Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2023

Open Access 01.12.2023 | Case report

Mycosis fungoides with spongiosis: a case report

verfasst von: Jesse Jonathan Kashabano, Eulade Rugengamazi, Subira Bhoke Matiku, Rashid Mussa Mruma, Emmanuel L. Lugina

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2023

Abstract

Background

Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). CTCL are an uncommon, heterogeneous group of non-Hodgkin lymphomas (NHLs) of T- and B-cell origin where the skin is the primary organ of involvement. It is characterized by malignant CD4+ T-cells infiltrating the skin and other organs, leading to progressive skin and systemic involvement. Histopathologically, MF is characterized by atypical lymphocytes demonstrating epidermotropism without spongiosis. Spongiosis is the histological hallmark of intercellular epidermal edema, viewed as clear spaces within the epidermis, and is very common in benign inflammatory dermatoses. Very few studies have reported MF in sub-Saharan Africa (SSA). We are reporting a case of MF with a rare presentation of spongiosis treated successfully with a low dose total skin electron beam therapy (TSEBT) followed by maintenance therapy of low dose Methotrexate (MT) at the Ocean Road Cancer Institute (ORCI) in Tanzania. This is the first case of MF to be managed with low-dose TSEBT in Tanzania. The authors wish to create awareness of the disease among physicians and pathologists and expand on the data paucity in SSA.

Case description

We are reporting a case of a 31-year-old male of African origin who self-referred to our oncology center with a 4-year history of skin rashes throughout the body, which was unresponsive to topical steroid treatment. The biopsy was taken, and the patient was diagnosed with MF CD 3 positive with spongiosis. The patient was treated with radiotherapy, whereby he received low dose total skin electron beam therapy (TSEBT) 12 Gy in 3 fractions at a daily dose of 4 Gy, followed by maintenance therapy of low dose Methotrexate and attained an excellent therapeutic response.

Conclusion

Spongiosis is an infrequent presentation of MF. Low-dose TSEBT provides reliable and rapid reduction of disease burden in patients with MF, which could be administered safely multiple times during a patient's disease with an acceptable toxicity profile. Lack of tendency to perform skin biopsies and cost constraints in assessing multiple immunophenotypic markers lead to missing the diagnosis. Diagnosis and treatment of MF in resource-limited countries is challenging.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
NHL
Non-Hodgkin’s lymphoma
CTCL
Cutaneous T-cell lymphoma
LINAC
Linear accelerator
MF
Mycosis fungoides
ORCI
Ocean Road Cancer Institute
OS
Overall survival
TSEBT
Total skin electron beam therapy
OSS
Overall response rate

Introduction

Cutaneous T-cell lymphomas (CTCLs) encompass a heterogeneous collection of non-Hodgkin lymphomas (NHL) that arise from skin-tropic memory T lymphocytes. Among them, mycosis fungoides (MF) and Sézary syndrome (SS) are the most common malignancies [1]. The disease is named MF due to its histological resemblance to a fungal infection [2].
MF is the most common variant of primary CTCL, accounting for 50% of all primary CTCL, and represents less than 1% of the total number of NHL [3]. MF is characterized by malignant proliferation of CD4 + T cells with epidermotropism in the skin and, generally, has a prolonged indolent clinical course [4]. The disease has a male-to-female ratio of 2:1. It can occur in any age group but is most commonly diagnosed in middle-aged and older individuals, with a median age of 60 years at diagnosis. MF has a higher incidence in specific populations, such as African Americans, who have a 2–3 times greater risk of developing the disease than whites [5]. Very few studies have reported on MF in sub-Saharan Africa (SSA) [610].
Several issues, including Human Immunodeficiency Virus (HIV) co-infection, lack of access to specialists, and a relatively large dispersed rural population, may contribute to the burden and late presentation of CTCL seen in SSA. The literature suggests that CTCL is likely under-recognized and under-diagnosed in SSA [68].
MF usually presents as patches, plaques, nodules, or tumors according to the stage of the disease [11]. Clinicians must consider the diagnosis of CTCL early when presented with a persistent chronic dermatitis resistant to initial treatments or featuring morphologies such as erythroderma, nodules, tumors, and lymphadenopathy [9].
MF is classified into four clinical stages according to the TNMB classification (tumor-node-metastasis-blood) that takes into account the extent of cutaneous involvement based on the body surface, the presence of nodal or visceral disease, and the presence of Sezary cells at the peripheral blood level (Table 1) [3].
Table 1
Showing TNMB staging of MF
T stage
N stage
T1: Limited patches, papules, and plaques covering 80% of body surface area
T2: Patches, papules, or plaques covering ≥ 10% of the skin surface. May further stratify into T2a (patch only) vs. T2b (plaque/patch)
T3: One or more tumors (≥ 1-cm diameter)
T4: Confluence of erythema covering > 80% body surface area
N0: No clinically abnormal peripheral lymph nodes; biopsy not required
N1: Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 1 or NCI LN0–2 (N1a, clone negative; N1b, clone positive)
N2: Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 2 or NCI LN3
N3: Clinically abnormal peripheral lymph nodes; histopathology Dutch grades 3 or 4 or NCI LN4; clone positive or negative
NX: Clinically abnormal peripheral lymph nodes; no histologic confirmation
B stage
M stage
B0: Absence of significant blood involvement: < 5% of peripheral blood lymphocytes are atypical (Sézary) cells
B1: Low blood tumor burden: > 5% of peripheral blood lymphocytes are atypical (Sézary) cells but do not meet B2 criteria
B2: High blood tumor burden: ≥ 1000/mL Sézary cells with positive clone
M0: No visceral organ involvement
M1: Visceral involvement (must have pathology confirmation, and the organ involved should be specified)
Staging groups
Staging groups
IA: T1 N0 M0 B0–1
IIIA: T4 N0–2 M0 B0
IB: T2 N0 M0 B0–1
IIIB: T4 N0–2 M0 B1
IIA: T1–2 N1–2 M0 B0
IVA1: T1–4 N0–2 M0 B0–2
IIB: T3 N0–2 M0 B0–1
IVA2: T1–4 N3 M0 B0–2
IVB: T1–4 N0–3 M1 B0–2
This is the first case of MF to be managed with low-dose TSEBT in Tanzania. The authors wish to create awareness of the disease among physicians and pathologists and expand on the data paucity in SSA.

Case presentation

A 31-year-old male teacher of African origin presented to Ocean Road Cancer Institute (ORCI) with a four-year history of an itchy rash on the face, trunk, and limbs. The rash initially appeared as macules and papules over the trunk, 2–3 in number. After several months, the lesions gradually progressed to involve limbs, buttocks, face, and the entire trunk. The rash eventually ulcerated. He had received multiple topical treatments (steroids and moisturizing creams) as an eczema case from 2017 to 2020 without a clinical response. He denied a similar illness in the past and had no history of chronic diseases. There was no history of exposure to occupational chemicals, drugs, radiation, or infections before the appearance of the lesions, and none of the family members had a similar illness or history of atopy. The patient neither took any form of alcohol nor tobacco products. The rash was associated with on-and-off diarrhea episodes, though denied a history of evening fevers, night sweats, loss of weight, or arthralgia.
On examination, the patient was alert, afebrile, not dyspneic, not pale, not jaundiced, and had no lower limb edema, vitals, blood pressure 137/81 mmHg, pulse rate 87 beats per minute, respiratory rate 15 breaths per minute, oxygen saturation 98%. He had a functional status of ECOG 1. On local examination, multiple well to ill-defined hyperpigmented erosive plaques, nodules, and tumors were present on the trunk, all limbs, and face, occupying more than 95% of the body surface area, including the non-sun-exposed location. The lesions had various sizes ranging from 6 cm in the widest dimension to 2 cm. There was an ulcer of about 8*10 cm on the left knee and a small ulcer on the left elbow, approximately 2*3 cm (Figs. 3 and 4). There was no significant peripheral lymphadenopathy or splenomegaly. On systemic and neurological examinations, the patient had a GCS of 15/15, oriented to time, people, and place, with normal speech and good long- and short-term memory. Cranial nerves (1-XII) were all intact, and no signs and symptoms of meningeal irritation, with normal tone and reflexes with power of 5/5 on both lower and upper limbs; superficial and deep tendon reflexes were normal, sensory system intact with normal coordination, gait and balance. Cardiovascular System: S1 and S2 were heard with no added sound. Respiratory system: normal chest cavity with good air entry, no crackles or wheezes heard. Abdominal examination: normal abdominal contour, no palpable mass, with normal bowel sounds. The differential diagnoses were atopic dermatitis (AD), chronic eczema, and psoriasis.
A skin biopsy revealed MF with prominent spongiosis (Fig. 1). Immunohistochemistry showed CD3 positivity. Immunohistochemistry for CD4, CD5, and CD8 was not done.
Urinalysis and Microbiology were not done.
HIV1 serology test was negative. Peripheral blood smear and bone marrow aspirate were not done. Chest x-ray and abdomen ultrasound were normal (Fig. 2).
Upon completion of this evaluation, the patient was scored to have 6 points (Persistent and progressive patches/thin plaques-2 points; Non-sun-exposed location and Size/shape variation-2 points; Superficial lymphoid infiltrate-1 point; Lymphocytic atypia-1 points and CD3 + − 1 point) according to International Society for Cutaneous Lymphomas (ISCL) diagnostic algorithm [4] and the diagnosis of MF was rendered. The TNMB stage was stage 3 (T3N0M0BX) according to the International Society for Cutaneous Lymphoma (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC) [3].
The initial treatment after being admitted was oral Prednisolone 10 mg b.i.d for 30 days and oral Ampiclox capsules 500 mg q.i.d × 10 days.
The patient was after that treated with a low-dose TSEBT. He received 12 Gy in 3 fractions at a daily dose of 4 Gy in October 2021. The radiotherapy technique was 3D conformal radiotherapy (3DCRT) using a linear accelerator (LINAC). The patient stood upright and half-naked during treatment, exposing all the skin to radiation. A 12 MeV beam was used to treat this patient using three anterior and posterior fields. The fields were then separated into Upper and Lower half bodies to ensure coverage of the open field size. The gantry angles were 1080 and 720 for the upper and lower halves, respectively. The source-to-skin distance was 110 cm, and the field size was 25 × 25 cm (Figs. 3, 4).
After three sessions of TSEBT, the patient had remarkable improvement in lesions, itching, and pain subsided (Fig. 5). After completion of TSEBT, he was put on maintenance oral methotrexate (50 mg weekly with 1 week of rest after every 4 weeks). He attained a complete response (CR) of all the lesions within three months after completing TSEBT (Fig. 6). He did not experience any acute or late effects of radiotherapy.
Five months later, the patient developed a recurrence lesion in his left leg (Fig. 7). He was treated with localized TSEBT (12 Gy in four fractions) with a complete response (Fig. 8).
The patient is in remission two years post initial treatment and is still on maintenance oral methotrexate 50 mg weekly. Summary of important events have been highlighted (Fig. 9).

Discussion

We are reporting a case of advanced MF with spongiosis with a complete, durable response after low-dose total skin electron beam therapy (TSEBT) and challenges in managing MF in resource-limited countries. Spongiosis and durable response after treatment are very rare in MF.
The cause of MF remains largely unknown. Previous studies suggest that superantigens might be involved in the pathogenesis of MF. Persistent infections with pathogenic microbes that are poorly managed may provide an antigenic trigger for MF tumorigenesis. Therefore, the high prevalence of multiple co-existing viral and/or bacterial microorganisms in African populations, like HIV, HTLV-1/2, Epstein-Barr virus (EBV), Cytomegalovirus (CMV), Human Herpesvirus-8, and Staphylococcus aureus might play a significant role, since they are known to provide chronic immune stimulation inducing T-cell proliferation and possibly neoplastic transformation [12]. However, the association between MF and HTLV-1/2 is controversial [13].
The diagnosis of MF is often challenging, especially in resource-limited countries, mainly because of the atypical clinical presentation at an early stage [14]. Indeed, as in the case of our patient, lesions can simulate psoriasis, atopic dermatitis, or chronic eczema. The diagnosis of MF is challenging even in resource-abundant countries. An extended follow-up, as seen in our patient, and evaluation of multiple biopsies are often necessary to confirm the diagnosis. Before biopsy of an involved early-stage skin lesion, therapy is typically withheld for 2–4 weeks since the treatment effect can obscure the pathognomonic histologic features, including epidermotropism and the ‘cerebriform’ nuclear appearance. To facilitate the diagnosis of MF in HIC, an algorithm was proposed by the International Society for Cutaneous Lymphomas (ISCL) diagnostic algorithm [4]. The algorithm holistically integrates clinical, histopathologic, immunopathologic, and molecular biological characteristics. One of the histopathological criteria is epidermotropism without spongiosis [4]. Spongiosis represents the histological hallmark of intercellular epidermal edema, translated by cell condensation with corresponding wide spaces between keratinocytes, with elongated intercellular bridges (‘spinous processes’), leading to a sponge‑like appearance of the epidermis [15]. Hematoxylin and eosin (H&E) routine staining highlights this process as clear spaces within the epidermis, and the most common cutaneous lesion associated with spongiosis is eczematous dermatitis [15].
Our patient was diagnosed with MF with spongiosis, mimicking benign inflammatory dermatoses. Lack of awareness of spongiosis as a rare presenting feature of MF may result in initial misdiagnosis as a benign inflammatory condition [16].
Since unaffordability and lack of access preclude the assessment of multiple immunopathological and molecular markers in SSA, a consensus was reached that in resource-limited settings, the combination of characteristic clinical findings, morphologic appearance on hematoxylin and eosin staining, and a positive CD3 or CD4 immunohistochemical result is sufficient for diagnosing MF [7].
In addition to overcoming these challenges associated with diagnosing MF, an additional potential neoplasm, adult T-cell leukemia/lymphoma (ATLL), should be considered when diagnosing MF in Africa. Human T-cell lymphotropic virus 1 (HTLV-1) is endemic in parts of Africa, Japan, and the Caribbean and was first identified in cells from a patient diagnosed with CTCL [17]. Since this discovery, a smoldering clinical subtype of ATLL of the skin was described that can mimic CTCL clinically and pathologically [18]. A diagnosis of smoldering ATLL requires either the presence of more than 5% abnormal circulating T-lymphocytes in the peripheral blood or histological confirmation of typical ‘flower cells’ in a T-cell infiltrate not seen in our patient [19]. A serologic test for HTLV-1 can help differentiate the smoldering ATLL of the skin from CTCL. Immunohistochemistry for CD25 may also be helpful, as it is expressed strongly in almost all cases of ATLL [7]. East Africa, including Tanzania, appears globally much less endemic for HTLV-1 than West and Central Africa [20], and therefore, no additional tests were done to rule out HTLV-1 in our patient.
MF is generally considered an incurable disease, but it should be noted that most patients have indolent forms classified as stage IA or IB in 65 to 85% and are, therefore, long-term survivors [21]. Patients with early stages (IA, IB, IIA) often initially receive skin-directed therapies, including topical corticosteroids, topical retinoids, phototherapy, topical chemotherapy, and radiotherapy. At the same time, advanced-stage (IIB, III, IV) is treated with systemic therapy [7]. There is insufficient data to recommend one treatment regimen over another. While several treatment guidelines for CTCL exist in resource-abundant regions, this is different for resource-limited settings [7].
Topical skin treatments mainly include systemic or topical corticosteroids, such as betamethasone dipropionate 0.05%, which results in a complete and partial response rate of 60–65% and 30% in the case of T1 and 25 and 57% in the T2 stage, respectively [22]. Topical corticosteroids may be effective in the patchy stage (early stage) MF and not the plaque stage (advanced stage), perhaps due to poor penetration into the reticular dermis, as was observed in the index case. Despite demonstrating the efficacy of corticosteroids in early-stage MF, the above study did not define how the response rates were measured and did not include higher MF stages. A recent study also found a high response rate (81%) to topical steroid monotherapy, mainly clobetasol, in early-stage MF. However, not surprisingly, there was a poor response (33.3%) to topical steroid monotherapy in patients with higher-stage MF (IIA and above) [23]. Tazarotene, a topical retinoid, is another skin-directed therapy that has also been shown to result in a high complete CR (60%) when it is used as monotherapy for at least six months in early-stage MF [24].
Generalized skin-directed therapy is mainly represented by phototherapy (narrowband-UVB) and or PUVA therapy (Psoralen plus ultraviolet A light therapy), which is indicated in patients with more extensive lesions (Thick plaques) [25].
MF is very radio-sensitivity [14], and Radiotherapy (RT) has been used to treat localized/limited lesions of MF since 1902 [26]. Total skin electron beam therapy (TSEBT) is the most effective skin-directed MF therapy. TSEBT for patients with CTCL is technically challenging, and numerous approaches have been developed to overcome the many fields matching problems associated with such a large and complex treatment volume [27]. Historically, TSEBT doses were escalated from 8 to 36 Gy as tolerance for higher doses was demonstrated, and complete response (CR) rates increased [28]. Toxicity is dose-dependent, with common acute effects being erythema and dry desquamation. Late effects of 36 Gy include temporary anhidrosis and temporary loss of fingernails and toenails. Alopecia may be permanent at doses of more than 25 Gy [29]. Recurrence is very common, even after 36 Gy. There has been a reluctance to re-treat MF with more than two courses of 36 Gy TSEBT because of the risk of significant skin atrophy and xerosis [30]. The recurrence-free interval after RT ranges from 30 to 60 months [10]. There is thus a renaissance of low-dose TSEBT. Advantages of low-dose TSEBT include a shorter treatment duration, reduction of toxicities, reduced cost, particularly in resource-limited countries, improved patient compliance, and the ability to use the therapy more frequently over the patient’s lifetime. Lower doses may also allow the use of systemic radiosensitizers [31].
In a study by Wilson et al., a complete response (CR) rate of 97% was observed. Notably, when examining recurrence rates in relation to different total doses of local superficial radiation, they found that a local recurrence rate of 25% was associated with treatment to a dose of 20 Gy. However, this local recurrence rate decreased to 8% when treatment doses ranged from 20 to 40 Gy [32]. Similarly, the study by Cotter et al., showed that the local recurrence rate was 42% for lesions treated with doses of 10 Gy or less. However, when the lesions were treated with doses exceeding 30 Gy, the local recurrence rate dropped to 0% [33].
The main therapeutic options for early-stage CTCL in resource-limited settings include topical corticosteroids, radiation therapy, and heliotherapy; the latter may be used instead of phototherapy, which is not usually available [7].
Heliotherapy (HT) or sunbathing is a light-based therapy proven to be convenient for alleviating inflammatory skin changes. The UV lights reach the epidermis and underlying dermis, triggering immunosuppression, enhancing apoptosis, suppressing cellular proliferation, and inducing vitamin D production. Furthermore, it is considered that HT has strong antipruritic effects [34]. The optimal dose of HT has never been specifically studied in CTCL [7]. The dose can be estimated from a South African study that measured the natural UVB exposure at meteorological centers in Cape Town, Durban, and Pretoria throughout the year. In patients with Fitzpatrick skin type VI, 0.08 J/cm2 is the initial recommended daily treatment dose (0.03 J/cm2 in type III skin) for CTCL. Previous studies showed that 70% of the minimal erythema dose (MED) is effective in treating MF, with the daily dose increased by 15% every three days until a maximally tolerated dose (MTD) is reached [35]. This MTD is then maintained throughout the treatment course. To get MTD with HT, a patient in Pretoria at 10 am with type VI skin, for example, requires 77 minute of HT to all affected areas in December, 113 minute in March, and 228 minute in June (one-third of this duration is needed for type III skin in each instance) [36]. These durations of HT may be overestimated for an equatorial country like Tanzania, with less seasonal variation and more intense UVB exposure. However, much time is still required to achieve therapeutic UVB doses of HT, especially in dark-skinned individuals [6]. HT has been reported to result in partial response among patients with MF in Botswana [9].
Refractory early-stage or advanced-stage MF requires systemic therapy and a multidisciplinary approach. Various combinations of skin‐directed therapies, systemic retinoids, histone deacetylase inhibitors, interferon-alpha, antibody–drug conjugates (Brentuximab vedotin), monoclonal antibodies (Mogamulizumab), and ultimately chemotherapeutic agents and hematopoietic stem cell transplants are used in the management of these patients [37]. The management of MF in resource-limited countries is complex because of the unavailability of most therapies except steroids, chemotherapeutic agents, radiotherapy, and heliotherapy.
The low-dose TSEBT has the highest overall response rate (ORR) (88%) and complete response rate (CR) (32%) of all skin-directed therapies. ORRs associated with topical corticosteroids, nitrogen mustard, and narrowband ultraviolet B are reported to be 57%, 72%, and 75%, respectively. Response rates to systemic agents such as Bexarotene and Vorinostat (histone deacetylase inhibitor) are 51% and 31%, respectively, with less than 10% CR rates [31]. Weekly methotrexate (MTX) with doses ranging from 25 to 50 mg results in CR of 12% in T2 patients and a 22% PR rate with a median recurrence-free interval of 15 months. Weekly MTX is of limited value in advanced-stage MF [38]. Liposomal doxorubicin has an ORR of 56% (20% CR) [39]. Gemcitabine 1000 mg/m2 days 1, 8, and 15 q4 weeks has an ORR of 68% (8% CR) [40]. Despite the highest CR of TSEBT, the clinician’s awareness of this treatment remains low because of concern about side effects [27].
Our patient was put on weekly oral MTX as maintenance therapy; however, until today, there are no standardized strategies for maintenance therapy in patients with CTCL who achieved disease control [41].

Conclusion

Spongiosis is an infrequent presentation of MF. Low-dose TSEBT provides reliable and rapid reduction of disease burden in patients with MF, which could be administered safely multiple times during a patient’s disease with an acceptable toxicity profile. Diagnosis and treatment of MF in resource-limited countries is challenging.

Acknowledgements

We thank Dr. Caroline Rowland Swai, Oncology Nurses, and the ORCI administration for their support.

Declarations

The case presentation was reviewed and approved by the ORCI Institutional Review Committee.
Written informed consent was obtained from the patient to publish this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors do not disclose any conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Zinzani PL, Ferreri AJM, Cerroni L. Mycosis fungoides. Crit Rev Oncol Hematol. 2008;65(2):172–82.CrossRefPubMed Zinzani PL, Ferreri AJM, Cerroni L. Mycosis fungoides. Crit Rev Oncol Hematol. 2008;65(2):172–82.CrossRefPubMed
2.
Zurück zum Zitat Jean L. Bolognia, Julie V. Schaffer LC. Dermatology: 2-Volume Set, 4th Edition. 4th ed. elsevier health, editor. Elsevier; 2017. chap 131. Jean L. Bolognia, Julie V. Schaffer LC. Dermatology: 2-Volume Set, 4th Edition. 4th ed. elsevier health, editor. Elsevier; 2017. chap 131.
3.
Zurück zum Zitat Yamashita T, Fernandes Abbade LP, Esther M, Marques A, Marques SA, Pathology I. CONTINUED MEDICAL EDUCATION Mycosis fungoides and Sézary syndrome: clinical, histopathological and immunohistochemical review and update Work conducted at the. An Bras Dermatol. 2012;87(6):817–47.CrossRefPubMedPubMedCentral Yamashita T, Fernandes Abbade LP, Esther M, Marques A, Marques SA, Pathology I. CONTINUED MEDICAL EDUCATION Mycosis fungoides and Sézary syndrome: clinical, histopathological and immunohistochemical review and update Work conducted at the. An Bras Dermatol. 2012;87(6):817–47.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Miyagaki T. Diagnosis of early mycosis fungoides. Diagnostics. 2021;11(9):1–9.CrossRef Miyagaki T. Diagnosis of early mycosis fungoides. Diagnostics. 2021;11(9):1–9.CrossRef
5.
Zurück zum Zitat Quaglino P, Maule M, Prince HM, Porcu P, Horwitz S, Duvic M, et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium. Ann Oncol. 2017;28(10):2517–25.CrossRefPubMed Quaglino P, Maule M, Prince HM, Porcu P, Horwitz S, Duvic M, et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium. Ann Oncol. 2017;28(10):2517–25.CrossRefPubMed
6.
Zurück zum Zitat Grijsen ML, Mtayangulwa RG, Naafs B, Jansen P, Vermeer MH, Mavura D, et al. The clinical spectrum of mycosis fungoides in Tanzania. East Africa Br J Dermatol. 2017;176(6):1653–6.CrossRefPubMed Grijsen ML, Mtayangulwa RG, Naafs B, Jansen P, Vermeer MH, Mavura D, et al. The clinical spectrum of mycosis fungoides in Tanzania. East Africa Br J Dermatol. 2017;176(6):1653–6.CrossRefPubMed
7.
Zurück zum Zitat Ulrickson M, Okuku F, Walusansa V, Press O, Kalungi S, Wu D, et al. Cutaneous T-cell lymphoma in Sub-Saharan Africa Matthew. J Natl Compr Canc Netw. 2013;11(3):275–80.CrossRefPubMedPubMedCentral Ulrickson M, Okuku F, Walusansa V, Press O, Kalungi S, Wu D, et al. Cutaneous T-cell lymphoma in Sub-Saharan Africa Matthew. J Natl Compr Canc Netw. 2013;11(3):275–80.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Fouchard N, Mahe A, Huerre M, Fraitag S, Valensi F, Macintyre E, et al. Cutaneous T cell lymphomas: Mycosis fungoides, Sezary syndrome and HTLV-1-associated adult T cell leukemia (ATL) in Mali, West Africa: a clinical, pathological and immunovirological study of 14 cases and a review of the African ATL cases. Leukemia. 1998;12(4):578–85.CrossRefPubMed Fouchard N, Mahe A, Huerre M, Fraitag S, Valensi F, Macintyre E, et al. Cutaneous T cell lymphomas: Mycosis fungoides, Sezary syndrome and HTLV-1-associated adult T cell leukemia (ATL) in Mali, West Africa: a clinical, pathological and immunovirological study of 14 cases and a review of the African ATL cases. Leukemia. 1998;12(4):578–85.CrossRefPubMed
9.
Zurück zum Zitat Rodriguez O, Sowash M, Mosojane KI, Ralefala T, Grover S, Haun P, et al. A retrospective review of cutaneous lymphoma in Botswana. Int J Dermatol. 2020;59(3):352–8.CrossRefPubMed Rodriguez O, Sowash M, Mosojane KI, Ralefala T, Grover S, Haun P, et al. A retrospective review of cutaneous lymphoma in Botswana. Int J Dermatol. 2020;59(3):352–8.CrossRefPubMed
10.
Zurück zum Zitat Campbell O, George A, Akang E, Aghadiuno P. Problems in the management of mycosis fungoides in Nigeria. Trop Geogr Med. 1991;43(3):317–22.PubMed Campbell O, George A, Akang E, Aghadiuno P. Problems in the management of mycosis fungoides in Nigeria. Trop Geogr Med. 1991;43(3):317–22.PubMed
11.
Zurück zum Zitat Kurmuş GI, Keseroğlu HÖ, Gönül M, Gürçay N, Alper M. Hypopigmented mycosis fungoides: case report. Turk Dermatoloji Derg. 2018;12(2):110–2.CrossRef Kurmuş GI, Keseroğlu HÖ, Gönül M, Gürçay N, Alper M. Hypopigmented mycosis fungoides: case report. Turk Dermatoloji Derg. 2018;12(2):110–2.CrossRef
13.
Zurück zum Zitat Vallejo A, López-Estebaranz JL, Ortiz-Romero P, García-Sáiz A. Is Mycosis fungoides Associated with HTLV-I? Vox Sang. 1995;69(1):84–84.PubMed Vallejo A, López-Estebaranz JL, Ortiz-Romero P, García-Sáiz A. Is Mycosis fungoides Associated with HTLV-I? Vox Sang. 1995;69(1):84–84.PubMed
14.
Zurück zum Zitat Chellakhi M, Khalfaoui I, Benchakroun N, Bouchbika Z, Jouhadi H, Tawfiq N, et al. Radiation therapy in mycosis fungoid patient. Pan Afr Med J. 2019;33:1–5.CrossRef Chellakhi M, Khalfaoui I, Benchakroun N, Bouchbika Z, Jouhadi H, Tawfiq N, et al. Radiation therapy in mycosis fungoid patient. Pan Afr Med J. 2019;33:1–5.CrossRef
15.
Zurück zum Zitat Balan R, Lozneanu L, Grigoras A, Caruntu I, Balan T, Giusca S, et al. Spongiotic reaction patterns in autoimmune bullous dermatoses (Review). Exp Ther Med. 2021;22(5). Balan R, Lozneanu L, Grigoras A, Caruntu I, Balan T, Giusca S, et al. Spongiotic reaction patterns in autoimmune bullous dermatoses (Review). Exp Ther Med. 2021;22(5).
16.
Zurück zum Zitat Shamim H, Johnson EF, Gibson LE, Comfere N. Mycosis fungoides with spongiosis: a potential diagnostic pitfall. J Cutan Pathol. 2019;46(9):645–52.CrossRefPubMed Shamim H, Johnson EF, Gibson LE, Comfere N. Mycosis fungoides with spongiosis: a potential diagnostic pitfall. J Cutan Pathol. 2019;46(9):645–52.CrossRefPubMed
17.
Zurück zum Zitat Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77(12 II):7415–9.CrossRefPubMedPubMedCentral Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77(12 II):7415–9.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood. 2010;115(22):4337–43.CrossRefPubMed Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood. 2010;115(22):4337–43.CrossRefPubMed
19.
Zurück zum Zitat Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. Br J Haematol. 1991;79(3):428–37.CrossRefPubMed Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. Br J Haematol. 1991;79(3):428–37.CrossRefPubMed
20.
Zurück zum Zitat Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:1–23.CrossRef Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:1–23.CrossRef
22.
Zurück zum Zitat Zackheim HS, Kashani-Sabet M, Amin S. Topical corticosteroids for mycosis fungoides: experience in 79 patients. Arch Dermatol. 1998;134(8):949–54.CrossRefPubMed Zackheim HS, Kashani-Sabet M, Amin S. Topical corticosteroids for mycosis fungoides: experience in 79 patients. Arch Dermatol. 1998;134(8):949–54.CrossRefPubMed
24.
Zurück zum Zitat Morin CB, Roberge D, Turchin I, Petrogiannis-Haliotis T, Popradi G, Pehr K. Tazarotene 0.1% cream as monotherapy for early-stage cutaneous T-cell Lymphoma. J Cutan Med Surg. 2016;20(3):244–8.CrossRef Morin CB, Roberge D, Turchin I, Petrogiannis-Haliotis T, Popradi G, Pehr K. Tazarotene 0.1% cream as monotherapy for early-stage cutaneous T-cell Lymphoma. J Cutan Med Surg. 2016;20(3):244–8.CrossRef
25.
Zurück zum Zitat Dogra S, Mahajan R. Phototherapy for mycosis fungoides. Indian J Dermatol Venereol Leprol. 2015;81(2):124–35.CrossRefPubMed Dogra S, Mahajan R. Phototherapy for mycosis fungoides. Indian J Dermatol Venereol Leprol. 2015;81(2):124–35.CrossRefPubMed
26.
Zurück zum Zitat Aral İP, Göçer Gürok N, Konuk AO, Üçer Ö. Ultra-low-dose radiotherapy for palliation of mycosis fungoides. Case Rep Dermatol Med. 2020;2020:4–7. Aral İP, Göçer Gürok N, Konuk AO, Üçer Ö. Ultra-low-dose radiotherapy for palliation of mycosis fungoides. Case Rep Dermatol Med. 2020;2020:4–7.
28.
Zurück zum Zitat Smits K, Quint KD, Vermeer MH, Daniëls LA, Willemze R, Jansen PM, et al. Total skin electron beam therapy for cutaneous T-cell lymphomas in the Netherlands: a retrospective analysis of treatment outcomes and selection for high or low dose schedule. Clin Transl Radiat Oncol. 2021;2022(33):77–82. Smits K, Quint KD, Vermeer MH, Daniëls LA, Willemze R, Jansen PM, et al. Total skin electron beam therapy for cutaneous T-cell lymphomas in the Netherlands: a retrospective analysis of treatment outcomes and selection for high or low dose schedule. Clin Transl Radiat Oncol. 2021;2022(33):77–82.
29.
30.
Zurück zum Zitat Becker M, Hoppe RT, Knox SJ, Ph D. Courses of high-dose in the management total skin electron. Radiat Oncol. 1994;1995:7–9. Becker M, Hoppe RT, Knox SJ, Ph D. Courses of high-dose in the management total skin electron. Radiat Oncol. 1994;1995:7–9.
31.
Zurück zum Zitat Hoppe RT, Harrison C, Tavallaee M, Bashey S, Sundram U, Li S, et al. Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J Am Acad Dermatol. 2015;72(2):286–92.CrossRefPubMed Hoppe RT, Harrison C, Tavallaee M, Bashey S, Sundram U, Li S, et al. Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J Am Acad Dermatol. 2015;72(2):286–92.CrossRefPubMed
32.
Zurück zum Zitat Wilson LD, Kacinski BM, Jones GW. Local superficial radiotherapy in the management of minimal stage IA cutaneous T-cell lymphoma (Mycosis Fungoides). Int J Radiat Oncol Biol Phys. 1998;40(1):109–15.CrossRefPubMed Wilson LD, Kacinski BM, Jones GW. Local superficial radiotherapy in the management of minimal stage IA cutaneous T-cell lymphoma (Mycosis Fungoides). Int J Radiat Oncol Biol Phys. 1998;40(1):109–15.CrossRefPubMed
33.
Zurück zum Zitat Cotter GW, Baglan RT, Wasserman TH, Mill W. Palliative radiation treatment of cutaneous mycosis fungoides-A dose response. Int J Radiat Oncol Biol Phys. 1983;9(10):1477–80.CrossRefPubMed Cotter GW, Baglan RT, Wasserman TH, Mill W. Palliative radiation treatment of cutaneous mycosis fungoides-A dose response. Int J Radiat Oncol Biol Phys. 1983;9(10):1477–80.CrossRefPubMed
34.
Zurück zum Zitat Terzić Z, Mikić M, Ljaljević A, Bojić MĐ, Bojić M. The long-term efficacy of heliotherapy in ameliorating disease severity and improving the quality of life in patients with atopic dermatitis. Postep Dermatologii i Alergol. 2023;40(1):159–64.CrossRef Terzić Z, Mikić M, Ljaljević A, Bojić MĐ, Bojić M. The long-term efficacy of heliotherapy in ameliorating disease severity and improving the quality of life in patients with atopic dermatitis. Postep Dermatologii i Alergol. 2023;40(1):159–64.CrossRef
35.
Zurück zum Zitat Gathers RC, Scherschun L, Malick F, Fivenson DP, Lim HW. Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol. 2002;47(2):191–7.CrossRefPubMed Gathers RC, Scherschun L, Malick F, Fivenson DP, Lim HW. Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol. 2002;47(2):191–7.CrossRefPubMed
36.
Zurück zum Zitat Moosa Y, Esterhuyse D. ORIGINAL ARTICLES Heliotherapy: a South African perspective. S Afr Med J. 2010;100(11):728–33.CrossRefPubMed Moosa Y, Esterhuyse D. ORIGINAL ARTICLES Heliotherapy: a South African perspective. S Afr Med J. 2010;100(11):728–33.CrossRefPubMed
37.
Zurück zum Zitat Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(1):193–209.CrossRefPubMed Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(1):193–209.CrossRefPubMed
38.
Zurück zum Zitat Zackheim HS, Kashani-sabet M. Low-dose methotrexate to treat mycosis fungoides. J Am Acad Dermatol. 1981;2003:873–8. Zackheim HS, Kashani-sabet M. Low-dose methotrexate to treat mycosis fungoides. J Am Acad Dermatol. 1981;2003:873–8.
39.
Zurück zum Zitat Quereux G, Marques S, Nguyen JM, Bedane C, D’incan M, Dereure O, et al. Prospective multicenter study of pegylated liposomal doxorubicin treatment in patients with advanced or refractory mycosis fungoides or sézary syndrome. Arch Dermatol. 2008;144(6):727–33.CrossRefPubMed Quereux G, Marques S, Nguyen JM, Bedane C, D’incan M, Dereure O, et al. Prospective multicenter study of pegylated liposomal doxorubicin treatment in patients with advanced or refractory mycosis fungoides or sézary syndrome. Arch Dermatol. 2008;144(6):727–33.CrossRefPubMed
Metadaten
Titel
Mycosis fungoides with spongiosis: a case report
verfasst von
Jesse Jonathan Kashabano
Eulade Rugengamazi
Subira Bhoke Matiku
Rashid Mussa Mruma
Emmanuel L. Lugina
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2023
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-023-04188-2

Weitere Artikel der Ausgabe 1/2023

Journal of Medical Case Reports 1/2023 Zur Ausgabe