Skip to main content
Erschienen in: Molecular Imaging and Biology 1/2019

08.05.2018 | Research Article

Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation

verfasst von: Lifang Pang, Wentao Zhu, Yun Dong, Yang Lv, Hongcheng Shi

Erschienen in: Molecular Imaging and Biology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Delayed positron emission tomography (PET) imaging may improve sensitivity and specificity in lesion detection. We proposed a PET data-driven method to estimate the attenuation map (AM) for the delayed scan without an additional x-ray computed tomography (CT).

Procedures

An emission-attenuation-scatter joint estimation framework was developed. Several practical issues for clinical datasets were addressed. Particularly, the unknown scatter correction was incorporated in the joint estimation algorithm. The scaling problem was solved using prior information from the early CT scan. Fourteen patient datasets were added to evaluate the method. These patients went through two separate PET/CT scans. The delayed CT-based AM served as ground truth for the delayed scan. Standard uptake values (SUVmean and SUVmax) of lesion and normal tissue regions of interests (ROIs) in the early and delayed phase and the respective %DSUV (percentage change of SUVmean at two different time points) were analyzed, all with estimated and the true AM. Three radiologists participated in lesion detection tasks with images reconstructed with both AMs and rated scores for detectability.

Results

The mean relative difference of SUVmean in lesion and normal liver tissue were 3.30 and 6.69 %. The average lesion-to-background contrast (detectability) with delayed PET images using CT AM was 60 % higher than that of the earlier PET image, and was 64 % higher when using the data-based AM. %DSUV for lesions and liver backgrounds with CT-based AM were − 0.058 ± 0.25 and − 0.33 ± 0.08 while with data-based AM were − 0.00 ± 0.26 and − 0.28 ± 0.08. Only slight significance difference was found between using CT-based AM and using the data-based AM reconstruction delay phase on %DSUV of lesion. The scores associated with the two AMs matched well consistently.

Conclusions

Our method may be used in delayed PET imaging, which allows no secondary CT radiation in delayed phase. The quantitative analysis for lesion detection purpose could be ensured.
Literatur
1.
Zurück zum Zitat Antoch G, Stattaus J, Nemat AT, Marnitz S, Beyer T, Kuehl H, Bockisch A, Debatin JF, Freudenberg LS (2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229:526–533CrossRefPubMed Antoch G, Stattaus J, Nemat AT, Marnitz S, Beyer T, Kuehl H, Bockisch A, Debatin JF, Freudenberg LS (2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229:526–533CrossRefPubMed
2.
Zurück zum Zitat Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB (1994) Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191:371–377CrossRefPubMed Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB (1994) Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191:371–377CrossRefPubMed
3.
Zurück zum Zitat Anzai Y, Minoshima S, Wolf GT, Wahl RL (1999) Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology 212:285–290CrossRefPubMed Anzai Y, Minoshima S, Wolf GT, Wahl RL (1999) Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology 212:285–290CrossRefPubMed
4.
Zurück zum Zitat Zhu W, Li Q, Bai B, Conti PS, Leahy RM (2014) Patlak image estimation from dual time-point list-mode PET data. IEEE Trans Med Imaging 33:913–924CrossRefPubMedPubMedCentral Zhu W, Li Q, Bai B, Conti PS, Leahy RM (2014) Patlak image estimation from dual time-point list-mode PET data. IEEE Trans Med Imaging 33:913–924CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Alkhawaldeh K, Bural G, Kumar R, Alavi A (2008) Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 35:246–252CrossRefPubMed Alkhawaldeh K, Bural G, Kumar R, Alavi A (2008) Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 35:246–252CrossRefPubMed
6.
Zurück zum Zitat Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, Mozley PD, Rossman MD, Albelda SM, Alavi A (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417PubMed Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, Mozley PD, Rossman MD, Albelda SM, Alavi A (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417PubMed
7.
Zurück zum Zitat Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A (2005) Potential of dual-time-point imaging to improve breast cancer diagnosis with 18F-FDG PET. J Nucl Med 46:1819–1824PubMed Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A (2005) Potential of dual-time-point imaging to improve breast cancer diagnosis with 18F-FDG PET. J Nucl Med 46:1819–1824PubMed
8.
Zurück zum Zitat Prieto E, Martí-Climent JM, Domínguez-Prado I et al (2011) Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52:865–872CrossRefPubMed Prieto E, Martí-Climent JM, Domínguez-Prado I et al (2011) Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52:865–872CrossRefPubMed
9.
Zurück zum Zitat Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, Akaizawa T, Yamada K, Fukuda H (2001) Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med Mol Imaging 28(6):696–703CrossRef Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, Akaizawa T, Yamada K, Fukuda H (2001) Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med Mol Imaging 28(6):696–703CrossRef
10.
Zurück zum Zitat Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179CrossRefPubMed Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179CrossRefPubMed
11.
Zurück zum Zitat Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970CrossRefPubMed Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970CrossRefPubMed
12.
Zurück zum Zitat Panin VY, Kehren F, Hamill JJ, Michel C (2004) Application of discrete data consistency conditions for selecting regularization parameters in PET attenuation map reconstruction. Phys Med Biol 49:2425–2436CrossRefPubMed Panin VY, Kehren F, Hamill JJ, Michel C (2004) Application of discrete data consistency conditions for selecting regularization parameters in PET attenuation map reconstruction. Phys Med Biol 49:2425–2436CrossRefPubMed
13.
Zurück zum Zitat Bronnikov AV (2000) Reconstruction of attenuation map using discrete consistency conditions. IEEE Trans Med Imaging 19:451–462CrossRefPubMed Bronnikov AV (2000) Reconstruction of attenuation map using discrete consistency conditions. IEEE Trans Med Imaging 19:451–462CrossRefPubMed
14.
Zurück zum Zitat Natterer F (1993) Determination of tissue attenuation in emission tomography of optically dense media. Inverse Probl 9:731–736CrossRef Natterer F (1993) Determination of tissue attenuation in emission tomography of optically dense media. Inverse Probl 9:731–736CrossRef
15.
Zurück zum Zitat Natterer F. (1986) The Mathematics of Computerized Tomography. B.G. Teubner. 107–108 Natterer F. (1986) The Mathematics of Computerized Tomography. B.G. Teubner. 107–108
16.
Zurück zum Zitat Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, Nuyts J (2012) Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 31:2224–2233CrossRefPubMed Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, Nuyts J (2012) Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 31:2224–2233CrossRefPubMed
17.
Zurück zum Zitat Hsieh J, Chao E, Thibault J, Grekowicz B, Horst A, McOlash S, Myers TJ (2004) A novel reconstruction algorithm to extend the CT scan field-of-view. Med Phys 31:2385–2391CrossRefPubMed Hsieh J, Chao E, Thibault J, Grekowicz B, Horst A, McOlash S, Myers TJ (2004) A novel reconstruction algorithm to extend the CT scan field-of-view. Med Phys 31:2385–2391CrossRefPubMed
18.
Zurück zum Zitat Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C (2013) Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging 32:237–246CrossRefPubMed Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C (2013) Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging 32:237–246CrossRefPubMed
19.
Zurück zum Zitat Nuyts J, Rezaei A, Defrise M (2012) ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. In: Nuclear science symposium and medical imaging conference (NSS/MIC). IEEE:2147–2149 Nuyts J, Rezaei A, Defrise M (2012) ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. In: Nuclear science symposium and medical imaging conference (NSS/MIC). IEEE:2147–2149
20.
Zurück zum Zitat Watson CC, Newport D, Casey ME (1996) A single scatter simulation technique for scatter correction in 3D PET. In: Three-dimensional image reconstruction in radiology and nuclear medicine. Springer, pp255–268 Watson CC, Newport D, Casey ME (1996) A single scatter simulation technique for scatter correction in 3D PET. In: Three-dimensional image reconstruction in radiology and nuclear medicine. Springer, pp255–268
21.
Zurück zum Zitat Conti M (2011) Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 56:155–168CrossRefPubMed Conti M (2011) Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 56:155–168CrossRefPubMed
22.
Zurück zum Zitat Mehranian A, Zaidi H, Reader AJ (2017) MR-guided joint reconstruction of activity and attenuation in brain PET-MR. NeuroImage 162:276–288CrossRefPubMed Mehranian A, Zaidi H, Reader AJ (2017) MR-guided joint reconstruction of activity and attenuation in brain PET-MR. NeuroImage 162:276–288CrossRefPubMed
23.
Zurück zum Zitat Bal G, Kehren F, Bao J et al (2013) Maximum likelihood reconstruction of attenuation and activity (MLAA) based extended mu-maps for dynamic and gated MR-PET [abstract]. J Nucl Med 54:Supplement:2 Bal G, Kehren F, Bao J et al (2013) Maximum likelihood reconstruction of attenuation and activity (MLAA) based extended mu-maps for dynamic and gated MR-PET [abstract]. J Nucl Med 54:Supplement:2
24.
Zurück zum Zitat Defrise M, Rezaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885–899CrossRefPubMed Defrise M, Rezaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885–899CrossRefPubMed
25.
Zurück zum Zitat Mehranian A, Zaidi H (2014) MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging. EJNMMI Phys 1:A55CrossRefPubMedPubMedCentral Mehranian A, Zaidi H (2014) MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging. EJNMMI Phys 1:A55CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Michel CJ, Nuyts J (2013) Completion of truncated attenuation maps using maximum likelihood estimation of attenuation and activity (MLAA). (USA) US8620053 Michel CJ, Nuyts J (2013) Completion of truncated attenuation maps using maximum likelihood estimation of attenuation and activity (MLAA). (USA) US8620053
27.
Zurück zum Zitat Zaidi H (2000) Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med Mol Imaging 27:1813–1826CrossRef Zaidi H (2000) Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med Mol Imaging 27:1813–1826CrossRef
28.
Zurück zum Zitat Vogel WV, Van Dalen JA, Wiering B et al (2007) Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging. J Nucl Med 48:910–919CrossRefPubMed Vogel WV, Van Dalen JA, Wiering B et al (2007) Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging. J Nucl Med 48:910–919CrossRefPubMed
29.
Zurück zum Zitat van Dalen JA, Vogel W, Huisman H et al (2004) Accuracy of rigid CT–FDG-PET image registration of the liver. Phys Med Biol 49:5393–5405CrossRefPubMed van Dalen JA, Vogel W, Huisman H et al (2004) Accuracy of rigid CT–FDG-PET image registration of the liver. Phys Med Biol 49:5393–5405CrossRefPubMed
30.
Zurück zum Zitat Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:1–45CrossRef Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:1–45CrossRef
31.
Zurück zum Zitat Rueckert D, Schnabel JA (2010) Medical image registration. In: Deserno TM (ed) Biomedical image processing. Springer press, Berlin, pp 131–154CrossRef Rueckert D, Schnabel JA (2010) Medical image registration. In: Deserno TM (ed) Biomedical image processing. Springer press, Berlin, pp 131–154CrossRef
32.
Zurück zum Zitat Rezaei A, Michel C, Casey ME, Nuyts J (2016) Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET. Phys Med Biol 61:1852–1874CrossRefPubMed Rezaei A, Michel C, Casey ME, Nuyts J (2016) Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET. Phys Med Biol 61:1852–1874CrossRefPubMed
33.
Zurück zum Zitat Heußer T, Rank CM, Freitag MT et al (2016) MR-consistent simultaneous reconstruction of attenuation and activity for non-TOF PET/MR. IEEE Trans Nucl Sci 63:2443–2451CrossRef Heußer T, Rank CM, Freitag MT et al (2016) MR-consistent simultaneous reconstruction of attenuation and activity for non-TOF PET/MR. IEEE Trans Nucl Sci 63:2443–2451CrossRef
34.
Zurück zum Zitat Boellaard R, Hofman MB, Hoekstra OS, Lammertsma AA (2014) Accurate PET/MR quantification using time of flight MLAA image reconstruction. Mol Imaging Biol 16:469–477CrossRefPubMed Boellaard R, Hofman MB, Hoekstra OS, Lammertsma AA (2014) Accurate PET/MR quantification using time of flight MLAA image reconstruction. Mol Imaging Biol 16:469–477CrossRefPubMed
Metadaten
Titel
Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation
verfasst von
Lifang Pang
Wentao Zhu
Yun Dong
Yang Lv
Hongcheng Shi
Publikationsdatum
08.05.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 1/2019
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1205-z

Weitere Artikel der Ausgabe 1/2019

Molecular Imaging and Biology 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.