Skip to main content
Erschienen in: Acta Neurologica Belgica 4/2020

23.05.2018 | Original Article

Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways

verfasst von: Chizi Geng, Jianchao Wei, Chengsi Wu

Erschienen in: Acta Neurologica Belgica | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Yes-associated protein (Yap), a regulator of cellular apoptosis, has been demonstrated to be involved in cerebral ischemia–reperfusion (IR) injury through poorly defined mechanisms. The present study aimed to explore the role of Yap in regulating cerebral IR injury in vitro, with a focus on mitochondrial fission and ROCK1/F-actin pathways. Our data demonstrated that Yap was actually downregulated in N2a cells after cerebral hypoxia-reoxygenation (HR) injury, and that lower expression of Yap was closely associated with increased cell death. However, the reintroduction of Yap was able to suppress the HR-mediated N2a cells death via blocking the mitochondria-related apoptotic signal. At the molecular levels, Yap overexpression sustained mitochondrial potential, normalized the mitochondrial respiratory function, reduced ROS overproduction, limited HtrA2/Omi release from mitochondria into the nucleus, and suppressed pro-apoptotic proteins activation. Subsequently, functional studies have further illustrated that HR-mediated mitochondrial apoptosis was highly regulated by mitochondrial fission, whereas Yap overexpression was able to attenuate HR-mediated mitochondrial fission and, thus, promote N2a cell survival in the context of HR injury. At last, we demonstrated that Yap handled mitochondrial fission via closing ROCK1/F-actin signaling pathways. Activation of ROCK1/F-actin pathways abrogated the protective role of Yap overexpression on mitochondrial homeostasis and N2a cell survival in the setting of HR injury. Altogether, our data identified Yap as the endogenous defender to relieve HR-mediated nerve damage via antagonizing ROCK1/F-actin/mitochondrial fission pathways.
Literatur
Metadaten
Titel
Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways
verfasst von
Chizi Geng
Jianchao Wei
Chengsi Wu
Publikationsdatum
23.05.2018
Verlag
Springer International Publishing
Erschienen in
Acta Neurologica Belgica / Ausgabe 4/2020
Print ISSN: 0300-9009
Elektronische ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-018-0944-6

Weitere Artikel der Ausgabe 4/2020

Acta Neurologica Belgica 4/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.