Biol 28:1565–1572CrossRefPubMed
Zurück zum Zitat Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68CrossRefPubMed Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68CrossRefPubMed
Zurück zum Zitat Crossley PH, Martinez S, Ohkubo Y, Rubenstein JL (2001) Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108:183–206CrossRefPubMed Crossley PH, Martinez S, Ohkubo Y, Rubenstein JL (2001) Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108:183–206CrossRefPubMed
Zurück zum Zitat Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430CrossRefPubMed Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430CrossRefPubMed
Zurück zum Zitat Echevarria D, Vieira C, Gimeno L, Martinez S (2003) Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res Rev 43:179–191CrossRefPubMed Echevarria D, Vieira C, Gimeno L, Martinez S (2003) Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res Rev 43:179–191CrossRefPubMed
Zurück zum Zitat Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747–756CrossRefPubMed Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747–756CrossRefPubMed
Zurück zum Zitat Ferran JL, Sánchez-Arrones L, Sandoval JE, Puelles L (2007) A model of early molecular regionalization in the chicken embryonic pretectum. J Comp Neurol 505:379–403CrossRefPubMed Ferran JL, Sánchez-Arrones L, Sandoval JE, Puelles L (2007) A model of early molecular regionalization in the chicken embryonic pretectum. J Comp Neurol 505:379–403CrossRefPubMed
Zurück zum Zitat Ferran JL, de Oliveira ED, Merchán P, Sandoval JE, Sánchez-Arrones L, Martínez-De-La-Torre M, Puelles L (2009) Genoarchitectonic profile of developing nuclear groups in the chicken pretectum. J Comp Neurol 517:405–451CrossRefPubMed Ferran JL, de Oliveira ED, Merchán P, Sandoval JE, Sánchez-Arrones L, Martínez-De-La-Torre M, Puelles L (2009) Genoarchitectonic profile of developing nuclear groups in the chicken pretectum. J Comp Neurol 517:405–451CrossRefPubMed
Zurück zum Zitat Fischer T, Guimera J, Wurst W, Prakash N (2007) Distinct but redundant expression of the Frizzled Wnt receptor genes at signaling centers of the developing mouse brain. Neuroscience 147:693–711CrossRefPubMed Fischer T, Guimera J, Wurst W, Prakash N (2007) Distinct but redundant expression of the Frizzled Wnt receptor genes at signaling centers of the developing mouse brain. Neuroscience 147:693–711CrossRefPubMed
Zurück zum Zitat Fotaki V, Price DJ, Mason JO (2011) Wnt/β-catenin signaling is disrupted in the extra-toes (Gli3 Xt/Xt) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects. J Comp Neurol 519:1640–1657CrossRefPubMed Fotaki V, Price DJ, Mason JO (2011) Wnt/β-catenin signaling is disrupted in the extra-toes (Gli3 Xt/Xt) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects. J Comp Neurol 519:1640–1657CrossRefPubMed
Zurück zum Zitat Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212PubMed Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212PubMed
Zurück zum Zitat Garcia-Lopez R, Vieira C, Echevarria D, Martinez S (2004) Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos. Dev Biol 268:514–530CrossRefPubMed Garcia-Lopez R, Vieira C, Echevarria D, Martinez S (2004) Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos. Dev Biol 268:514–530CrossRefPubMed
Zurück zum Zitat Gimeno L, Martinez S (2007) Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh. Dev Dyn 236:2285–2297CrossRefPubMed Gimeno L, Martinez S (2007) Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh. Dev Dyn 236:2285–2297CrossRefPubMed
Zurück zum Zitat Golden JA, Bracilovic A, McFadden KA, Beesley JS, Rubenstein JL, Grinspan JB (1999) Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. Proc Natl Acad Sci USA 96:2439–2444CrossRefPubMedPubMedCentral Golden JA, Bracilovic A, McFadden KA, Beesley JS, Rubenstein JL, Grinspan JB (1999) Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. Proc Natl Acad Sci USA 96:2439–2444CrossRefPubMedPubMedCentral
Zurück zum Zitat Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325PubMed Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325PubMed
Zurück zum Zitat Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71:574–588CrossRefPubMed Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71:574–588CrossRefPubMed
Zurück zum Zitat Gunhaga L, Marklund M, Sjödal M, Hsieh JC, Jessell TM, Edlund T (2003) Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. Nat Neurosci 6:701–707CrossRefPubMed Gunhaga L, Marklund M, Sjödal M, Hsieh JC, Jessell TM, Edlund T (2003) Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. Nat Neurosci 6:701–707CrossRefPubMed
Zurück zum Zitat Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92CrossRefPubMed Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92CrossRefPubMed
Zurück zum Zitat Hasenpusch-Theil K, Magnani D, Amaniti E, Han L, Armstrong D, Theil T (2012) Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus. Cereb Cortex 22:2878–2895CrossRefPubMedPubMedCentral Hasenpusch-Theil K, Magnani D, Amaniti E, Han L, Armstrong D, Theil T (2012) Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus. Cereb Cortex 22:2878–2895CrossRefPubMedPubMedCentral
Zurück zum Zitat Hashimoto-Torii K, Motoyama J, Hui CC, Kuroiwa A, Nakafuku M, Shimamura K (2003) Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mech Dev 120:1097–1111CrossRefPubMed Hashimoto-Torii K, Motoyama J, Hui CC, Kuroiwa A, Nakafuku M, Shimamura K (2003) Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mech Dev 120:1097–1111CrossRefPubMed
Zurück zum Zitat Hollyday M, McMahon JA, McMahon AP (1995) Wnt expression patterns in chick embryo nervous system. Mech Dev 52(1):9–25CrossRefPubMed Hollyday M, McMahon JA, McMahon AP (1995) Wnt expression patterns in chick embryo nervous system. Mech Dev 52(1):9–25CrossRefPubMed
Zurück zum Zitat Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cell Mol Life Sci 62:1100–1108CrossRefPubMed Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cell Mol Life Sci 62:1100–1108CrossRefPubMed
Zurück zum Zitat Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29CrossRefPubMed Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29CrossRefPubMed
Zurück zum Zitat Kala K, Haugas M, Lilleväli K, Guimera J, Wurst W, Salminen M, Partanen J (2009) Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136:253–262CrossRefPubMed Kala K, Haugas M, Lilleväli K, Guimera J, Wurst W, Salminen M, Partanen J (2009) Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136:253–262CrossRefPubMed
Zurück zum Zitat Kiecker C, Lumsden A (2004) Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7:1242–1249CrossRefPubMed Kiecker C, Lumsden A (2004) Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7:1242–1249CrossRefPubMed
Zurück zum Zitat Knecht AK, Harland RM (1997) Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue. Development 124(12):2477–2488PubMed Knecht AK, Harland RM (1997) Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue. Development 124(12):2477–2488PubMed
Zurück zum Zitat Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93PubMed Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93PubMed
Zurück zum Zitat Kurose H, Bito T, Adachi T, Shimizu M, Noji S, Ohuchi H (2004) Expression of Fibroblast growth factor 19 (Fgf19) during chick embryogenesis and eye development, compared with Fgf15 expression in the mouse. Gene Expr Patterns 4:687–693CrossRefPubMed Kurose H, Bito T, Adachi T, Shimizu M, Noji S, Ohuchi H (2004) Expression of Fibroblast growth factor 19 (Fgf19) during chick embryogenesis and eye development, compared with Fgf15 expression in the mouse. Gene Expr Patterns 4:687–693CrossRefPubMed
Zurück zum Zitat Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17(3):368–379CrossRefPubMedPubMedCentral Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17(3):368–379CrossRefPubMedPubMedCentral
Zurück zum Zitat Lahti L, Saarimäki-Vire J, Rita H, Partanen J (2011) FGF signaling gradient maintains symmetrical proliferative divisions of midbrain neuronal progenitors. Dev Biol 349(2):270–282CrossRefPubMed Lahti L, Saarimäki-Vire J, Rita H, Partanen J (2011) FGF signaling gradient maintains symmetrical proliferative divisions of midbrain neuronal progenitors. Dev Biol 349(2):270–282CrossRefPubMed
Zurück zum Zitat Lavado A, Lagutin OV, Oliver G (2008) Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135:441–450CrossRefPubMed Lavado A, Lagutin OV, Oliver G (2008) Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135:441–450CrossRefPubMed
Zurück zum Zitat Le Dréau G, Martí E (2012) Dorsal-ventral patterning of the neural tube: a tale of three signals. Dev Neurobiol 72(12):1471–1481CrossRefPubMed Le Dréau G, Martí E (2012) Dorsal-ventral patterning of the neural tube: a tale of three signals. Dev Neurobiol 72(12):1471–1481CrossRefPubMed
Zurück zum Zitat Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12(21):3394–3407CrossRefPubMedPubMedCentral Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12(21):3394–3407CrossRefPubMedPubMedCentral
Zurück zum Zitat Liem KF Jr, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82(6):969–979CrossRefPubMed Liem KF Jr, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82(6):969–979CrossRefPubMed
Zurück zum Zitat Liem KF Jr, Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127–138CrossRefPubMed Liem KF Jr, Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127–138CrossRefPubMed
Zurück zum Zitat Liem KF Jr, Jessell TM, Briscoe J (2000) Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127:4855–4866PubMed Liem KF Jr, Jessell TM, Briscoe J (2000) Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127:4855–4866PubMed
Zurück zum Zitat Lim Y, Cho G, Minarcik J, Golden J (2005) Altered BMP signaling disrupts chick diencephalic development. Mech Dev 122:603–620CrossRefPubMed Lim Y, Cho G, Minarcik J, Golden J (2005) Altered BMP signaling disrupts chick diencephalic development. Mech Dev 122:603–620CrossRefPubMed
Zurück zum Zitat Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefPubMed Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefPubMed
Zurück zum Zitat Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7(8):1714–1738CrossRefPubMed Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7(8):1714–1738CrossRefPubMed
Zurück zum Zitat Martinez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 45:367–371PubMed Martinez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 45:367–371PubMed
Zurück zum Zitat Martinez S, Crossley PH, Cobos I, Rubenstein JLR, Martin GR (1999) FGF-8 induces an isthmic organizer and isthmocerebellar development in the caudal forebrain via a repressive effect on Otx2 expression. Development 126:1189–1200PubMed Martinez S, Crossley PH, Cobos I, Rubenstein JLR, Martin GR (1999) FGF-8 induces an isthmic organizer and isthmocerebellar development in the caudal forebrain via a repressive effect on Otx2 expression. Development 126:1189–1200PubMed
Zurück zum Zitat Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalization of anterior neuroectoderm and its competence in responding to forebrain and midbrain activities depend of mutual antagonism between Otx2 and Gbx2. Development 128:4789–4800PubMed Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalization of anterior neuroectoderm and its competence in responding to forebrain and midbrain activities depend of mutual antagonism between Otx2 and Gbx2. Development 128:4789–4800PubMed
Zurück zum Zitat Martinez-Ferre A, Martinez S (2009) The development of the thalamic motor learning area is regulated by Fgf8 expression. J Neurosci 29(42):13389–13400CrossRefPubMed Martinez-Ferre A, Martinez S (2009) The development of the thalamic motor learning area is regulated by Fgf8 expression. J Neurosci 29(42):13389–13400CrossRefPubMed
Zurück zum Zitat Martinez-Ferre A, Navarro-Garberi M, Bueno C, Martinez S (2013) Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 33:3967–3980CrossRefPubMed Martinez-Ferre A, Navarro-Garberi M, Bueno C, Martinez S (2013) Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 33:3967–3980CrossRefPubMed
Zurück zum Zitat Matsunaga E, Katahira T, Nakamura H (2002) Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129(22):5269–5277PubMed Matsunaga E, Katahira T, Nakamura H (2002) Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129(22):5269–5277PubMed
Zurück zum Zitat McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085CrossRefPubMed McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085CrossRefPubMed
Zurück zum Zitat McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt- 1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595CrossRefPubMed McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt- 1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595CrossRefPubMed
Zurück zum Zitat Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129(9):2087–2098PubMed Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129(9):2087–2098PubMed
Zurück zum Zitat Merchán P, Bardet SM, Puelles L, Ferran JL (2011) Comparison of pretectal genoarchitectonic pattern between quail and chicken embryos. Front Neuroanat 5(5):23PubMedPubMedCentral Merchán P, Bardet SM, Puelles L, Ferran JL (2011) Comparison of pretectal genoarchitectonic pattern between quail and chicken embryos. Front Neuroanat 5(5):23PubMedPubMedCentral
Zurück zum Zitat Meyer NP, Roelink H (2003) The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord. Dev Biol 257:343–355CrossRefPubMed Meyer NP, Roelink H (2003) The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord. Dev Biol 257:343–355CrossRefPubMed
Zurück zum Zitat Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403(6771):764–769CrossRefPubMed Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403(6771):764–769CrossRefPubMed
Zurück zum Zitat Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906–909CrossRefPubMed Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906–909CrossRefPubMed
Zurück zum Zitat Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32(4):591–604CrossRefPubMed Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32(4):591–604CrossRefPubMed
Zurück zum Zitat Morona R, Ferran JL, Puelles L, González A (2011) Embryonic genoarchitecture of the pretectum in Xenopus laevis: a conserved pattern in tetrapods. J Comp Neurol 519:1024–1050CrossRefPubMed Morona R, Ferran JL, Puelles L, González A (2011) Embryonic genoarchitecture of the pretectum in Xenopus laevis: a conserved pattern in tetrapods. J Comp Neurol 519:1024–1050CrossRefPubMed
Zurück zum Zitat Mullor JL, Dahmane N, Sun T, Ruiz i Altaba A (2001) Wnt signals are targets and mediators of Gli function. Curr Biol 11:769–773CrossRefPubMed Mullor JL, Dahmane N, Sun T, Ruiz i Altaba A (2001) Wnt signals are targets and mediators of Gli function. Curr Biol 11:769–773CrossRefPubMed
Zurück zum Zitat Nakatani T, Kumai M, Mizuhara E, Minaki Y, Ono Y (2010) Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol 339:101–113CrossRefPubMed Nakatani T, Kumai M, Mizuhara E, Minaki Y, Ono Y (2010) Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol 339:101–113CrossRefPubMed
Zurück zum Zitat Nguyen VH, Trout J, Connors SA, Andermann P, Weinberg E, Mullins MC (2000) Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127:1209–1220PubMed Nguyen VH, Trout J, Connors SA, Andermann P, Weinberg E, Mullins MC (2000) Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127:1209–1220PubMed
Zurück zum Zitat Ohkubo Y, Chiang C, Rubenstein JL (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111(1):1–17CrossRefPubMed Ohkubo Y, Chiang C, Rubenstein JL (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111(1):1–17CrossRefPubMed
Zurück zum Zitat Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6(3):230–240CrossRefPubMed Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6(3):230–240CrossRefPubMed
Zurück zum Zitat Puelles L (2013) Plan of the developing vertebrate nervous system. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS. Comprehensive developmental neuroscience, vol 1. Academic Press, London Puelles L (2013) Plan of the developing vertebrate nervous system. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS. Comprehensive developmental neuroscience, vol 1. Academic Press, London
Zurück zum Zitat Puelles L, Martinez S (2013) Patterning of the diencephalon. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS. Comprehensive developmental neuroscience, vol 1. Academic Press, London Puelles L, Martinez S (2013) Patterning of the diencephalon. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS. Comprehensive developmental neuroscience, vol 1. Academic Press, London
Zurück zum Zitat Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476CrossRefPubMed Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476CrossRefPubMed
Zurück zum Zitat Puelles L, Martinez-de-la-Torre M, Ferran JLR, Watson C (2011) Diencephalon. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press, Elsevier, London, pp 313–336 Puelles L, Martinez-de-la-Torre M, Ferran JLR, Watson C (2011) Diencephalon. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press, Elsevier, London, pp 313–336
Zurück zum Zitat Quinlan R, Graf M, Mason I, Lumsden A, Kiecker C (2009) Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 4:35CrossRefPubMedPubMedCentral Quinlan R, Graf M, Mason I, Lumsden A, Kiecker C (2009) Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 4:35CrossRefPubMedPubMedCentral
Zurück zum Zitat Rhinn M, Brand M (2001) The midbrain–hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42CrossRefPubMed Rhinn M, Brand M (2001) The midbrain–hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42CrossRefPubMed
Zurück zum Zitat Ruiz i Altaba A, Mas C, Stecca B (2007) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17:438–447CrossRefPubMedPubMedCentral Ruiz i Altaba A, Mas C, Stecca B (2007) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17:438–447CrossRefPubMedPubMedCentral
Zurück zum Zitat Sánchez-Arrones L, Ferran JL, Rodríguez-Gallardo L, Puelles L (2009) Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Dev Biol 335:43–65CrossRefPubMed Sánchez-Arrones L, Ferran JL, Rodríguez-Gallardo L, Puelles L (2009) Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Dev Biol 335:43–65CrossRefPubMed
Zurück zum Zitat Scholpp S, Wolf O, Brand M, Lumsden A (2006) Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development 133(5):855–864CrossRefPubMed Scholpp S, Wolf O, Brand M, Lumsden A (2006) Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development 133(5):855–864CrossRefPubMed
Zurück zum Zitat Shimamura K, Rubenstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMed Shimamura K, Rubenstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMed
Zurück zum Zitat Shimamura K, Hirano S, McMahon AP, Takeichi M (1994) Wnt-1-dependent regulation of local E- cadherin and alpha N-catenin expression in the embryonic mouse brain. Development 120:2225–2234PubMed Shimamura K, Hirano S, McMahon AP, Takeichi M (1994) Wnt-1-dependent regulation of local E- cadherin and alpha N-catenin expression in the embryonic mouse brain. Development 120:2225–2234PubMed
Zurück zum Zitat Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933PubMed Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933PubMed
Zurück zum Zitat Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JLR (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centres. Development 133:1831–1844CrossRefPubMed Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JLR (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centres. Development 133:1831–1844CrossRefPubMed
Zurück zum Zitat Suzuki-Hirano A, Ogawa M, Kataoka A, Yoshida AC, Itoh D, Ueno M, Blackshaw S, Shimogori TJ (2010) Dynamic spatiotemporal gene expression in embryonic mouse thalamus. J Comp Neurol 519:528–543CrossRef Suzuki-Hirano A, Ogawa M, Kataoka A, Yoshida AC, Itoh D, Ueno M, Blackshaw S, Shimogori TJ (2010) Dynamic spatiotemporal gene expression in embryonic mouse thalamus. J Comp Neurol 519:528–543CrossRef
Zurück zum Zitat Timmer JR, Wang C, Niswander L (2002) BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129:2459–2472PubMed Timmer JR, Wang C, Niswander L (2002) BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129:2459–2472PubMed
Zurück zum Zitat Ulloa F, Martí E (2010) Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 239(1):69–76PubMed Ulloa F, Martí E (2010) Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 239(1):69–76PubMed
Zurück zum Zitat Ulloa F, Itasaki N, Briscoe J (2007) Inhibitory Gli3 activity negatively regulates Wnt/beta-catenin signaling. Curr Biol 17:545–550CrossRefPubMed Ulloa F, Itasaki N, Briscoe J (2007) Inhibitory Gli3 activity negatively regulates Wnt/beta-catenin signaling. Curr Biol 17:545–550CrossRefPubMed
Zurück zum Zitat Vieira C, Martinez S (2006) Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure. Neuroscience 143:129–140CrossRefPubMed Vieira C, Martinez S (2006) Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure. Neuroscience 143:129–140CrossRefPubMed
Zurück zum Zitat Vieira C, Garda AL, Shimamura K, Martinez S (2005) Thalamic development induced by Shh in the chick embryo. Dev Biol 284(2):351–363CrossRefPubMed Vieira C, Garda AL, Shimamura K, Martinez S (2005) Thalamic development induced by Shh in the chick embryo. Dev Biol 284(2):351–363CrossRefPubMed
Zurück zum Zitat Vieira C, Pombero A, Garcia- Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20CrossRefPubMed Vieira C, Pombero A, Garcia- Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20CrossRefPubMed
Zurück zum Zitat Wijgerde M, McMahon JA, Rule M, McMahon AP (2002) A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev 16:2849–2864CrossRefPubMedPubMedCentral Wijgerde M, McMahon JA, Rule M, McMahon AP (2002) A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev 16:2849–2864CrossRefPubMedPubMedCentral
Zurück zum Zitat Yu W, McDonnell K, Taketo MM, Bai CB (2008) Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner. Development 135(22):3687–3696CrossRefPubMed Yu W, McDonnell K, Taketo MM, Bai CB (2008) Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner. Development 135(22):3687–3696CrossRefPubMed
Zurück zum Zitat Zeltser LM, Larsen CW, Lumsden A (2001) A new developmental compartment in the forebrain regulated by Lunatic fringe. Nat Neurosci 4:683–684CrossRefPubMed Zeltser LM, Larsen CW, Lumsden A (2001) A new developmental compartment in the forebrain regulated by Lunatic fringe. Nat Neurosci 4:683–684CrossRefPubMed
Metadaten
Titel
Wnt1 signal determines the patterning of the diencephalic dorso-ventral axis
verfasst von
Maria Navarro-Garberi
Carlos Bueno
Salvador Martinez
Publikationsdatum
09.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 7/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1126-4

Weitere Artikel der Ausgabe 7/2016

Brain Structure and Function 7/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.