Skip to main content
Erschienen in: Der Ophthalmologe 4/2017

27.02.2017 | Leitthema

Zukunftstechnologie Tissue-Engineering

Fokus auf die Stammzellnische

verfasst von: Prof. Dr. U. Schlötzer-Schrehardt, U. Freudenberg, F. E. Kruse

Erschienen in: Die Ophthalmologie | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Zusammenfassung

Limbale Stammzellen leben in einem hoch spezialisierten Mikromilieu, das als Stammzellnische bezeichnet wird und den Erhalt des Stammzellpools und damit die Homöostase des Hornhautepithels über ein ausbalanciertes Verhältnis aus Quieszenz, Proliferation und Differenzierung reguliert. Nur in ihrer Nische können Stammzellen überleben und (ewig) jung bleiben. Die Limbusstammzellnische am Grund der Vogt-Palisaden umfasst nach unserem heutigen Kenntnisstand neben den Stamm- und Progenitorzellen verschiedene unterstützende Nischenzellpopulationen und eine spezialisierte extrazelluläre Matrix, die biochemische und biophysikalische Signale vermitteln. Ein primäres Ziel des Tissue-Engineering unter Einsatz von Stammzellen ist es, die Stammzellnische zu imitieren und die extrinsischen Variablen des lokalen Mikromilieus kontrolliert und reproduzierbar in vitro nachzuahmen, um die Stammzellfunktionen im Transplantat aufrechtzuerhalten. Therapeutisch werden zurzeit nur sog. Surrogatnischen für die Ex-vivo-Expansion der limbalen Stammzellen genutzt. Entscheidende Fortschritte bei der Identifizierung limbusspezifischer Nischenkomponenten und der Entwicklung biosynthetischer Konstrukte haben in den letzten Jahren neue Tissue-Engineering-Strategien zur Generierung von Hornhautepithelgewebe angestoßen. Vielversprechende experimentelle Ansätze sind zum einen kollagenbasierte organotypische Kokultivierungssysteme von limbalen Stammzellen mit ihren Nischenzellen sowie biomimetische Hydrogele, die mit spezifischen Nischenfaktoren präfunktionalisiert werden. Sollten diese innovativen regenerativen Technologien in Zukunft zur klinischen Anwendung kommen, wären auch verbesserte langfristige Erfolgsraten einer Limbusstammzelltransplantation zur Hornhautoberflächenrekonstruktion zu erwarten.
Literatur
1.
Zurück zum Zitat Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561 CrossRefPubMed Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561 CrossRefPubMed
2.
Zurück zum Zitat Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62 CrossRefPubMed Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62 CrossRefPubMed
3.
Zurück zum Zitat Cotsarelis G, Cheng SZ, Dong G et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209 CrossRefPubMed Cotsarelis G, Cheng SZ, Dong G et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209 CrossRefPubMed
4.
Zurück zum Zitat Lehrer MS, Sun TT, Lavker RM (1998) Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111:2867–2875 PubMed Lehrer MS, Sun TT, Lavker RM (1998) Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111:2867–2875 PubMed
5.
6.
Zurück zum Zitat Das P, Gokani A, Bagchi K et al (2015) Limbal epithelial stem-microenvironmental alteration leads to pterygium development. Mol Cell Biochem 402:123–139 CrossRefPubMed Das P, Gokani A, Bagchi K et al (2015) Limbal epithelial stem-microenvironmental alteration leads to pterygium development. Mol Cell Biochem 402:123–139 CrossRefPubMed
7.
Zurück zum Zitat Meller D, Thomasen H, Steuhl KP (2012) Ocular surface reconstruction in limbal stem cell deficiency: transplantation of cultivated limbal epithelium. Ophthalmologe 109:863–868 CrossRefPubMed Meller D, Thomasen H, Steuhl KP (2012) Ocular surface reconstruction in limbal stem cell deficiency: transplantation of cultivated limbal epithelium. Ophthalmologe 109:863–868 CrossRefPubMed
8.
Zurück zum Zitat Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993 CrossRefPubMed Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993 CrossRefPubMed
9.
Zurück zum Zitat Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207 CrossRefPubMed Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207 CrossRefPubMed
10.
Zurück zum Zitat Baylis O, Figueiredo F, Henein C et al (2011) 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 112:993–1002 CrossRefPubMed Baylis O, Figueiredo F, Henein C et al (2011) 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 112:993–1002 CrossRefPubMed
11.
Zurück zum Zitat Holland EJ (2015) Management of limbal stem cell deficiency: a historical perspective, past, present, and future. Cornea 34(Suppl 10):S9–S15 CrossRefPubMed Holland EJ (2015) Management of limbal stem cell deficiency: a historical perspective, past, present, and future. Cornea 34(Suppl 10):S9–S15 CrossRefPubMed
12.
Zurück zum Zitat Shortt AJ, Bunce C, Levis HJ et al (2014) Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the Clinical Outcome Assessment in Surgical Trials assessment tool. Stem Cells Transl Med 3:265–275 CrossRefPubMedPubMedCentral Shortt AJ, Bunce C, Levis HJ et al (2014) Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the Clinical Outcome Assessment in Surgical Trials assessment tool. Stem Cells Transl Med 3:265–275 CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155 CrossRefPubMed Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155 CrossRefPubMed
14.
Zurück zum Zitat Pellegrini G, Rama P, Matuska S et al (2013) Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen Med 8:553–567 CrossRefPubMed Pellegrini G, Rama P, Matuska S et al (2013) Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen Med 8:553–567 CrossRefPubMed
15.
Zurück zum Zitat Daya SM, Watson A, Sharpe JR et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477 CrossRefPubMed Daya SM, Watson A, Sharpe JR et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477 CrossRefPubMed
16.
Zurück zum Zitat Menzel-Severing J, Polisetti N, Schlötzer-Schrehardt U, Kruse F (2012) Limbal stem cells and their niche: implications for bioengineered tissue constructs. Klin Monbl Augenheilkd 229:1191–1197 CrossRefPubMed Menzel-Severing J, Polisetti N, Schlötzer-Schrehardt U, Kruse F (2012) Limbal stem cells and their niche: implications for bioengineered tissue constructs. Klin Monbl Augenheilkd 229:1191–1197 CrossRefPubMed
17.
Zurück zum Zitat Menzel-Severing J, Kruse FE, Schlötzer-Schrehardt U (2013) Stem cell-based therapy for corneal epithelial reconstruction: present and future. Can J Ophthalmol 48:13–21 CrossRefPubMed Menzel-Severing J, Kruse FE, Schlötzer-Schrehardt U (2013) Stem cell-based therapy for corneal epithelial reconstruction: present and future. Can J Ophthalmol 48:13–21 CrossRefPubMed
18.
Zurück zum Zitat Tsai RJ, Tsai RY (2014) From stem cell niche environments to engineering of corneal epithelium tissue. Jpn J Ophthalmol 58:111–119 CrossRefPubMed Tsai RJ, Tsai RY (2014) From stem cell niche environments to engineering of corneal epithelium tissue. Jpn J Ophthalmol 58:111–119 CrossRefPubMed
19.
Zurück zum Zitat Thomasen H, Steuhl KP, Meller D (2012) The biological basis of limbal stem cell deficiency. Ophthalmologe 109:843–849 CrossRefPubMed Thomasen H, Steuhl KP, Meller D (2012) The biological basis of limbal stem cell deficiency. Ophthalmologe 109:843–849 CrossRefPubMed
20.
Zurück zum Zitat Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25 PubMed Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25 PubMed
22.
Zurück zum Zitat Crowder SW, Leonardo V, Whittaker T et al (2016) Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18:39–52 CrossRefPubMed Crowder SW, Leonardo V, Whittaker T et al (2016) Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18:39–52 CrossRefPubMed
23.
Zurück zum Zitat Schneider RK (2013) Mesenchymal stroma cells and their niche. Pathologe 34(Suppl 2):264–268 CrossRefPubMed Schneider RK (2013) Mesenchymal stroma cells and their niche. Pathologe 34(Suppl 2):264–268 CrossRefPubMed
25.
Zurück zum Zitat Dua HS, Shanmuganathan VA, Powell-Richards AO et al (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532 CrossRefPubMedPubMedCentral Dua HS, Shanmuganathan VA, Powell-Richards AO et al (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532 CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Shortt AJ, Secker GA, Munro PM et al (2007) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409 CrossRefPubMed Shortt AJ, Secker GA, Munro PM et al (2007) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409 CrossRefPubMed
27.
Zurück zum Zitat Zarei-Ghanavati S, Ramirez-Miranda A, Deng SX (2011) Limbal lacuna: a novel limbal structure detected by in vivo laser scanning confocal microscopy. Ophthalmic Surg Lasers Imaging 42:e129–e131 CrossRefPubMed Zarei-Ghanavati S, Ramirez-Miranda A, Deng SX (2011) Limbal lacuna: a novel limbal structure detected by in vivo laser scanning confocal microscopy. Ophthalmic Surg Lasers Imaging 42:e129–e131 CrossRefPubMed
28.
Zurück zum Zitat Molvaer RK, Andreasen A, Heegaard S (2013) Interactive 3D computer model of the human corneolimbal region: crypts, projections and stem cells. Acta Ophthalmol 91:457–462 CrossRefPubMed Molvaer RK, Andreasen A, Heegaard S (2013) Interactive 3D computer model of the human corneolimbal region: crypts, projections and stem cells. Acta Ophthalmol 91:457–462 CrossRefPubMed
30.
Zurück zum Zitat Ordonez P, Di Girolamo N (2012) Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 30:100–107 CrossRefPubMed Ordonez P, Di Girolamo N (2012) Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 30:100–107 CrossRefPubMed
31.
Zurück zum Zitat Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330 CrossRefPubMed Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330 CrossRefPubMed
32.
Zurück zum Zitat Polisetti N, Zenkel M, Menzel-Severing J et al (2016) Cell adhesion molecules and stem cell-niche interactions in the limbal stem cell niche. Stem Cells 34:203–219 CrossRefPubMed Polisetti N, Zenkel M, Menzel-Severing J et al (2016) Cell adhesion molecules and stem cell-niche interactions in the limbal stem cell niche. Stem Cells 34:203–219 CrossRefPubMed
33.
Zurück zum Zitat Polisetti N, Fatima A, Madhira SL et al (2008) Mesenchymal cells from limbal stroma of human eye. Mol Vis 14:431–442 Polisetti N, Fatima A, Madhira SL et al (2008) Mesenchymal cells from limbal stroma of human eye. Mol Vis 14:431–442
34.
Zurück zum Zitat Schlötzer-Schrehardt U, Dietrich T, Saito K et al (2007) Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 85:845–860 CrossRefPubMed Schlötzer-Schrehardt U, Dietrich T, Saito K et al (2007) Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 85:845–860 CrossRefPubMed
35.
Zurück zum Zitat Holan V, Pokorna K, Prochazkova J et al (2010) Immunoregulatory properties of mouse limbal stem cells. J Immunol 184:2124–2129 CrossRefPubMed Holan V, Pokorna K, Prochazkova J et al (2010) Immunoregulatory properties of mouse limbal stem cells. J Immunol 184:2124–2129 CrossRefPubMed
36.
Zurück zum Zitat Espana EM, Kawakita T, Romano A et al (2003) Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. Invest Ophthalmol Vis Sci 44:5130–5135 CrossRefPubMed Espana EM, Kawakita T, Romano A et al (2003) Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. Invest Ophthalmol Vis Sci 44:5130–5135 CrossRefPubMed
37.
Zurück zum Zitat Ahmad S, Stewart R, Yung S et al (2007) Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 25:1145–1155 CrossRefPubMed Ahmad S, Stewart R, Yung S et al (2007) Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 25:1145–1155 CrossRefPubMed
38.
Zurück zum Zitat Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M et al (2009) Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 27:642–652 CrossRefPubMedPubMedCentral Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M et al (2009) Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 27:642–652 CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Notara M, Refaian N, Braun G et al (2016) Short-term ultraviolet A irradiation leads to dysfunction of the limbal niche cells and an antilymphangiogenic and anti-inflammatory micromilieu. Invest Ophthalmol Vis Sci 57:928–939 CrossRefPubMed Notara M, Refaian N, Braun G et al (2016) Short-term ultraviolet A irradiation leads to dysfunction of the limbal niche cells and an antilymphangiogenic and anti-inflammatory micromilieu. Invest Ophthalmol Vis Sci 57:928–939 CrossRefPubMed
40.
Zurück zum Zitat Qi H, Chuang EY, Yoon KC et al (2007) Patterned expression of neurotrophic factors and receptors in human limbal and corneal regions. Mol Vis 13:1934–1941 PubMedPubMedCentral Qi H, Chuang EY, Yoon KC et al (2007) Patterned expression of neurotrophic factors and receptors in human limbal and corneal regions. Mol Vis 13:1934–1941 PubMedPubMedCentral
41.
Zurück zum Zitat Nakatsu MN, Ding Z, Ng MY et al (2011) Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 52:4734–4741 CrossRefPubMedPubMedCentral Nakatsu MN, Ding Z, Ng MY et al (2011) Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 52:4734–4741 CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat O’Callaghan AR, Daniels JT, Mason C (2011) Effect of sub-atmospheric oxygen on the culture of rabbit limbal epithelial cells. Curr Eye Res 36:691–698 CrossRefPubMed O’Callaghan AR, Daniels JT, Mason C (2011) Effect of sub-atmospheric oxygen on the culture of rabbit limbal epithelial cells. Curr Eye Res 36:691–698 CrossRefPubMed
43.
Zurück zum Zitat Eberwein P, Reinhard T (2015) Concise reviews: the role of biomechanics in the limbal stem cell niche: new insights for our understanding of this structure. Stem Cells 33:916–924 CrossRefPubMed Eberwein P, Reinhard T (2015) Concise reviews: the role of biomechanics in the limbal stem cell niche: new insights for our understanding of this structure. Stem Cells 33:916–924 CrossRefPubMed
45.
46.
Zurück zum Zitat Meyer-Blazejewska EA, Kruse FE, Bitterer K et al (2010) Preservation of the limbal stem cell phenotype by appropriate culture techniques. Invest Ophthalmol Vis Sci 51:765–774 CrossRefPubMed Meyer-Blazejewska EA, Kruse FE, Bitterer K et al (2010) Preservation of the limbal stem cell phenotype by appropriate culture techniques. Invest Ophthalmol Vis Sci 51:765–774 CrossRefPubMed
47.
Zurück zum Zitat Echevarria TJ, Chow S, Watson S et al (2011) Vitronectin: a matrix support factor for human limbal epithelial progenitor cells. Invest Ophthalmol Vis Sci 52:8138–8147 CrossRefPubMed Echevarria TJ, Chow S, Watson S et al (2011) Vitronectin: a matrix support factor for human limbal epithelial progenitor cells. Invest Ophthalmol Vis Sci 52:8138–8147 CrossRefPubMed
48.
Zurück zum Zitat Miyashita H, Yokoo S, Yoshida S (2013) Long-term maintenance of limbal epithelial progenitor cells using rho kinase inhibitor and keratinocyte growth factor. Stem Cells Transl Med 2:758–765 CrossRefPubMedPubMedCentral Miyashita H, Yokoo S, Yoshida S (2013) Long-term maintenance of limbal epithelial progenitor cells using rho kinase inhibitor and keratinocyte growth factor. Stem Cells Transl Med 2:758–765 CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86:463–471 CrossRefPubMedPubMedCentral Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86:463–471 CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646 CrossRefPubMed Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646 CrossRefPubMed
51.
Zurück zum Zitat Dietrich-Ntoukas T, Hofmann-Rummelt C, Kruse FE et al (2012) Comparative analysis of the basement membrane composition of the human limbus epithelium and amniotic membrane epithelium. Cornea 31:564–569 CrossRefPubMed Dietrich-Ntoukas T, Hofmann-Rummelt C, Kruse FE et al (2012) Comparative analysis of the basement membrane composition of the human limbus epithelium and amniotic membrane epithelium. Cornea 31:564–569 CrossRefPubMed
52.
Zurück zum Zitat Dua HS, Rahman I, Miri A et al (2010) Variations in amniotic membrane: relevance for clinical applications. Br J Ophthalmol 94:963–964 CrossRefPubMed Dua HS, Rahman I, Miri A et al (2010) Variations in amniotic membrane: relevance for clinical applications. Br J Ophthalmol 94:963–964 CrossRefPubMed
53.
Zurück zum Zitat Kolli S, Lako M, Figueiredo F et al (2008) Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 3:329–342 CrossRefPubMed Kolli S, Lako M, Figueiredo F et al (2008) Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 3:329–342 CrossRefPubMed
54.
Zurück zum Zitat Pellegrini G, Lambiase A, Macaluso C et al (2016) From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU. Regen Med 11:407–420 CrossRefPubMed Pellegrini G, Lambiase A, Macaluso C et al (2016) From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU. Regen Med 11:407–420 CrossRefPubMed
56.
57.
Zurück zum Zitat Wright B, De Bank PA, Luetchford KA et al (2014) Oxidized alginate hydrogels as niche environments for corneal epithelial cells. J Biomed Mater Res 102:3393–3400 CrossRef Wright B, De Bank PA, Luetchford KA et al (2014) Oxidized alginate hydrogels as niche environments for corneal epithelial cells. J Biomed Mater Res 102:3393–3400 CrossRef
58.
Zurück zum Zitat Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31:7726–7737 CrossRefPubMed Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31:7726–7737 CrossRefPubMed
59.
Zurück zum Zitat Bray LJ, George KA, Hutmacher DW et al (2012) A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials 33:3529–3538 CrossRefPubMed Bray LJ, George KA, Hutmacher DW et al (2012) A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials 33:3529–3538 CrossRefPubMed
60.
Zurück zum Zitat Barbaro V, Ferrari S, Fasolo A et al (2009) Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Mol Vis 15:2084–2093 PubMedPubMedCentral Barbaro V, Ferrari S, Fasolo A et al (2009) Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Mol Vis 15:2084–2093 PubMedPubMedCentral
61.
Zurück zum Zitat Han B, Chen SY, Zhu YT, Tseng SC (2014) Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells. Stem Cell Res 12:562–573 CrossRefPubMedPubMedCentral Han B, Chen SY, Zhu YT, Tseng SC (2014) Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells. Stem Cell Res 12:562–573 CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Chen SY, Hayashida Y, Chen MY et al (2011) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 17:537–548 CrossRefPubMedPubMedCentral Chen SY, Hayashida Y, Chen MY et al (2011) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 17:537–548 CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Jones RR, Hamley IW, Connon CJ (2012) Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Res 8:403–409 CrossRefPubMed Jones RR, Hamley IW, Connon CJ (2012) Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Res 8:403–409 CrossRefPubMed
64.
Zurück zum Zitat Foster JW, Jones RR, Bippes CA et al (2014) Differential nuclear expression of Yap in basal epithelial cells across the cornea and substrates of differing stiffness. Exp Eye Res 127:37–41 CrossRefPubMed Foster JW, Jones RR, Bippes CA et al (2014) Differential nuclear expression of Yap in basal epithelial cells across the cornea and substrates of differing stiffness. Exp Eye Res 127:37–41 CrossRefPubMed
65.
Zurück zum Zitat Levis HJ, Daniels JT (2016) Recreating the human limbal epithelial stem cell niche with bioengineered limbal crypts. Curr Eye Res 4:1–8 Levis HJ, Daniels JT (2016) Recreating the human limbal epithelial stem cell niche with bioengineered limbal crypts. Curr Eye Res 4:1–8
66.
Zurück zum Zitat Ortega I, Sefat F, Deshpande P et al (2014) Combination of microstereolithography and electrospinning to produce membranes equipped with niches for corneal regeneration. J Vis Exp 91:51826 Ortega I, Sefat F, Deshpande P et al (2014) Combination of microstereolithography and electrospinning to produce membranes equipped with niches for corneal regeneration. J Vis Exp 91:51826
67.
Zurück zum Zitat Chen C, Loe F, Blocki A et al (2011) Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev 63:277–290 CrossRefPubMed Chen C, Loe F, Blocki A et al (2011) Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev 63:277–290 CrossRefPubMed
68.
Zurück zum Zitat Kumar P, Satyam A, Fan X et al (2015) Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tissue Eng Part C Methods 21:660–670 CrossRefPubMed Kumar P, Satyam A, Fan X et al (2015) Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tissue Eng Part C Methods 21:660–670 CrossRefPubMed
69.
Zurück zum Zitat Freudenberg U, Hermann A, Welzel PB et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060 CrossRefPubMed Freudenberg U, Hermann A, Welzel PB et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060 CrossRefPubMed
70.
Zurück zum Zitat Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Glycosaminoglycan-based biohybrid hydrogels: a sweet and smart choice for multifunctional biomaterials. Adv Mater 28:8861–8891 CrossRefPubMed Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Glycosaminoglycan-based biohybrid hydrogels: a sweet and smart choice for multifunctional biomaterials. Adv Mater 28:8861–8891 CrossRefPubMed
71.
Zurück zum Zitat Freudenberg U, Sommer J‑U, Levental KR et al (2012) Using mean field theory to guide biofunctional materials design. Adv Funct Mater 22:1391–1398 CrossRef Freudenberg U, Sommer J‑U, Levental KR et al (2012) Using mean field theory to guide biofunctional materials design. Adv Funct Mater 22:1391–1398 CrossRef
72.
73.
Metadaten
Titel
Zukunftstechnologie Tissue-Engineering
Fokus auf die Stammzellnische
verfasst von
Prof. Dr. U. Schlötzer-Schrehardt
U. Freudenberg
F. E. Kruse
Publikationsdatum
27.02.2017
Verlag
Springer Medizin
Erschienen in
Die Ophthalmologie / Ausgabe 4/2017
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-017-0468-0

Weitere Artikel der Ausgabe 4/2017

Der Ophthalmologe 4/2017 Zur Ausgabe

Update Ophthalmologie

Update Ophthalmologie

Neu im Fachgebiet Augenheilkunde