Skip to main content
Erschienen in: Die Onkologie 11/2021

22.08.2021 | Leitthema

Tumorimpfstoffe

verfasst von: Dr. Malte Roerden, PD Dr. Juliane S. Walz

Erschienen in: Die Onkologie | Ausgabe 11/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Krebsimpfstoffe können das patienteneigene Immunsystem gezielt gegen Tumorzellen richten, indem sie Anti-Tumor-Immunantworten induzieren oder verstärken.

Ziel der Arbeit

Ziel der Arbeit ist es, einen Überblick über die sich rasch entwickelnde therapeutische Tumorvakzinierung, immunologische Hintergründe, Arten von Zielantigenen und Applikationsformen sowie deren Einsatz in der Behandlung maligner Erkrankungen zu geben.

Material und Methoden

Es erfolgte eine selektive Literaturrecherche.

Ergebnisse

Tumorvakzine vermögen potente T‑Zell-Immunantworten gegen Tumorantigene zu induzieren. Hierzu gehören tumorassoziierte Selbstantigene, Neoantigene aus tumorspezifischen Mutationen oder onkovirale Antigene. Verschiedenste Applikationsformen wie dendritische Zellvakzine, Peptid- oder auch RNA-Vakzine stehen zur Verfügung und werden in aktuellen klinischen Studien untersucht. Für den klinischen Erfolg einer Tumorimpfung ist neben der Auswahl geeigneter Zielantigene ein optimales Verhältnis von tumorantigenspezifischen T‑Zellen zu zielantigenpräsentierenden Tumorzellen unabdingbar, welches insbesondere in der adjuvanten Therapiesituation gegeben ist. Kombinationstherapien, insbesondere mit Immuncheckpointinhibitoren, versprechen hierbei synergistische Effekte, um den therapeutischen Nutzen von Tumorvakzinierungen weiter zu steigern.

Schlussfolgerung

Zunehmend auch in der Breite anwendbare Methoden der Personalisierung ermöglichen die Anwendung individualisierter therapeutischer Krebsimpfstoffe auch in größeren Patientenkollektiven. Die Auswahl der Zielantigene ist von zentraler Bedeutung für die Wirksamkeit der Tumorimpfstoffe, da deren Immunogenität und tumorspezifische Präsentation über HLA-Moleküle grundlegend für die Induktion tumorreaktiver T‑Zellen ist.
Literatur
1.
Zurück zum Zitat Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761PubMedCrossRef Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761PubMedCrossRef
2.
Zurück zum Zitat Ilyas S, Yang JC (2015) Landscape of tumor antigens in T cell immunotherapy. J Immunol 195(11):5117–5122PubMedCrossRef Ilyas S, Yang JC (2015) Landscape of tumor antigens in T cell immunotherapy. J Immunol 195(11):5117–5122PubMedCrossRef
3.
Zurück zum Zitat Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18):15772PubMedPubMedCentralCrossRef Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18):15772PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Pagano JS et al (2004) Infectious agents and cancer: criteria for a causal relation. In: Seminars in cancer biology. Elsevier, Pagano JS et al (2004) Infectious agents and cancer: criteria for a causal relation. In: Seminars in cancer biology. Elsevier,
5.
Zurück zum Zitat Schmidt M, Lill JR (2019) MHC class I presented antigens from malignancies: A perspective on analytical characterization & immunogenicity. J Proteomics 191:48–57PubMedCrossRef Schmidt M, Lill JR (2019) MHC class I presented antigens from malignancies: A perspective on analytical characterization & immunogenicity. J Proteomics 191:48–57PubMedCrossRef
6.
Zurück zum Zitat Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74PubMedCrossRef Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74PubMedCrossRef
7.
Zurück zum Zitat Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576PubMedCrossRef Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576PubMedCrossRef
8.
Zurück zum Zitat Chalmers ZR et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):1–14CrossRef Chalmers ZR et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):1–14CrossRef
9.
Zurück zum Zitat Haen SP et al (2020) Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 17(10):595–610PubMedCrossRefPubMedCentral Haen SP et al (2020) Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 17(10):595–610PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Berlin C et al (2015) Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29(3):647–659PubMedCrossRef Berlin C et al (2015) Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29(3):647–659PubMedCrossRef
11.
Zurück zum Zitat Bilich T et al (2020) Mass spectrometry-based identification of a B-cell maturation antigen-derived T‑cell epitope for antigen-specific immunotherapy of multiple myeloma. Blood Cancer J 10(2):1–10CrossRef Bilich T et al (2020) Mass spectrometry-based identification of a B-cell maturation antigen-derived T‑cell epitope for antigen-specific immunotherapy of multiple myeloma. Blood Cancer J 10(2):1–10CrossRef
13.
Zurück zum Zitat Kowalewski DJ et al (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci 112(2):E166–E175PubMedCrossRef Kowalewski DJ et al (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci 112(2):E166–E175PubMedCrossRef
14.
Zurück zum Zitat Hilf N et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245PubMedCrossRef Hilf N et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245PubMedCrossRef
16.
Zurück zum Zitat De Gruijl TD et al (2008) Whole-cell cancer vaccination: from autologous to allogeneic tumor-and dendritic cell-based vaccines. Cancer Immunol Immunother 57(10):1569PubMedPubMedCentralCrossRef De Gruijl TD et al (2008) Whole-cell cancer vaccination: from autologous to allogeneic tumor-and dendritic cell-based vaccines. Cancer Immunol Immunother 57(10):1569PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Salgia R et al (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non–small-cell lung carcinoma. J Clin Oncol 21(4):624–630PubMedCrossRef Salgia R et al (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non–small-cell lung carcinoma. J Clin Oncol 21(4):624–630PubMedCrossRef
18.
Zurück zum Zitat Calmeiro J et al (2020) Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics 12(2):158PubMedCentralCrossRef Calmeiro J et al (2020) Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics 12(2):158PubMedCentralCrossRef
19.
Zurück zum Zitat Carreno BM et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808PubMedPubMedCentralCrossRef Carreno BM et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat May RJ et al (2007) Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 13(15):4547–4555PubMedCrossRef May RJ et al (2007) Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 13(15):4547–4555PubMedCrossRef
21.
Zurück zum Zitat Melief CJ (2013) „License to kill“ reflects joint action of CD4 and CD8 T cells. Clin Cancer Res 19(16):4295–4296PubMedCrossRef Melief CJ (2013) „License to kill“ reflects joint action of CD4 and CD8 T cells. Clin Cancer Res 19(16):4295–4296PubMedCrossRef
23.
Zurück zum Zitat Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226PubMedCrossRef Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226PubMedCrossRef
25.
Zurück zum Zitat Arlen PM et al (2007) Clinical safety of a viral vector based prostate cancer vaccine strategy. J Urol 178(4):1515–1520PubMedCrossRef Arlen PM et al (2007) Clinical safety of a viral vector based prostate cancer vaccine strategy. J Urol 178(4):1515–1520PubMedCrossRef
26.
Zurück zum Zitat Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73PubMedCrossRef Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73PubMedCrossRef
27.
Zurück zum Zitat Rehman H et al (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4(1):1–8CrossRef Rehman H et al (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4(1):1–8CrossRef
28.
Zurück zum Zitat Maisonneuve C et al (2014) Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci 111(34):12294–12299PubMedPubMedCentralCrossRef Maisonneuve C et al (2014) Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci 111(34):12294–12299PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Rammensee H‑G et al (2019) A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 7(1):1–18CrossRef Rammensee H‑G et al (2019) A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 7(1):1–18CrossRef
30.
Zurück zum Zitat Sabbatini P et al (2012) Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res 18(23):6497–6508PubMedCrossRef Sabbatini P et al (2012) Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res 18(23):6497–6508PubMedCrossRef
31.
Zurück zum Zitat Vonderheide RH, Glennie MJ (2013) Agonistic CD40 antibodies and cancer therapy. AACR, CrossRef Vonderheide RH, Glennie MJ (2013) Agonistic CD40 antibodies and cancer therapy. AACR, CrossRef
33.
Zurück zum Zitat Aucouturier J et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118PubMedCrossRef Aucouturier J et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118PubMedCrossRef
34.
Zurück zum Zitat Kantoff PW et al (2010) Sipuleucel‑T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRef Kantoff PW et al (2010) Sipuleucel‑T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRef
35.
Zurück zum Zitat Puzanov I et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619PubMedPubMedCentralCrossRef Puzanov I et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Giebel S et al (2017) Improving results of allogeneic hematopoietic cell transplantation for adults with acute lymphoblastic leukemia in first complete remission: an analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 102(1):139PubMedPubMedCentralCrossRef Giebel S et al (2017) Improving results of allogeneic hematopoietic cell transplantation for adults with acute lymphoblastic leukemia in first complete remission: an analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 102(1):139PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Gupta V, Richards S, Rowe J (2013) Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood 121(2):339–350PubMedPubMedCentralCrossRef Gupta V, Richards S, Rowe J (2013) Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood 121(2):339–350PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Bilich T et al (2019) The HLA ligandome landscape of chronic myeloid leukemia delineates novel T‑cell epitopes for immunotherapy. Blood 133(6):550–565PubMedCrossRef Bilich T et al (2019) The HLA ligandome landscape of chronic myeloid leukemia delineates novel T‑cell epitopes for immunotherapy. Blood 133(6):550–565PubMedCrossRef
39.
Zurück zum Zitat Sahin U et al (2020) An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585(7823):107–112PubMedCrossRef Sahin U et al (2020) An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585(7823):107–112PubMedCrossRef
40.
Zurück zum Zitat Massarelli E et al (2019) Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 5(1):67–73PubMedCrossRef Massarelli E et al (2019) Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 5(1):67–73PubMedCrossRef
42.
Zurück zum Zitat Hailemichael Y et al (2018) Cancer vaccine formulation dictates synergy with CTLA‑4 and PD-L1 checkpoint blockade therapy. J Clin Invest 128(4):1338–1354PubMedPubMedCentralCrossRef Hailemichael Y et al (2018) Cancer vaccine formulation dictates synergy with CTLA‑4 and PD-L1 checkpoint blockade therapy. J Clin Invest 128(4):1338–1354PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10PubMedCrossRef Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10PubMedCrossRef
44.
Zurück zum Zitat Kowalewski DJ et al (2016) Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C‑termini. Blood Cancer J 6:e411PubMedPubMedCentralCrossRef Kowalewski DJ et al (2016) Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C‑termini. Blood Cancer J 6:e411PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Brocks D et al (2017) DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 49(7):1052–1060PubMedPubMedCentralCrossRef Brocks D et al (2017) DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 49(7):1052–1060PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Srivastava P et al (2016) Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget 7(11):12840PubMedPubMedCentralCrossRef Srivastava P et al (2016) Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget 7(11):12840PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Laheru D et al (2008) Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 14(5):1455–1463PubMedPubMedCentralCrossRef Laheru D et al (2008) Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 14(5):1455–1463PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Le DT et al (1997) Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 36(7):382CrossRef Le DT et al (1997) Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 36(7):382CrossRef
50.
Zurück zum Zitat Ott PA et al (2018) A personal neoantigen vaccine, NEO-PV-01, with anti-PD1 induces broad de novo anti-tumor immunity in patients with metastatic melanoma, NSCLC, and bladder cancer. Ann Oncol 29:viii400CrossRef Ott PA et al (2018) A personal neoantigen vaccine, NEO-PV-01, with anti-PD1 induces broad de novo anti-tumor immunity in patients with metastatic melanoma, NSCLC, and bladder cancer. Ann Oncol 29:viii400CrossRef
53.
Zurück zum Zitat Andtbacka R et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788PubMedCrossRef Andtbacka R et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788PubMedCrossRef
54.
Zurück zum Zitat Gulley JL et al (2019) Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 37(13):1051PubMedPubMedCentralCrossRef Gulley JL et al (2019) Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 37(13):1051PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Oudard S et al (2011) A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol Immunother 60(2):261–271PubMedCrossRef Oudard S et al (2011) A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol Immunother 60(2):261–271PubMedCrossRef
56.
Zurück zum Zitat Tosch C et al (2017) Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J Immunother Cancer 5(1):1–10CrossRef Tosch C et al (2017) Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J Immunother Cancer 5(1):1–10CrossRef
57.
Zurück zum Zitat Rosenblatt J et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19(13):3640–3648PubMedPubMedCentralCrossRef Rosenblatt J et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19(13):3640–3648PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Lacy MQ et al (2009) Idiotype-pulsed antigen presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 84(12):799–802PubMedPubMedCentralCrossRef Lacy MQ et al (2009) Idiotype-pulsed antigen presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 84(12):799–802PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Griffiths EA et al (2018) NY-ESO‑1 vaccination in combination with decitabine induces antigen-specific T‑lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res 24(5):1019–1029PubMedCrossRef Griffiths EA et al (2018) NY-ESO‑1 vaccination in combination with decitabine induces antigen-specific T‑lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res 24(5):1019–1029PubMedCrossRef
60.
Zurück zum Zitat Bilich T et al (2017) Definition and characterization of a peptide warehouse for the patient-individualized peptide vaccination study (iVAC-L-CLL01) after first line therapy of CLL. Blood 130(Supplement 1):5346–5346 Bilich T et al (2017) Definition and characterization of a peptide warehouse for the patient-individualized peptide vaccination study (iVAC-L-CLL01) after first line therapy of CLL. Blood 130(Supplement 1):5346–5346
61.
Zurück zum Zitat Maslak PG et al (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2(3):224–234PubMedPubMedCentralCrossRef Maslak PG et al (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2(3):224–234PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Ueda Y et al (2017) Phase 1/2 study of the WT 1 peptide cancer vaccine WT 4869 in patients with myelodysplastic syndrome. Cancer Sci 108(12):2445–2453PubMedPubMedCentralCrossRef Ueda Y et al (2017) Phase 1/2 study of the WT 1 peptide cancer vaccine WT 4869 in patients with myelodysplastic syndrome. Cancer Sci 108(12):2445–2453PubMedPubMedCentralCrossRef
Metadaten
Titel
Tumorimpfstoffe
verfasst von
Dr. Malte Roerden
PD Dr. Juliane S. Walz
Publikationsdatum
22.08.2021
Verlag
Springer Medizin
Erschienen in
Die Onkologie / Ausgabe 11/2021
Print ISSN: 2731-7226
Elektronische ISSN: 2731-7234
DOI
https://doi.org/10.1007/s00761-021-01012-8

Weitere Artikel der Ausgabe 11/2021

Die Onkologie 11/2021 Zur Ausgabe

Einführung zum Thema

Tumorimmunologie

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.