Skip to main content
Erschienen in: Journal of Digital Imaging 1/2018

06.07.2017

Workflow for Visualization of Neuroimaging Data with an Augmented Reality Device

verfasst von: Christof Karmonik, Timothy B. Boone, Rose Khavari

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Commercial availability of three-dimensional (3D) augmented reality (AR) devices has increased interest in using this novel technology for visualizing neuroimaging data. Here, a technical workflow and algorithm for importing 3D surface-based segmentations derived from magnetic resonance imaging data into a head-mounted AR device is presented and illustrated on selected examples: the pial cortical surface of the human brain, fMRI BOLD maps, reconstructed white matter tracts, and a brain network of functional connectivity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Azuma RT: A survey of augmented reality. Presence Teleop Virt 6(4):355–385, 1997CrossRef Azuma RT: A survey of augmented reality. Presence Teleop Virt 6(4):355–385, 1997CrossRef
2.
Zurück zum Zitat Milgram P, Kishino F: A taxonomy of mixed reality visual displays. IEIC Transactions on Information and Systems, E77D:12, 1321–29,1994 Milgram P, Kishino F: A taxonomy of mixed reality visual displays. IEIC Transactions on Information and Systems, E77D:12, 1321–29,1994
3.
Zurück zum Zitat Abe Y, Sato S, Kato K et al.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J Neurosurg Spine 19(4):492–501, 2013CrossRefPubMed Abe Y, Sato S, Kato K et al.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J Neurosurg Spine 19(4):492–501, 2013CrossRefPubMed
4.
Zurück zum Zitat Blackwell M, Morgan F, DiGioia, 3rd AM: Augmented reality and its future in orthopaedics. Clin Orthop Relat Res 354:111–122, 1998CrossRef Blackwell M, Morgan F, DiGioia, 3rd AM: Augmented reality and its future in orthopaedics. Clin Orthop Relat Res 354:111–122, 1998CrossRef
5.
Zurück zum Zitat Kerner KF, et al.: Augmented reality for teaching endotracheal intubation: MR imaging to create anatomically correct models. AMIA Annu Symp Proc p. 888,2003 Kerner KF, et al.: Augmented reality for teaching endotracheal intubation: MR imaging to create anatomically correct models. AMIA Annu Symp Proc p. 888,2003
6.
Zurück zum Zitat Nicolau S et al.: Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201, 2011CrossRefPubMed Nicolau S et al.: Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201, 2011CrossRefPubMed
7.
Zurück zum Zitat Fritz J et al.: Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 48(6):464–470, 2013CrossRefPubMed Fritz J et al.: Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 48(6):464–470, 2013CrossRefPubMed
8.
Zurück zum Zitat Volonte F et al.: Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot 9(3):e34–e38, 2013CrossRefPubMed Volonte F et al.: Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot 9(3):e34–e38, 2013CrossRefPubMed
9.
Zurück zum Zitat Markman A et al.: Augmented reality three-dimensional object visualization and recognition with axially distributed sensing. Opt Lett 41(2):297–300, 2016CrossRefPubMed Markman A et al.: Augmented reality three-dimensional object visualization and recognition with axially distributed sensing. Opt Lett 41(2):297–300, 2016CrossRefPubMed
10.
Zurück zum Zitat Chinnock C: Virtual reality in surgery and medicine. Hosp Technol Ser 13(18):1–48, 1994PubMed Chinnock C: Virtual reality in surgery and medicine. Hosp Technol Ser 13(18):1–48, 1994PubMed
11.
12.
Zurück zum Zitat Olofsson J et al.: Advanced 3D-visualization, including virtual reality, distributed by PCs, in brain research, clinical radiology and education. Stud Health Technol Inform 50:357–358, 1998PubMed Olofsson J et al.: Advanced 3D-visualization, including virtual reality, distributed by PCs, in brain research, clinical radiology and education. Stud Health Technol Inform 50:357–358, 1998PubMed
13.
Zurück zum Zitat Webb G et al.: Virtual reality and interactive 3D as effective tools for medical training. Stud Health Technol Inform 94:392–394, 2003PubMed Webb G et al.: Virtual reality and interactive 3D as effective tools for medical training. Stud Health Technol Inform 94:392–394, 2003PubMed
14.
Zurück zum Zitat Farber M et al.: Virtual reality simulator for the training of lumbar punctures. Methods Inf Med 48(5):493–501, 2009CrossRefPubMed Farber M et al.: Virtual reality simulator for the training of lumbar punctures. Methods Inf Med 48(5):493–501, 2009CrossRefPubMed
15.
Zurück zum Zitat Clarke DB et al.: Virtual reality simulator: demonstrated use in neurosurgical oncology. Surg Innov 20(2):190–197, 2013CrossRefPubMed Clarke DB et al.: Virtual reality simulator: demonstrated use in neurosurgical oncology. Surg Innov 20(2):190–197, 2013CrossRefPubMed
16.
Zurück zum Zitat Mi SH et al.: A 3D virtual reality simulator for training of minimally invasive surgery. Conf Proc IEEE Eng Med Biol Soc 2014:349–352, 2014PubMed Mi SH et al.: A 3D virtual reality simulator for training of minimally invasive surgery. Conf Proc IEEE Eng Med Biol Soc 2014:349–352, 2014PubMed
17.
Zurück zum Zitat Khavari R et al.: Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol 197:438–444, 2016CrossRefPubMedPubMedCentral Khavari R et al.: Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol 197:438–444, 2016CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Shy M et al.: Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition. J Urol 192(4):1149–1154, 2014CrossRefPubMedPubMedCentral Shy M et al.: Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition. J Urol 192(4):1149–1154, 2014CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Bidgood, Jr WD, Horii SC: Introduction to the ACR-NEMA DICOM standard. Radiographics 12(2):345–355, 1992CrossRefPubMed Bidgood, Jr WD, Horii SC: Introduction to the ACR-NEMA DICOM standard. Radiographics 12(2):345–355, 1992CrossRefPubMed
20.
Zurück zum Zitat John NW et al.: MedX3D: standards enabled desktop medical 3D. Stud Health Technol Inform 132:189–194, 2008PubMed John NW et al.: MedX3D: standards enabled desktop medical 3D. Stud Health Technol Inform 132:189–194, 2008PubMed
21.
22.
24.
Zurück zum Zitat Xie S et al.: DiffusionKit: a light one-stop solution for diffusion MRI data analysis. J Neurosci Methods 273:107–119, 2016CrossRefPubMed Xie S et al.: DiffusionKit: a light one-stop solution for diffusion MRI data analysis. J Neurosci Methods 273:107–119, 2016CrossRefPubMed
26.
Zurück zum Zitat Berlage T: Augmented-reality communication for diagnostic tasks in cardiology. IEEE Trans Inf Technol Biomed 2(3):169–173, 1998CrossRefPubMed Berlage T: Augmented-reality communication for diagnostic tasks in cardiology. IEEE Trans Inf Technol Biomed 2(3):169–173, 1998CrossRefPubMed
27.
Zurück zum Zitat Sato Y et al.: Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17(5):681–693, 1998CrossRefPubMed Sato Y et al.: Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17(5):681–693, 1998CrossRefPubMed
28.
Zurück zum Zitat Kawamata T et al.: Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery 50(6):1393–1397, 2002PubMed Kawamata T et al.: Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery 50(6):1393–1397, 2002PubMed
29.
Zurück zum Zitat Paul P, Fleig O, Jannin P: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE Trans Med Imaging 24(11):1500–1511, 2005CrossRefPubMed Paul P, Fleig O, Jannin P: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE Trans Med Imaging 24(11):1500–1511, 2005CrossRefPubMed
30.
Zurück zum Zitat Lukosch S, Billinghurst M, Alem L et al.: The effect of view independence in a collaborative AR system. Computer supported cooperative work. J Collab Comput 24(6):563–589, 2015 Lukosch S, Billinghurst M, Alem L et al.: The effect of view independence in a collaborative AR system. Computer supported cooperative work. J Collab Comput 24(6):563–589, 2015
31.
Zurück zum Zitat Lukosch S, Billinghurst M, Alem L et al.: Collaboration in augmented reality. Computer supported cooperative work. J Collab Comput 24(6):515–525, 2015 Lukosch S, Billinghurst M, Alem L et al.: Collaboration in augmented reality. Computer supported cooperative work. J Collab Comput 24(6):515–525, 2015
Metadaten
Titel
Workflow for Visualization of Neuroimaging Data with an Augmented Reality Device
verfasst von
Christof Karmonik
Timothy B. Boone
Rose Khavari
Publikationsdatum
06.07.2017
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 1/2018
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-9991-4

Weitere Artikel der Ausgabe 1/2018

Journal of Digital Imaging 1/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.