Skip to main content
Erschienen in: Die Onkologie 1/2023

18.12.2022 | CME

Patientenabgeleitete Tumororganoide – ein Therapiemodell für die Präzisionsonkologie

verfasst von: Linus R. Schömig, M.Sc., Prof. Dr. med. Michael Quante

Erschienen in: Die Onkologie | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Zusammenfassung

Organoide sind stammzellbasierte In-vitro-Zellkulturen, die sich nicht nur durch ihre 3‑dimensionale Struktur, sondern auch durch ihre Multizellularität und ein hohes Maß an Selbstorganisation auszeichnen. Aufgrund ihrer starken Ähnlichkeit zu den Primärgeweben, aus denen sie isoliert wurden, stellen Organoide ein geeignetes Therapiemodell für molekulare und funktionelle Analysen innerhalb der personalisierten Medizin dar. Gerade im Bereich der Präzisionsonkologie, wo patientenspezifische Therapiemodelle dringend benötigt werden, können Organoide das vorhandene Repertoire, bestehend aus 2‑dimensionalen Zellkulturen und Modellen patientenabgeleiteter Xenografts, bereichern.
Literatur
1.
Zurück zum Zitat Hofer M, Lutolf MP (2021) Engineering organoids. Nat Rev Mater 6(5):402–420 Hofer M, Lutolf MP (2021) Engineering organoids. Nat Rev Mater 6(5):402–420
2.
Zurück zum Zitat Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265 Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265
3.
Zurück zum Zitat Li Y et al (2020) Organoid based personalized medicine: from bench to bedside. Cell Regen 9(1):21 Li Y et al (2020) Organoid based personalized medicine: from bench to bedside. Cell Regen 9(1):21
4.
Zurück zum Zitat Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597 Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597
5.
Zurück zum Zitat Bose S, Clevers H, Shen X (2021) Promises and challenges of organoid-guided precision medicine. Med (N Y) 2(9):1011–1026 Bose S, Clevers H, Shen X (2021) Promises and challenges of organoid-guided precision medicine. Med (N Y) 2(9):1011–1026
6.
Zurück zum Zitat Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to matrigel. Nat Rev Mater 5(7):539–551 Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to matrigel. Nat Rev Mater 5(7):539–551
7.
Zurück zum Zitat Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386 Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386
8.
Zurück zum Zitat Broguiere N et al (2018) Growth of epithelial organoids in a defined hydrogel. Adv Mater 30(43):e1801621 Broguiere N et al (2018) Growth of epithelial organoids in a defined hydrogel. Adv Mater 30(43):e1801621
9.
Zurück zum Zitat Cruz-Acuna R et al (2017) Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol 19(11):1326–1335 Cruz-Acuna R et al (2017) Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol 19(11):1326–1335
10.
Zurück zum Zitat Gjorevski N et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564 Gjorevski N et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564
11.
Zurück zum Zitat Jabaji Z et al (2014) Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9(9):e107814 Jabaji Z et al (2014) Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9(9):e107814
12.
Zurück zum Zitat Lindborg BA et al (2016) Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med 5(7):970–979 Lindborg BA et al (2016) Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med 5(7):970–979
13.
Zurück zum Zitat Bartfeld S et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136.e6 Bartfeld S et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136.e6
14.
Zurück zum Zitat van de Wetering M et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4):933–945 van de Wetering M et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4):933–945
15.
Zurück zum Zitat Boj SF et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1):324–338 Boj SF et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1):324–338
16.
Zurück zum Zitat Hu H et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(6):1591–1606.e19 Hu H et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(6):1591–1606.e19
17.
Zurück zum Zitat Huch M et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1):299–312 Huch M et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1):299–312
18.
Zurück zum Zitat Kessler M et al (2015) The notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 6:8989 Kessler M et al (2015) The notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 6:8989
19.
Zurück zum Zitat Gao D et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159(1):176–187 Gao D et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159(1):176–187
20.
Zurück zum Zitat Karthaus WR et al (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1):163–175 Karthaus WR et al (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1):163–175
21.
Zurück zum Zitat Saito Y et al (2018) Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun 497(2):783–789 Saito Y et al (2018) Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun 497(2):783–789
22.
Zurück zum Zitat Schutgens F et al (2019) Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 37(3):303–313 Schutgens F et al (2019) Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 37(3):303–313
23.
Zurück zum Zitat McCracken KW et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400–404 McCracken KW et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400–404
24.
Zurück zum Zitat Costa EC et al (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34(8):1427–1441 Costa EC et al (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34(8):1427–1441
25.
Zurück zum Zitat Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6 Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6
26.
Zurück zum Zitat Imamura Y et al (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33(4):1837–1843 Imamura Y et al (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33(4):1837–1843
27.
Zurück zum Zitat Haisler WL et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949 Haisler WL et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949
28.
Zurück zum Zitat Ravi M et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230(1):16–26 Ravi M et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230(1):16–26
29.
Zurück zum Zitat Pontes Soares C et al (2012) 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS ONE 7(5):e38147 Pontes Soares C et al (2012) 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS ONE 7(5):e38147
30.
Zurück zum Zitat Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33 Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33
31.
Zurück zum Zitat Toolan HW (1953) Growth of human tumors in cortisone-treated laboratory animals: the possibility of obtaining permanently transplantable human tumors. Cancer Res 13(4):389–394 Toolan HW (1953) Growth of human tumors in cortisone-treated laboratory animals: the possibility of obtaining permanently transplantable human tumors. Cancer Res 13(4):389–394
32.
Zurück zum Zitat Byrne AT et al (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254–268 Byrne AT et al (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254–268
33.
Zurück zum Zitat Sachs N et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1):373–386.e10 Sachs N et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1):373–386.e10
34.
Zurück zum Zitat Calandrini C et al (2020) An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun 11(1):1310 Calandrini C et al (2020) An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun 11(1):1310
35.
Zurück zum Zitat Jacob F et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180(1):188–204.e22 Jacob F et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180(1):188–204.e22
36.
Zurück zum Zitat Kopper O et al (2019) An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 25(5):838–849 Kopper O et al (2019) An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 25(5):838–849
37.
Zurück zum Zitat Drost J et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550):43–47 Drost J et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550):43–47
38.
Zurück zum Zitat Matano M et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21(3):256–262 Matano M et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21(3):256–262
39.
Zurück zum Zitat Dotti I et al (2017) Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 66(12):2069–2079 Dotti I et al (2017) Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 66(12):2069–2079
40.
Zurück zum Zitat Howell KJ et al (2018) DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154(3):585–598 Howell KJ et al (2018) DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154(3):585–598
41.
Zurück zum Zitat Joshi R et al (2020) The DNA methylation landscape of human cancer organoids available at the American type culture collection. Epigenetics 15(11):1167–1177 Joshi R et al (2020) The DNA methylation landscape of human cancer organoids available at the American type culture collection. Epigenetics 15(11):1167–1177
42.
Zurück zum Zitat Driehuis E et al (2019) Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov 9(7):852–871 Driehuis E et al (2019) Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov 9(7):852–871
44.
Zurück zum Zitat Vlachogiannis G et al (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926 Vlachogiannis G et al (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926
45.
Zurück zum Zitat Hidalgo M et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013 Hidalgo M et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013
47.
Zurück zum Zitat Li X et al (2018) Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun 9(1):2983 Li X et al (2018) Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun 9(1):2983
48.
Zurück zum Zitat Dijkstra KK et al (2020) Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep 31(5):107588 Dijkstra KK et al (2020) Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep 31(5):107588
50.
Zurück zum Zitat Hennig A et al (2022) Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. J Pathol 257(5):607–619 Hennig A et al (2022) Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. J Pathol 257(5):607–619
51.
Zurück zum Zitat Sohal D et al (2020) SWOG S1505: results of perioperative chemotherapy (peri-op Ctx) with mfolfirinox versus gemcitabine/nab-paclitaxel (gem/nabP) for resectable pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 38(15):4504–4504 Sohal D et al (2020) SWOG S1505: results of perioperative chemotherapy (peri-op Ctx) with mfolfirinox versus gemcitabine/nab-paclitaxel (gem/nabP) for resectable pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 38(15):4504–4504
53.
Zurück zum Zitat Yao Y et al (2020) Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26(1):17–26.e6 Yao Y et al (2020) Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26(1):17–26.e6
54.
Zurück zum Zitat Ganesh K et al (2019) A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med 25(10):1607–1614 Ganesh K et al (2019) A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med 25(10):1607–1614
55.
Zurück zum Zitat Arena S et al (2020) A subset of colorectal cancers with cross-sensitivity to olaparib and oxaliplatin. Clin Cancer Res 26(6):1372–1384 Arena S et al (2020) A subset of colorectal cancers with cross-sensitivity to olaparib and oxaliplatin. Clin Cancer Res 26(6):1372–1384
56.
Zurück zum Zitat Li J et al (2019) Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol 145(11):2637–2647 Li J et al (2019) Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol 145(11):2637–2647
57.
Zurück zum Zitat Pasch CA et al (2019) Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res 25(17):5376–5387 Pasch CA et al (2019) Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res 25(17):5376–5387
58.
Zurück zum Zitat Steele NG et al (2019) An organoid-based preclinical model of human gastric cancer. Cell Mol Gastroenterol Hepatol 7(1):161–184 Steele NG et al (2019) An organoid-based preclinical model of human gastric cancer. Cell Mol Gastroenterol Hepatol 7(1):161–184
59.
Zurück zum Zitat Broutier L et al (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 23(12):1424–1435 Broutier L et al (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 23(12):1424–1435
60.
Zurück zum Zitat Yan HHN et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882–897.e11 Yan HHN et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882–897.e11
Metadaten
Titel
Patientenabgeleitete Tumororganoide – ein Therapiemodell für die Präzisionsonkologie
verfasst von
Linus R. Schömig, M.Sc.
Prof. Dr. med. Michael Quante
Publikationsdatum
18.12.2022
Verlag
Springer Medizin
Erschienen in
Die Onkologie / Ausgabe 1/2023
Print ISSN: 2731-7226
Elektronische ISSN: 2731-7234
DOI
https://doi.org/10.1007/s00761-022-01268-8

Weitere Artikel der Ausgabe 1/2023

Die Onkologie 1/2023 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.